JPS58174832A - Analyzing device - Google Patents

Analyzing device

Info

Publication number
JPS58174832A
JPS58174832A JP5059082A JP5059082A JPS58174832A JP S58174832 A JPS58174832 A JP S58174832A JP 5059082 A JP5059082 A JP 5059082A JP 5059082 A JP5059082 A JP 5059082A JP S58174832 A JPS58174832 A JP S58174832A
Authority
JP
Japan
Prior art keywords
sample
laser
optical fiber
light
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5059082A
Other languages
Japanese (ja)
Inventor
Kenichi Shiraki
健一 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5059082A priority Critical patent/JPS58174832A/en
Publication of JPS58174832A publication Critical patent/JPS58174832A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To perform instantaneous spectrochemical analysis at a place where a material to be analyzed is present, by providing an optical fiber, which transmits laser light, and an optical fiber, which transmits the light that is emitted from a sample owing to the irradiation of the laser light. CONSTITUTION:A laser device 1 is provided with a second high frequency generating element and a Q switch pulse generating element. The generated laser light irradiates the sample 6 through a condenser lens 2, the first optical fiber 3, a condenser lens 5, and an output intensity control device 4. The light emitted from the sample 6 is inputted into a spectrophotometer 8 through the second optical fiber 7, and the light emitting spectrum is measured. In this way, the spectrochemical analysis can be instantly performed at the place where the material to be analyzed is present, without moving the spectroscope at civil engineering working sites, at the sea bottom in a very deep region, and the like.

Description

【発明の詳細な説明】 本発明はレーザ光源による分析装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analysis device using a laser light source.

従来、物質の分析は、分析すべき試料を分析装置が設置
されている分析室に持込み、そこで分析操作をして分析
結果を出すのが通常であった。
Conventionally, in the analysis of substances, it has been common practice to bring the sample to be analyzed into an analysis room where an analysis device is installed, perform analysis operations there, and produce the analysis results.

しかしながら、このような分析方法では被分析物質の採
集、運搬、分析結果の情報伝達等に多くの労力と時間を
要するという問題がある。
However, such an analysis method has a problem in that it requires a lot of labor and time to collect and transport the analyte, and to transmit information on the analysis results.

もし、分析したい物質が存在している場所で、しかも即
時に分析結果が得られるならば、これほど利便なことは
ない。
There is nothing more convenient than being able to obtain analysis results instantly at the location where the substance you want to analyze exists.

本発明は前記問題点を解消するもので、試料を分析室に
持込むことなく、物質成分の同定を行なえる装置を提供
するものである。
The present invention solves the above-mentioned problems and provides an apparatus that can identify material components without bringing a sample into an analysis laboratory.

本発明は基本的にはレーザ光によって物質な熱的に励起
し、励起状態より発する光を分光して、そのスペクトル
線のtIi長の値から物質の成分元素を同定する、いわ
ゆるレーザ光源を利用した分光分析装置であるが、特に
光源となるレーザ光を光ファイバーにより遠距離1で伝
送し、fだ試料の発する元を元ファイバーにより採取す
る事により、分析試料の存在する場所での、分析と、結
果の読取りとを可能にしたことを特徴とするものである
。・以下、本発明の実施例を図面にもとすいて説明する
O 第1図は本発明の一実施例を示すものである。
The present invention basically utilizes a so-called laser light source that thermally excites a substance with a laser beam, spectrally spectra the light emitted from the excited state, and identifies the component elements of the substance from the value of the tIi length of the spectral line. This spectrometer is a spectrometer that transmits the laser light that serves as the light source over a long distance using an optical fiber, and collects the source of the sample emitted by the original fiber, making it possible to perform analysis at the location where the sample is present. This feature is characterized by making it possible to read the results.・Hereinafter, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 shows an embodiment of the present invention.

第1図において、 1はtoo’yの商用電源で駆動されるレーザ光源のパ
ルス励起Nd : YAQレーザ装置であって、該装置
1の共振器内に第2高調波発生素子及びQスイッチパル
ス発生素子をそなえており、実施例では波長053μm
で尖頭周方1KWのレーザ光を発振するようになってい
る。
In FIG. 1, 1 is a pulse-excited Nd:YAQ laser device of a laser light source driven by too'y commercial power supply, and a second harmonic generation element and a Q-switch pulse generation device are installed in the resonator of the device 1. In the example, the wavelength is 053 μm.
It is designed to oscillate a laser beam of 1KW around the tip.

2はレーザ!!111よp発生するレーザ光を集光して
第1の元ファイバとしての石英ガラスファイバー中に導
入する業元レンズであって、焦点距離15cInのもの
である。
2 is laser! ! This lens has a focal length of 15 cIn and condenses the laser light generated by 111p and introduces it into the quartz glass fiber serving as the first original fiber.

3はレーザ光を遠方ま・で伝送する第1の元ファイバと
しての石英ファイバーで、外径200 Am、中at>
のコア径100 Amのものである。実施例ではファイ
バー3の長さは約50メートルで、この間のレーザ光の
減衰は10%程度雫ある。
3 is a quartz fiber as the first original fiber that transmits the laser beam to a long distance, and has an outer diameter of 200 Am and a medium diameter of at>
It has a core diameter of 100 Am. In the embodiment, the length of the fiber 3 is about 50 meters, and the attenuation of the laser light during this length is about 10%.

4はファイバー3よりのレーザ光の出射強度をフィルタ
ーガラス板で変化させるが、あるいは金稿板で遮断して
変化させるための制御装置で、レーザ光に垂直な方向に
移動する。
Reference numeral 4 denotes a control device that changes the intensity of the laser beam emitted from the fiber 3 by using a filter glass plate or by blocking it with a gold plate, and is moved in a direction perpendicular to the laser beam.

5はファイバー6より出射したレーザ光を被分析試料6
上に集光するための集光レンズで、焦点距離10c+n
のものであって、これにょシ試料面上でレーザ光のスポ
ットサイズを300 Arnはどに絞ることができる。
5 is the laser beam emitted from the fiber 6 to the sample to be analyzed 6.
A condensing lens for concentrating light upward, focal length 10c+n
This allows the spot size of the laser beam to be narrowed down to 300 Arn on the sample surface.

実施例では被分析試料6、として黄#!(銅、亜鉛合金
)を用いている。
In the example, sample 6 to be analyzed is yellow #! (copper, zinc alloy).

7はレーザ光の照射によって試料の発する光な伝送する
第2の元ファイバとしての石英ガラスファイバーの東で
ある。実施例においては、第2図に示すようにレーザ光
伝送用ファイバー5の周囲に8本のファイバー7を対称
に配置しておシ、それぞれのファイバーの太さとコア径
はレーザ光伝送用のものと同様である。
7 is the east side of a quartz glass fiber serving as a second original fiber that transmits light emitted from the sample by irradiation with a laser beam. In the embodiment, as shown in Fig. 2, eight fibers 7 are arranged symmetrically around the laser beam transmission fiber 5, and the thickness and core diameter of each fiber are those for laser beam transmission. It is similar to

本実施例では発光伝送用のファイバー7はレーザ装置1
の近傍に設置されているキャリ−14型分元元度計8ま
で達してその受光部に接続されておシ、発光スペクトル
は記録紙上にその強度とスペクトル値で示されるよう罠
なってhる。実施例の黄銅の分析の場合、強い発光スペ
クトル線は餉の0.55.0.72μmと亜鉛の0.8
6. (L88μmの波長の値に示されている。
In this embodiment, the fiber 7 for light emission transmission is the laser device 1.
It reaches up to the Carry-14 type atomicity meter 8 installed near the device and is connected to its light receiving section, and the emission spectrum is displayed as the intensity and spectral value on the recording paper. . In the case of the analysis of brass in the example, the strong emission spectrum lines are 0.55 and 0.72 μm for brass and 0.8 μm for zinc.
6. (It is shown in the wavelength value of L88 μm.

被分析試料の所在場所でスペクトル線の波長の同定が可
能になることが望ましいが、現在までのところ特進びの
容易な高分解能の分光器が未だ存在せぬため発光スペク
トルの同定は少なくとも屋内に設置された分光器を利用
することになる。ところが、本発明は元ファイバー5で
レーザ光を遠方まで伝送し、レーザ光の照射によって試
料の発する元を元ファイバー7で帰還させるため、分光
器を移動させる必要がなく1分析試料の採取の因難な場
合に有効である。例えば、土木工事現場における未知の
埋設物や岩石の分析、鉱物資源や地質のポーリング調査
の現場、あるいは深海海底に存在する物質分析等に活用
できる。
It would be desirable to be able to identify the wavelength of the spectral line at the location of the sample to be analyzed, but as there is currently no easily accessible high-resolution spectrometer, identification of the emission spectrum is difficult at least indoors. The installed spectrometer will be used. However, in the present invention, the laser beam is transmitted to a long distance using the original fiber 5, and the source emitted from the sample by laser beam irradiation is returned using the original fiber 7, so there is no need to move the spectrometer and the reason for collecting one analysis sample is reduced. It is effective in difficult cases. For example, it can be used to analyze unknown buried objects and rocks at civil engineering construction sites, polling survey sites for mineral resources and geology, or analyze substances existing on the deep sea floor.

実施例においてはNd : YAGパルスレーザの第2
1i6調波を利用する場合についてのべたが、その第4
高脚波を利用でき、また他のレーザ例えばCO。
In the example, the second Nd:YAG pulse laser
We have talked about the case of using 1i6 harmonics, but the 4th
High leg waves can also be used, as well as other lasers such as CO.

レーザ、アレキサンドライトレーザ等のnA々の高出力
レーザ光を利用できる。
High output laser beams of nA such as lasers and alexandrite lasers can be used.

以上のように、本発明はレーザ光を元ファイバで遠方に
伝送し、試料からの元を再び元ファイバで帰還させて分
析するようにしたので、分析すべき物質が存在する場所
で分析することが可能となり、分析作業に費やす労力と
時間とを大中に削減することができる効果を有するもの
である。
As described above, in the present invention, the laser beam is transmitted to a long distance using the original fiber, and the source from the sample is returned again using the original fiber for analysis. Therefore, it is possible to analyze the substance to be analyzed at the location where it exists. This has the effect of greatly reducing the amount of effort and time spent on analysis work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は元ファイ
バの配列を示す拡大端面図である。1はレーザ装置、6
はレーザ光伝送用ファイバー、6は被分析試料、7は試
料の発光を伝送するためのファイバー、8は分光光度針
である。 特許出願人 日本電気株式会社 部知 *i’l  リ 特許庁長官 殿 2、発明の名称  分析装置 3、補正をする者  出願人 事件との関係 東京都港区芝五丁目33番1号(423
)  日本電気株式会社 代表者  関  本  忠  弘 電 話  東京03−456−3111(大代表)(連
絡先 日本電気株式会社 特許部)5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第5頁第1行目に「の0.55 、0.72μm
と亜鉛の0.86 、0.88μmの波長」とあるのを
、[の0.3247および0.3274μmと亜鉛の0
.3302および0.3345μmの波長]と補正する
。 代理人 弁理士 内 原   晋 1−
FIG. 1 is an explanatory diagram of an embodiment of the present invention, and FIG. 2 is an enlarged end view showing the arrangement of original fibers. 1 is a laser device, 6
6 is a fiber for transmitting laser light, 6 is a sample to be analyzed, 7 is a fiber for transmitting light emitted from the sample, and 8 is a spectrophotometer needle. Patent applicant: NEC Co., Ltd. Bichi *i'l Director General of the Patent Office 2, Name of the invention: Analyzer 3, Person making the amendment: Relationship to the applicant's case: 33-1 Shiba 5-chome, Minato-ku, Tokyo (423)
) NEC Corporation Representative Tadahiro Sekimoto Telephone: Tokyo 03-456-3111 (Main Representative) (Contact Information: Patent Department, NEC Corporation) 5. Detailed explanation of the invention in the specification to be amended 6. In the first line of page 5 of the statement of contents of the amendment, it is stated that "0.55, 0.72 μm
0.3247 and 0.3274 μm of zinc and 0.86 μm of zinc and 0.88 μm of zinc.
.. 3302 and 0.3345 μm wavelength]. Agent Patent Attorney Susumu Uchihara 1-

Claims (1)

【特許請求の範囲】[Claims] (1)高調波発生装置及びQスイッチパルス発生装置t
を備えたレーザ装置と、該レーザ装置より発生するレー
ザ光線を伝送する第一の元ファイバーと該元ファイバー
より出射したレーザjtを集光して試料表面に照射する
集光レンズと、レーザ光の照射をうけた試料か発する元
を捕えて伝送するWJ2の元ファイバーと、該第2の元
ファイバーによって伝送された試料の発光を分光して、
レーザ光の照射をうけた物質の成分の固定を行なう分光
装置とから構成したことを特徴とする分析装置。
(1) Harmonic generator and Q-switch pulse generator
a first source fiber that transmits the laser beam generated by the laser device; a condensing lens that condenses the laser jt emitted from the source fiber and irradiates it onto the sample surface; The source fiber of WJ2, which captures and transmits the source emitted from the irradiated sample, and the light emission of the sample transmitted by the second source fiber are spectrally analyzed.
An analysis device comprising a spectrometer that fixes components of a substance irradiated with laser light.
JP5059082A 1982-03-29 1982-03-29 Analyzing device Pending JPS58174832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5059082A JPS58174832A (en) 1982-03-29 1982-03-29 Analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5059082A JPS58174832A (en) 1982-03-29 1982-03-29 Analyzing device

Publications (1)

Publication Number Publication Date
JPS58174832A true JPS58174832A (en) 1983-10-13

Family

ID=12863184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5059082A Pending JPS58174832A (en) 1982-03-29 1982-03-29 Analyzing device

Country Status (1)

Country Link
JP (1) JPS58174832A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637799A (en) * 1986-06-26 1988-01-13 ベクトン・ディッキンソン・アンド・カンパニ− Method and apparatus for detecting glucose in body fluids
JPH06209816A (en) * 1993-02-03 1994-08-02 Seizou Shirasawa Method for winding hair in perming
WO1997008539A1 (en) * 1995-08-30 1997-03-06 Euratom Telemetering of uranium or plutonium in glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441791A (en) * 1977-09-09 1979-04-03 Nippon Steel Corp Probe for emission spectrochemical analysis by laser light

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441791A (en) * 1977-09-09 1979-04-03 Nippon Steel Corp Probe for emission spectrochemical analysis by laser light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637799A (en) * 1986-06-26 1988-01-13 ベクトン・ディッキンソン・アンド・カンパニ− Method and apparatus for detecting glucose in body fluids
JPH06209816A (en) * 1993-02-03 1994-08-02 Seizou Shirasawa Method for winding hair in perming
WO1997008539A1 (en) * 1995-08-30 1997-03-06 Euratom Telemetering of uranium or plutonium in glass
US6259757B1 (en) 1995-08-30 2001-07-10 Euratom Telemetering of uranium or plutonium in glass

Similar Documents

Publication Publication Date Title
US3556659A (en) Laser-excited raman spectrometer
US5739536A (en) Fiber optic infrared cone penetrometer system
CN104568897B (en) Raman spectrum intensifier, system and method based on chamber exterior resonant cavity technology
JPS63317770A (en) Scan type detector
Johnson et al. Resolution of the A ̃/B ̃ photoionization branching ratio paradox for the 12CO+ 2 B ̃ (000) state
CN105784643B (en) A kind of devices and methods therefor reducing gas Raman spectrum fluorescence background
CN102192899A (en) Double-channel second-order nonlinear optical test system
CN112730383A (en) Optical fiber array LIBS detection system for online detection
JPS59145930A (en) Small-sized time spectral photometer
JPS5837545A (en) Spectrofluoro-measuring device
US4567345A (en) Process and apparatus for the in-line inspection of the depth of a weld by a pulse beam
WO2005005967A1 (en) Fluorometric analysis-use optical multiplexer/demultiplexer, fluorometric analysis-use optical module, fluorometric analyzer, fluorescence/photothermal conversion spectral analyzer, and fluorometric analysis-use chip
US20090184258A1 (en) Remote Laser Assisted Biological Aerosol Standoff Detection in Atmosphere
JPS58174832A (en) Analyzing device
US7847941B2 (en) Fiber optical assembly for fluorescence spectrometry
RU2081403C1 (en) Instrument transducer for portable analyzer of optical emission
US3715585A (en) Fluorescence spectrophotometry using multiple reflections to enhance sample absorption and fluorescence collection
US9976955B2 (en) Sub-doppler intermodulated laser-induced-fluorescence spectrometer
JP3618198B2 (en) Elemental analysis method
CN106483114A (en) A kind of Portable Raman spectrometer of visible ray auxiliary focusing
JPH01196536A (en) Particle analyzer
Rojas et al. Thermal lens spectroscopy using a diode laser and optical fibers
JPS62130340A (en) Method and instrument for spectrochemical analysis of material in radioactive atmosphere
CN206330890U (en) A kind of reflective coaxial configuration LIBS analytical equipment
JPS63103943A (en) Optical fiber device for measuring fluorescence