JPS6212944B2 - - Google Patents

Info

Publication number
JPS6212944B2
JPS6212944B2 JP11520882A JP11520882A JPS6212944B2 JP S6212944 B2 JPS6212944 B2 JP S6212944B2 JP 11520882 A JP11520882 A JP 11520882A JP 11520882 A JP11520882 A JP 11520882A JP S6212944 B2 JPS6212944 B2 JP S6212944B2
Authority
JP
Japan
Prior art keywords
parts
weight
rubber
polymerization
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11520882A
Other languages
Japanese (ja)
Other versions
JPS596253A (en
Inventor
Kazunobu Tanaka
Yasuo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP11520882A priority Critical patent/JPS596253A/en
Publication of JPS596253A publication Critical patent/JPS596253A/en
Publication of JPS6212944B2 publication Critical patent/JPS6212944B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱・耐衝撃性の熱可塑性樹脂組成物
に関するもので、更に詳しくは、芳香族ポリカー
ボネート樹脂5乃至95重量部と、芳香族ビニル化
合物40乃至90重量部、不飽和ジカルボン酸無水物
5乃至30重量部及び不飽和ニトリル化合物5乃至
30重量部の合計100重量部に対して共役ジオレフ
インを主体とする重合体5乃至30重量部から成る
ゴム強化樹脂95乃至5重量部とから構成される耐
熱・耐衝撃性樹脂組成物に関する。 芳香族ポリカーボネート樹脂は元来、耐熱性、
耐衝撃性及び透明性等に優れたエンジニアリング
プラスチツクとして極めて有用な樹脂である。 しかしながら、溶融流れ挙動が悪いため、成型
性が悪く、且つ高価である事が欠点とされて来
た。これらの欠点を改良する目的で芳香族ポリカ
ーボネート樹脂に溶融流れ挙動が良好でより安価
な、ABS樹脂を配合する組成物が特公昭38−
15225号及び特開昭48−43750号公報等で提案さ
れ、一部実用化されている。しかし尚、この場合
には、芳香族ポリカーボネート樹脂の成分が50重
量%前後より少なくなると、急速に熱変形温度が
低下してしまう欠点があり、経済的に有利で耐
熱・耐衝撃性の樹脂組成物を得るには至らなかつ
た。僅かに、特公昭53−28339号公報において芳
香族ポリカーボネート樹脂5〜55重量部と、不飽
和ジカルボン酸無水物を共重合したゴム強化プラ
スチツクス95〜45重量部とより成る組成物が開示
されているが、不飽和ジカルボン酸無水物を共重
合した樹脂の製造技術が尚充分検討されておら
ず、共重合された無水マレイン酸は非常に少量で
且つ組成分布が偏在している為、その耐熱変形温
度に与える効果は3〜4℃と僅少で且つ芳香族ポ
リカーボネート樹脂の成分が50重量%より充分多
い場合には、その効果は消去されて見られなくな
る程小さかつた。 本発明者らは、芳香族ビニル化合物、不飽和ジ
カルボン酸無水物及び不飽和ニトリル化合物の三
元ゴムグラフト共重合物の製造方法を次に述べる
如く詳細に研究し、且つ得られたゴム強化樹脂と
芳香族ポリカーボネートとの複合化技術を検討し
た結果、驚くべき事に、従来知られていたいずれ
の組み合せよりも著るしく優れた耐熱・耐衝撃性
向上効果を発見し、本発明に到達したのである。 即ち、本発明は (A) 芳香族ポリカーボネート樹脂5乃至95重量部
及び (B) ゴム成分として共役ジオレフインを主体とす
るゴム状重合体5乃至30重量部を含有し、樹脂
成分100重量部中芳香族ビニル化合物40乃至90
重量部、不飽和ジカルボン酸無水物5乃至30重
量部及び不飽和ニトリル化合物5乃至30重量部
を各々含有するゴム強化樹脂であり、かつゴム
状重合体を芳香族ビニル化合物、不飽和ジカル
ボン酸無水物及び不飽和ニトリル化合物を含む
重合性単量体混合物中に溶解後、不飽和ジカル
ボン酸無水物及び/又は不飽和ニトリル化合物
を追添加することにより共重合させて得られる
ゴム強化樹脂95乃至5重量部 より成ることを特徴とする耐熱・耐衝撃性樹脂組
成物を提供するものである。 本発明のゴム強化樹脂を製造する方法は、芳香
族ビニル化合物、不飽和ニトリル化合物にゴムを
溶解した重合系に、最初から不飽和ジカルボン酸
無水物を溶解して60〜150℃で過酸化物、アゾ化
合物等の重合触媒を用いるか又は無触媒で熱重合
により重合反応を行なわせるのみならず、重合反
応の途中でも不飽和ニトリル化合物及び/又は不
飽和ジカルボン酸無水物を追添加して反応せしめ
ることが必要である。この場合の基本的な追添加
スケジユールは次式(1)〜(4)によつて決定される。
尚、各式で用いた記号は以下の通りである。 WO;初期仕込単量体の全重量〔g〕 mS;初期仕込単量体中の芳香族ビニル化合物単
量体(以下STと略)の重量分率〔−〕 mA;初期仕込単量体中の不飽和ニトリル化合物
単量体以下ANと略)の重量分率〔−〕 mM;初期仕込単量体中の不飽和ジカルボン酸無
水物単量体(以下MAHと略)の重量分率
〔−〕 PS;生成ポリマー中のST重量分率〔−〕 PA; 〃 AN 〃 〔−〕 PM; 〃 MAN 〃 〔−〕 r;10分間の重合速度 〔10min〕-1i:(10×i)分後に添加すべきAN量〔g〕 Yi; 〃 MAN〃〔g〕 Wi-1;(10×(i−1))分後の残存単量体の全
重量〔g〕
The present invention relates to a heat-resistant and impact-resistant thermoplastic resin composition, and more specifically, 5 to 95 parts by weight of an aromatic polycarbonate resin, 40 to 90 parts by weight of an aromatic vinyl compound, and 5 parts by weight of an unsaturated dicarboxylic anhydride. 30 parts by weight and 5 to 30 parts by weight of an unsaturated nitrile compound
The present invention relates to a heat-resistant and impact-resistant resin composition comprising 95 to 5 parts by weight of a rubber-reinforced resin comprising 5 to 30 parts by weight of a polymer mainly composed of conjugated diolefin to a total of 100 parts by weight of 30 parts by weight. Aromatic polycarbonate resin is inherently heat resistant,
It is an extremely useful resin as an engineering plastic with excellent impact resistance and transparency. However, the drawbacks have been that it has poor moldability due to poor melt flow behavior and is expensive. In order to improve these drawbacks, a composition was developed in which aromatic polycarbonate resin was blended with ABS resin, which had good melt flow behavior and was cheaper.
15225 and Japanese Unexamined Patent Publication No. 48-43750, etc., and some of them have been put into practical use. However, in this case, if the aromatic polycarbonate resin component is less than about 50% by weight, the heat distortion temperature will drop rapidly. I couldn't get anything. However, Japanese Patent Publication No. 53-28339 discloses a composition comprising 5 to 55 parts by weight of an aromatic polycarbonate resin and 95 to 45 parts by weight of a rubber reinforced plastic copolymerized with an unsaturated dicarboxylic anhydride. However, the manufacturing technology for resins copolymerized with unsaturated dicarboxylic anhydrides has not been sufficiently studied, and the copolymerized maleic anhydride is present in very small amounts and has an uneven composition distribution, so its heat resistance is limited. The effect on the deformation temperature was as small as 3 to 4 DEG C., and when the aromatic polycarbonate resin content was sufficiently greater than 50% by weight, the effect was so small that it disappeared and was no longer visible. The present inventors have conducted detailed research on a method for producing a ternary rubber graft copolymer of an aromatic vinyl compound, an unsaturated dicarboxylic acid anhydride, and an unsaturated nitrile compound, as described below, and have studied the resulting rubber-reinforced resin. As a result of investigating the composite technology of polycarbonate and aromatic polycarbonate, we surprisingly discovered that the effect of improving heat resistance and impact resistance is significantly superior to any previously known combination, and we have arrived at the present invention. It is. That is, the present invention contains (A) 5 to 95 parts by weight of an aromatic polycarbonate resin and (B) 5 to 30 parts by weight of a rubbery polymer mainly composed of conjugated diolefin as a rubber component, and 100 parts by weight of the resin component contains an aromatic polycarbonate resin. Group vinyl compounds 40 to 90
It is a rubber-reinforced resin containing 5 to 30 parts by weight of an unsaturated dicarboxylic anhydride and 5 to 30 parts by weight of an unsaturated nitrile compound, and the rubber-like polymer is an aromatic vinyl compound, an unsaturated dicarboxylic anhydride. Rubber reinforced resin 95 to 5 obtained by copolymerizing by additionally adding an unsaturated dicarboxylic acid anhydride and/or an unsaturated nitrile compound after dissolving it in a polymerizable monomer mixture containing a compound and an unsaturated nitrile compound. The present invention provides a heat-resistant and impact-resistant resin composition characterized in that it consists of parts by weight. The method for producing the rubber-reinforced resin of the present invention involves dissolving an unsaturated dicarboxylic acid anhydride from the beginning in a polymerization system in which rubber is dissolved in an aromatic vinyl compound or an unsaturated nitrile compound, and adding peroxide at 60 to 150°C. In addition to carrying out the polymerization reaction by thermal polymerization using a polymerization catalyst such as an azo compound or without a catalyst, the reaction can also be carried out by additionally adding an unsaturated nitrile compound and/or an unsaturated dicarboxylic acid anhydride during the polymerization reaction. It is necessary to encourage them. The basic addition schedule in this case is determined by the following equations (1) to (4).
The symbols used in each formula are as follows. W O ; Total weight of initially charged monomers [g] m S ; Weight fraction of aromatic vinyl compound monomer (hereinafter abbreviated as ST) in initially charged monomers [-] m A ; Initial charged monomers Weight fraction of unsaturated nitrile compound monomer (hereinafter abbreviated as AN) in the monomer [-] m M ; Weight of unsaturated dicarboxylic acid anhydride monomer (hereinafter abbreviated as MAH) in the initially charged monomer Fraction [-] P S ; ST weight fraction in the produced polymer [-] P A ; 〃 AN 〃 [-] P M ; 〃 MAN 〃 [-] r; Polymerization rate for 10 minutes [10 min] -1 X i : Amount of AN [g] to be added after (10×i) minutes Y i ; MAN〃[g] W i-1 ; Total weight of remaining monomer after (10×(i-1)) minutes [g]

【表】 なお上式(2)におけるPS、PA及びPMの設定は
各単量体のQ、e値から求められる6個の三元共
重合単量体反応性比r12、r13、r21、r23、r31及び
r32を用いて、次式(5)及び(6)のAlfrey―Goldfinger
の三元共重合組成式(参考文献、T.Alfrey.Jr、
G.Goldfinger、J.Chem.Phye.、12、322
(1944))により、初期単量体仕込組成比〔M1〕/
〔M2〕および〔M2〕/〔M3〕が決れば計算により求
めうる。またこの考え方より共重合体組成比を設
定して、初期仕込組成比を逆算することも可能で
ある。 但し〔M1〕=重合混合物中の芳香族ビニル化合
物単量体のモル濃度 〔M2〕=重合混合物中の不飽和ニトリル化
合物単量体のモル濃度 〔M3〕=重合混合物中の不飽和ジカルボン
酸無水物のモル濃度 d〔M〕/d〔M〕=共重合体中のM1単量体と
M2単量 体の微分モル組成比 d〔M〕/d〔M〕=共重合体中のM2単量体と
M3単量 体の微分モル組成比 本発明の実施に当つては、単位時間を任意に設
定し、その間に不飽和ジカルボン酸無水物およ
び/又は不飽和ニトリル化合物を間歇的に添加す
る方法や、単位時間を短かくして略連続的に単量
体を添加する方法などが考えられるが、これらの
方法に限定されるものではなく、重合によつて消
失する単量体を重合系内に補給する考え方に基づ
いた追添加法は本発明の範疇に含まれるものであ
る。 以上詳述した追添加スケジユールを採用するこ
とにより初めて本願発明の効果即ち、ゴム強化樹
脂中の不飽和ジカルボン酸無水物の含有量を高く
しうるのみならず高分子鎖中に不飽和ジカルボン
酸無水物基を均一に分布せしめうるのである。 上記の如き方法で製造されたゴム強化樹脂と芳
香族ポリカーボネート樹脂との組成物において始
めて本発明の顕著な効果が発揮されるのである。
不飽和ジカルボン酸無水物含有量が5重量部より
少ない場合には、さしたる効果は認められない
し、又それ以上の含有量でも不飽和ジカルボン酸
無水物がゴム強化樹脂製造の当初に加えられたの
みであるならば、反応前半に得られる高分子鎖の
みに酸無水物基が存在し、後半生成する高分子鎖
には全く酸無水物基が存在しない為、芳香族ポリ
カーボネートとの樹脂組成物において、さしたる
耐熱性向上の効果を示さない。従来は斯様な効果
の低い熱可塑性樹脂組成物しか知られていなかつ
たのである。 尚実施例にて後述する如き無水マレイン酸を
7wt%以上含有するゴム強化樹脂を初期添加のみ
で製造する試みは、スチレン―無水マレイン酸系
の強い交互共重合物のために実質的に不可能であ
り、仮に実施しても重合率が非常に低い時点で重
合を停止せねばならないなどの問題があり、経済
的に不利である。 又、不飽和ジカルボン酸無水物が30重量部を超
える場合は、ゴム強化樹脂の溶融流動性が悪くな
り、又、熱安定性が低下するので避けるべきであ
る。 なお又不飽和ニトリル化合物の量は5重量部よ
り少ない場合、ゴム強化樹脂の耐熱性が十分では
なく、一方30重量部より高くなると、該ゴム強化
樹脂の溶融流れが悪くなるので前述した5乃至30
重量部が適当である。 ゴム強化樹脂を製造する方法は塊状重合、溶液
重合、塊状懸濁重合、溶液懸濁重合等いずれも採
用出来るが、不飽和ジカルボン酸無水物が重合系
に添加される時期は媒体の水が存在していない時
期に限定されるべきである。 本発明で使用される芳香族ビニル化合物はスチ
レンが好ましいが、スチレン誘導体例えばクロロ
スチレン、ビニルトルエン、α―メチルスチレ
ン、α―メチルビニルトルエン、2,4―ジクロ
ロスチレン、2―クロロ―4―メチルスチレン等
を所望により、スチレンに対して全部又は一部代
替する事が出来る。 不飽和ジカルボン酸無水物は最も好ましくは無
水マレイン酸である。しかし無水マレイン酸の任
意の同族体例えばイタコン酸、シトラコン酸、ア
コニツト酸の無水物等も使用する事が出来る。 不飽和ニトリル化合物としてはアクリロニトリ
ル、メタクリロニトリルが好ましい。又、ゴム成
分としてはブタジエン重合体及び共重合体、ポリ
イソプレン、ポリクロロプレンなどが用いられ、
好ましくはポリブタジエン及び40重量%までのス
チレン又はアクリロニトリルと60重量%以上のブ
タジエンとの共重合体である。 本発明で用いられる芳香族ポリカーボネート樹
脂は、2,2―ビス―(4―ヒドロキシフエニ
ル)プロパンに代表される2価フエノールの芳香
族ポリカーボネートである。2価フエノールとし
ては他に2,4′―ジヒドロキシジフエニルメタ
ン、ビス―(2―ヒドロキシフエニル)メタン、
1,1―ビス(4―ヒドロキシフエニル)エタン
等も挙げられる。 本発明の実施に当り、芳香族ポリカーボネート
樹脂とゴム強化樹脂の配合割合に関しては、前者
は複合系の物性を高める目的からその比率は高い
ことが望ましいが、成形性、コスト等を勘案して
5乃至95重量部、更に好ましくは10乃至70重量部
である。一方ゴム強化樹脂の配合比率は成形性及
び物性特に耐熱性を高水準に維持し、コストを抑
制する目的から5乃至95重量部、さらに好ましく
は30乃至90重量部が適当である。 本発明の実施にあたり、芳香族ポリカーボネー
ト樹脂とゴム強化樹脂の配合方法は周知のいかな
る方法を用いてもよい。 例えばこれらの成分樹脂に共通な溶剤に溶解し
て溶液の状態で混合した後、沈澱剤を用いて共沈
させる方法、これらの成分樹脂をブレンダーで混
合した後、押出機より押出す方法、バンバリーミ
キサー、ニーダー等により、成分樹脂を混練する
方法などの物理的な配合方法などが用いられる。 本発明の樹脂組成物には、必要に応じて熱安定
剤、顔料、難燃剤、可塑剤、滑剤、紫外線吸収
剤、着色剤等種々の添加剤を配合してもよく、更
にガラス繊維、アスベスト繊維、炭素繊維、アル
ミナ繊維などで例示される繊維補強剤を添加する
事も出来る。 以下、実施例により本発明の樹脂組成物を具体
的に説明するが、本発明はこれによつて限定され
るものではない。尚、例中の部は重量基準であ
る。 製造例 〔無水マレイン酸を共重合したゴム強化樹脂
〔〕の製造例〕 撹拌器、還流冷却器、温度調節器の付設された
1ガラスフラスコ重合装置に、スチレン・ブタ
ジエンゴム(旭化成製タフデン2000A以下SBRと
略)15.0部とスチレン(ST)216.2部を投入し、
ゴムを溶解する。この液を加熱撹拌しながら系内
を窒素置換する。液温が70℃になつたら、無水マ
レイン酸(MAH)3.5部をアクリロニトリル
(AN)15.3部に溶解した液を徐々に添加する。添
加終了後、液温が75℃に於て、ジベンゾイルパー
オキシド(BPO)0.23部を一挙に添加して塊状重
合を開始する。重合の間は、内温を75℃に保ち少
量の窒素を常時流通させる。重合開始後、第1図
〔A〕に示す如く前述の式(1)〜(4)によつて計算さ
れた追添加プログラムに従つてANとMAHを追添
加し、常に重合系内のモノマー組成比率を初期仕
込のそれに一致するようにした。重合開始後110
分で追添加を停止し、重合時間120分で重合装置
を氷冷することにより重合を停止させると共に直
ちに熱安定剤(チバガイギー社製イルガノツクス
1010)を0.5部加えて均一にしたのち、真空乾燥
器中で未反応モノマーを除去した。真空乾燥後え
られた共重合樹脂は乳白色不透明で、ゴム含量は
未グラフトゴム基準で13.5%と計算される。 また、重合中採取したサンプルの分析結果を第
2図に示すがこの結果、重合体中の無水マレイン
酸含有量が設定値と良く一致していることがわか
る。この樹脂のプレス成形試片の物性測定値を第
1表に示す。 製造例 〔無水マレイン酸を共重合したゴム強化樹脂
〔〕の製造例〕 製造例1に示したガラスフラスコ重合装置を用
い、SBR45.0部をST276部に溶解し、窒素置換し
ながら70℃に昇温する。MAH4.5部をAN19.5部
に溶解した液を徐々に添加し、75℃に昇温したの
ち、BPO0.09部を一挙に添加する。この時点を重
合開始とする。重合の間は内温を75℃に保ち、ま
た少量の窒素を常時流通させる。重合開始後、ゴ
ム強化樹脂〔〕の製造例に示したと同様に計算
した第1図〔B〕に示す単量体追添加プログラム
に従つてANとMAHを追添加し、常に重合系内の
モノマー組成比率を初期仕込組成のそれに一致す
るようにした。重合開始後3時間で追添加を停止
し、190分後に冷却して塊状重合を停止した。 一方、別のマイヤーフラスコにヒドロキシエチ
ルセルロース(HEC)(ダイセル化学製QP―
300H)9.0部、脱イオン水261部、0.2%ラウリル
硫酸ナトリウム水溶液30部より成る、粘稠な分散
剤水溶液を調製する。前記塊状重合物に0.15部の
アゾジイソブチロニトリル(AIBN)を加えて均
一にしたのち、分散剤水溶液を添加して懸濁重合
に移る。系内を十分窒素置換したのち、重合液内
温を78℃に昇温し6時間重合させる。重合終了
後、水洗・乾燥してえられたポリマービーズは熱
安定剤(イルガノツクス1010)0.5部加え20mmφ
の押出機で2回押出成形することによりペレツト
化した。得られたペレツト中のゴム含量は未グラ
フトゴム基準で13.6%、又無水マレイン酸含有率
は7.1%であつた。プレス成形後の試片の物性測
定結果を第1表に示す。 実施例 1 〔ポリカーボネート樹脂とゴム強化樹脂〔〕
との複合〕 前記ゴム強化樹脂〔〕と、ポリカーボネート
樹脂として、ユーピロンS―1000(三菱ガス化
学製)を、第1表に示すそれぞれの割合で、
Haake社のレオミキサーを用いて混練した。混練
に際しては滑剤としてステアリン酸カルシウム
0.5部を添加し、温度260℃羽根回転数50rpm、混
練時間10分間の条件で行なつた。混練後の樹脂組
成物は油圧式プレス成形機にて、長さ120mm×幅
120mm×厚さ1mmのシートと50mm×35mm×3mmの
シートに成形した。この時の条件は温度230℃で
予熱7分150Kg/cm2での加圧下で10分間保持であ
る。 前記プレスシートによる物性測定は1mm厚さの
シートについてデユポン落錘衝撃試験で耐衝撃性
を、又3mm厚さのシートについてはヴイカツト軟
化点の測定で耐熱変形性を評価した。尚ビカツト
軟化点測定時の昇温速度は50℃/Hrである。結果
を第1表に示す。 実施例 2 〔ポリカーボネート樹脂とゴム強化樹脂〔〕
との複合〕 前記ゴム強化樹脂〔〕とポリカーボネートを
第1表に示すそれぞれの割合でレオミキサーで混
練した。混練方法・条件は実施例1と同様であ
る。混練後の樹脂組成物は油圧式プレス成形機に
より、1mm厚さのシートと3mm厚さのシートに成
形した。この時の条件は実施例1と同じである。
また、耐衝撃性及び耐熱変形性の評価も同様であ
る。結果を第1表に示す。 実施例 3及び4 ゴム強化樹脂〔〕とポリカーボネート樹脂を
第1表に示す割合でレオミキサーにより各々混練
した。実施例1と同様にプレス成形して得た試片
の物性測定を行つた結果を第1表に示す。 製造例 〔初期添加のみによる無水マレイン酸共重合ゴ
ム強化樹脂〔〕の製造例〕 製造例に示した重合装置を用い、SBR15.0部
をST216.2部に溶解する。この液を加熱撹拌しな
がら系内を窒素置換する。液温が70℃になつたら
MAH3.5部をAN15.3部に溶解した液を徐々に添
加する。添加終了後、液温が75℃に於てBPO0.23
部を一挙に添加して塊状重合を開始する。重合中
は内温を75℃に保ち、少量の窒素を常時流通させ
る。重合開始190分後重合装置を急冷して、重合
を停止させると共に直ちに熱安定剤(イルガノツ
クス1010)を0.5部加えて均一にしたのち、真空
乾燥器中で未反応モノマーを除去した。乾燥後え
られた共重合樹脂は乳白色不透明で回収率は35.2
%であつた。ゴム含量は17.0%、MAH含有率は
4.9%であつた。 製造例 〔初期添加のみによる懸濁重合ゴム強化樹脂
〔〕の製造例〕 製造例に示した重合装置を用い、SBR12部を
ST70部に溶解し、加熱しながらAN20部MAH10
部の混合液を徐々に添加し、75℃になつた時点で
BPO0.09部投入して重合を開始した。重合開始後
1.5時間して液粘度が上昇したので急冷して塊状
重合を中断した。 別のマイヤーフラスコ中で既述のHEC分散剤
水溶液を調製し、AIBN0.15部を加えた塊状重合
物中にその溶液を加え懸濁重合を行なう。重合温
度は78℃で6時間重合させた。重合終了後、水
洗・乾燥してえられたビーズは熱安定剤(イルガ
ノツクス1010)を0.5部加え押出機で2回押出し
て成形した。 得られたペレツトのゴム含有率は未グラフトゴ
ム基準で13.3%、無水マレイン酸含有率は3.6%
であつた。 比較例 1 〔ポリカーボネート樹脂とゴム強化樹脂〔〕
の複合〕 前記ゴム強化樹脂〔〕とポリカーボネート樹
脂を第1表に示す割合でレオミキサーにて混練し
た。混練条件は実施例1に示したと同様である。
また成形は油圧プレス成形機により1mm厚さと3
mm厚さの試片を得て実施例1に示した物性測定に
より評価した。 比較例 2 〔ポリカーボネート樹脂とゴム強化樹脂〔〕
の複合〕 前記ゴム強化樹脂〔〕とポリカーボネート樹
脂を第1表に示す割合でレオミキサーにより混練
した。混練・成形の方法及び条件、成形試片の物
性測定は実施例1と全く同様である。結果を第1
表に示す。 比較例 3 前記ゴム強化樹脂〔〕とポリカーボネート樹
脂を第1表に示す割合でレオミキサーにて混練し
た。混練・成形の方法及び条件、成形試片の物性
測定は実施例1と全く同様である。結果を第1表
に示す。
[Table] The settings of P S , P A and P M in the above formula (2) are based on the six ternary comonomer reactivity ratios r 12 , r determined from the Q and e values of each monomer. 13 , r21 , r23 , r31 and
Using r 32 , Alfrey−Goldfinger of the following equations (5) and (6)
Ternary copolymer composition formula (References, T.Alfrey.Jr.
G. Goldfinger, J. Chem. Phye., 12 , 322
(1944)), the initial monomer charge composition ratio [M 1 ]/
Once [M 2 ] and [M 2 ]/[M 3 ] are determined, they can be obtained by calculation. Furthermore, it is also possible to set the copolymer composition ratio based on this concept and back-calculate the initial charging composition ratio. However, [M 1 ] = molar concentration of aromatic vinyl compound monomer in the polymerization mixture [M 2 ] = molar concentration of unsaturated nitrile compound monomer in the polymerization mixture [M 3 ] = unsaturation in the polymerization mixture Molar concentration of dicarboxylic acid anhydride d[M 1 ]/d[M 2 ] = M 1 monomer in the copolymer and
Differential molar composition ratio of M 2 monomer d [M 2 ]/d [M 3 ] = M 2 monomer in copolymer and
Differential molar composition ratio of M 3 monomer In carrying out the present invention, the unit time may be arbitrarily set, and an unsaturated dicarboxylic anhydride and/or an unsaturated nitrile compound may be added intermittently during that time. , a method of adding monomer almost continuously by shortening the unit time can be considered, but it is not limited to these methods, and it is possible to replenish the monomer that disappears during polymerization into the polymerization system. Additional addition methods based on this idea are included in the scope of the present invention. By adopting the additional addition schedule detailed above, the effect of the present invention, that is, not only can the content of unsaturated dicarboxylic anhydride in the rubber reinforced resin be increased, but also the unsaturated dicarboxylic anhydride in the polymer chain. This makes it possible to uniformly distribute the substance groups. The remarkable effects of the present invention are first exhibited in the composition of rubber reinforced resin and aromatic polycarbonate resin produced by the method described above.
If the unsaturated dicarboxylic anhydride content is less than 5 parts by weight, no significant effect is observed, and even if the content is higher than that, the unsaturated dicarboxylic anhydride is only added at the beginning of rubber reinforced resin production. If so, acid anhydride groups exist only in the polymer chains obtained in the first half of the reaction, and there are no acid anhydride groups at all in the polymer chains produced in the second half, so in the resin composition with aromatic polycarbonate, , does not show any significant effect of improving heat resistance. Until now, only thermoplastic resin compositions with low such effects were known. In addition, maleic anhydride as described later in the examples
Attempts to produce rubber-reinforced resin containing 7wt% or more using only initial addition are virtually impossible due to the strong alternating copolymerization of styrene and maleic anhydride, and even if attempted, the polymerization rate would be extremely low. There are problems such as having to stop the polymerization at a low point in time, which is economically disadvantageous. Furthermore, if the unsaturated dicarboxylic acid anhydride exceeds 30 parts by weight, the melt fluidity of the rubber reinforced resin will deteriorate and the thermal stability will decrease, so it should be avoided. Furthermore, if the amount of the unsaturated nitrile compound is less than 5 parts by weight, the heat resistance of the rubber-reinforced resin will not be sufficient, while if it is more than 30 parts by weight, the melt flow of the rubber-reinforced resin will deteriorate. 30
Parts by weight are appropriate. The rubber reinforced resin can be produced by bulk polymerization, solution polymerization, bulk suspension polymerization, solution suspension polymerization, etc., but water as a medium is present when the unsaturated dicarboxylic anhydride is added to the polymerization system. It should be limited to periods when it is not. The aromatic vinyl compound used in the present invention is preferably styrene, and styrene derivatives such as chlorostyrene, vinyltoluene, α-methylstyrene, α-methylvinyltoluene, 2,4-dichlorostyrene, 2-chloro-4-methyl If desired, styrene or the like can be substituted in whole or in part for styrene. Most preferably the unsaturated dicarboxylic anhydride is maleic anhydride. However, any homolog of maleic anhydride, such as itaconic, citraconic, aconitic anhydrides, etc., can also be used. As the unsaturated nitrile compound, acrylonitrile and methacrylonitrile are preferred. In addition, butadiene polymers and copolymers, polyisoprene, polychloroprene, etc. are used as rubber components.
Preferred are polybutadiene and copolymers of up to 40% by weight of styrene or acrylonitrile and at least 60% by weight of butadiene. The aromatic polycarbonate resin used in the present invention is an aromatic polycarbonate of dihydric phenol typified by 2,2-bis-(4-hydroxyphenyl)propane. Other divalent phenols include 2,4'-dihydroxydiphenylmethane, bis-(2-hydroxyphenyl)methane,
Also included are 1,1-bis(4-hydroxyphenyl)ethane and the like. In carrying out the present invention, regarding the blending ratio of aromatic polycarbonate resin and rubber reinforcing resin, it is desirable that the ratio of the former be high for the purpose of improving the physical properties of the composite system, but in consideration of moldability, cost, etc. The amount is from 95 parts by weight, more preferably from 10 to 70 parts by weight. On the other hand, the blending ratio of the rubber reinforced resin is suitably 5 to 95 parts by weight, more preferably 30 to 90 parts by weight, in order to maintain high moldability and physical properties, particularly heat resistance, and to reduce costs. In carrying out the present invention, any known method may be used to blend the aromatic polycarbonate resin and the rubber reinforced resin. For example, a method in which these component resins are dissolved in a common solvent and mixed in a solution state and then co-precipitated using a precipitant, a method in which these component resins are mixed in a blender and then extruded from an extruder, A physical blending method such as a method of kneading the component resins using a mixer, kneader, etc. is used. The resin composition of the present invention may contain various additives such as a heat stabilizer, a pigment, a flame retardant, a plasticizer, a lubricant, an ultraviolet absorber, a coloring agent, etc., as required, and may further include glass fiber, asbestos, etc. Fiber reinforcing agents such as fibers, carbon fibers, alumina fibers, etc. can also be added. EXAMPLES Hereinafter, the resin composition of the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto. Note that parts in the examples are based on weight. Production example [Production example of rubber reinforced resin copolymerized with maleic anhydride] Styrene-butadiene rubber (Tufden 2000A or less manufactured by Asahi Kasei Co., Ltd. Add 15.0 parts of SBR (abbreviated as SBR) and 216.2 parts of styrene (ST),
Dissolve rubber. While heating and stirring this liquid, the inside of the system is replaced with nitrogen. When the liquid temperature reaches 70°C, gradually add a solution of 3.5 parts of maleic anhydride (MAH) dissolved in 15.3 parts of acrylonitrile (AN). After the addition is complete, 0.23 parts of dibenzoyl peroxide (BPO) is added all at once while the liquid temperature is 75°C to start bulk polymerization. During polymerization, the internal temperature is maintained at 75°C and a small amount of nitrogen is constantly passed through. After the start of polymerization, AN and MAH are added according to the additional addition program calculated by the above formulas (1) to (4) as shown in Figure 1 [A], and the monomer composition in the polymerization system is constantly maintained. The ratio was made to match that of the initial preparation. 110 after starting polymerization
After 120 minutes, the polymerization was stopped by ice-cooling the polymerization apparatus, and immediately a heat stabilizer (Irganox, manufactured by Ciba Geigy) was added.
After adding 0.5 part of 1010) to make the mixture uniform, unreacted monomers were removed in a vacuum dryer. The copolymer resin obtained after vacuum drying is milky white and opaque, and the rubber content is calculated to be 13.5% based on the ungrafted rubber. Further, the analysis results of the samples taken during the polymerization are shown in FIG. 2, and it can be seen that the maleic anhydride content in the polymer is in good agreement with the set value. Table 1 shows the measured values of the physical properties of press-molded specimens of this resin. Production example [Production example of rubber reinforced resin copolymerized with maleic anhydride] Using the glass flask polymerization apparatus shown in Production Example 1, 45.0 parts of SBR was dissolved in 276 parts of ST, and heated to 70°C while purging with nitrogen. Increase temperature. A solution prepared by dissolving 4.5 parts of MAH in 19.5 parts of AN is gradually added, the temperature is raised to 75°C, and then 0.09 part of BPO is added all at once. This point is defined as the start of polymerization. During polymerization, the internal temperature is maintained at 75°C, and a small amount of nitrogen is constantly circulated. After the start of polymerization, AN and MAH were added according to the monomer addition program shown in Figure 1 [B], which was calculated in the same manner as shown in the production example of rubber reinforced resin [], and the monomers in the polymerization system were always kept constant. The composition ratio was made to match that of the initial preparation composition. Additional addition was stopped 3 hours after the start of polymerization, and 190 minutes later, the mixture was cooled to stop bulk polymerization. Meanwhile, in another Mayer flask, hydroxyethyl cellulose (HEC) (Daicel Chemical QP-
A viscous aqueous dispersant solution is prepared consisting of 9.0 parts of 300H), 261 parts of deionized water, and 30 parts of 0.2% sodium lauryl sulfate aqueous solution. After adding 0.15 parts of azodiisobutyronitrile (AIBN) to the bulk polymer to make it homogeneous, an aqueous dispersant solution is added and suspension polymerization is started. After the system was sufficiently purged with nitrogen, the internal temperature of the polymerization solution was raised to 78°C and polymerization was carried out for 6 hours. After polymerization, the polymer beads obtained by washing with water and drying were added with 0.5 part of heat stabilizer (Irganox 1010) and made into 20mm diameter beads.
The pellets were formed into pellets by extrusion molding twice using an extruder. The rubber content in the obtained pellets was 13.6% based on the ungrafted rubber, and the maleic anhydride content was 7.1%. Table 1 shows the results of measuring the physical properties of the specimens after press molding. Example 1 [Polycarbonate resin and rubber reinforced resin]
Composite] The rubber reinforced resin [ ] and Iupilon S-1000 (manufactured by Mitsubishi Gas Chemical) as a polycarbonate resin in the respective proportions shown in Table 1,
The mixture was kneaded using a Haake rheomixer. Calcium stearate is used as a lubricant during kneading.
0.5 part was added, the temperature was 260°C, the impeller rotation speed was 50 rpm, and the kneading time was 10 minutes. After kneading, the resin composition is molded using a hydraulic press molding machine to a length of 120 mm x width.
It was molded into sheets of 120 mm x 1 mm thick and sheets of 50 mm x 35 mm x 3 mm. The conditions at this time were preheating at a temperature of 230°C for 7 minutes, and holding under a pressure of 150 kg/cm 2 for 10 minutes. The physical properties of the pressed sheet were evaluated using the DuPont falling weight impact test for the 1 mm thick sheet, and the thermal deformation resistance for the 3 mm thick sheet by measuring the Vikat softening point. The heating rate when measuring the Vikatsu softening point was 50°C/Hr. The results are shown in Table 1. Example 2 [Polycarbonate resin and rubber reinforced resin]
Composite] The rubber reinforced resin [ ] and polycarbonate were kneaded in the respective ratios shown in Table 1 using a rheomixer. The kneading method and conditions are the same as in Example 1. The resin composition after kneading was molded into sheets with a thickness of 1 mm and sheets with a thickness of 3 mm using a hydraulic press molding machine. The conditions at this time are the same as in Example 1.
The same applies to the evaluation of impact resistance and heat deformation resistance. The results are shown in Table 1. Examples 3 and 4 Rubber reinforced resin [] and polycarbonate resin were kneaded in the proportions shown in Table 1 using a rheomixer. Table 1 shows the results of measuring the physical properties of specimens obtained by press molding in the same manner as in Example 1. Production Example [Production Example of Maleic Anhydride Copolymer Rubber Reinforced Resin by Only Initial Addition] Using the polymerization apparatus shown in the Production Example, 15.0 parts of SBR is dissolved in 216.2 parts of ST. While heating and stirring this liquid, the inside of the system is replaced with nitrogen. When the liquid temperature reaches 70℃
A solution prepared by dissolving 3.5 parts of MAH in 15.3 parts of AN is gradually added. After addition, BPO0.23 when the liquid temperature is 75℃
1 part is added all at once to start bulk polymerization. During polymerization, the internal temperature is maintained at 75°C, and a small amount of nitrogen is constantly circulated. 190 minutes after the start of polymerization, the polymerization apparatus was rapidly cooled to stop polymerization, and immediately 0.5 part of a heat stabilizer (Irganox 1010) was added to make the mixture uniform, and unreacted monomers were removed in a vacuum dryer. The copolymer resin obtained after drying was milky white and opaque, and the recovery rate was 35.2.
It was %. Rubber content is 17.0%, MAH content is
It was 4.9%. Production example [Production example of suspension polymerized rubber reinforced resin by initial addition only] Using the polymerization equipment shown in the production example, 12 parts of SBR was added.
Dissolve in ST70 parts and heat while AN20 parts MAH10
Gradually add 1 part of the mixture, and when the temperature reaches 75℃,
0.09 part of BPO was added to start polymerization. After polymerization starts
After 1.5 hours, the liquid viscosity increased, so the bulk polymerization was interrupted by rapid cooling. In another Mayer flask, prepare the above-mentioned HEC dispersant aqueous solution, add the solution to the bulk polymer to which 0.15 parts of AIBN has been added, and perform suspension polymerization. The polymerization temperature was 78°C for 6 hours. After completion of polymerization, the beads obtained by washing with water and drying were molded by adding 0.5 part of a heat stabilizer (Irganox 1010) and extruding them twice using an extruder. The rubber content of the obtained pellets was 13.3% based on ungrafted rubber, and the maleic anhydride content was 3.6%.
It was hot. Comparative example 1 [Polycarbonate resin and rubber reinforced resin]
Composite] The rubber reinforced resin [ ] and the polycarbonate resin were kneaded in a rheomixer in the proportions shown in Table 1. The kneading conditions are the same as those shown in Example 1.
In addition, the molding is done using a hydraulic press molding machine with a thickness of 1mm and 3mm.
A specimen with a thickness of mm was obtained and evaluated by measuring the physical properties shown in Example 1. Comparative example 2 [Polycarbonate resin and rubber reinforced resin]
Composite] The rubber reinforced resin [ ] and the polycarbonate resin were kneaded in a rheomixer in the proportions shown in Table 1. The methods and conditions for kneading and molding, and the measurement of the physical properties of the molded specimens were exactly the same as in Example 1. Results first
Shown in the table. Comparative Example 3 The rubber reinforced resin [] and polycarbonate resin were kneaded in the proportions shown in Table 1 using a rheomixer. The methods and conditions for kneading and molding, and the measurement of the physical properties of the molded specimens were exactly the same as in Example 1. The results are shown in Table 1.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゴム強化樹脂〔〕及び〔〕の製造
時の単量体追添加スケジユールを示す図であり、
また第2図はゴム強化樹脂〔〕を製造した時の
樹脂組成の分析結果を示す図である。
FIG. 1 is a diagram showing the monomer addition schedule during the production of rubber reinforced resins [] and [],
Moreover, FIG. 2 is a diagram showing the analysis results of the resin composition when the rubber reinforced resin [ ] was manufactured.

Claims (1)

【特許請求の範囲】 1 (A) 芳香族ポリカーボネート樹脂5乃至95重
量部及び (B) ゴム成分として共役ジオレフインを主体とす
るゴム状重合体5乃至30重量部を含有し、樹脂
成分100重量部中芳香族ビニル化合物40乃至90
重量部、不飽和ジカルボン酸無水物5乃至30重
量部及び不飽和ニトリル化合物5乃至30重量部
を各々含有するゴム強化樹脂であり、かつゴム
状重合体を芳香族ビニル化合物、不飽和ジカル
ボン酸無水物及び不飽和ニトリル化合物を含む
重合性単量体混合物中に溶解後、不飽和ジカル
ボン酸無水物及び/又は不飽和ニトリル化合物
を追添加することにより共重合させて得られる
ゴム強化樹脂95乃至5重量部 より成ることを特徴とする耐熱・耐衝撃性樹脂組
成物。
[Scope of Claims] 1. Contains (A) 5 to 95 parts by weight of an aromatic polycarbonate resin and (B) 5 to 30 parts by weight of a rubbery polymer mainly composed of conjugated diolefin as a rubber component, and 100 parts by weight of the resin component. Medium aromatic vinyl compound 40 to 90
It is a rubber-reinforced resin containing 5 to 30 parts by weight of an unsaturated dicarboxylic anhydride and 5 to 30 parts by weight of an unsaturated nitrile compound, and the rubber-like polymer is an aromatic vinyl compound, an unsaturated dicarboxylic anhydride. Rubber reinforced resin 95 to 5 obtained by copolymerizing by additionally adding an unsaturated dicarboxylic acid anhydride and/or an unsaturated nitrile compound after dissolving it in a polymerizable monomer mixture containing a compound and an unsaturated nitrile compound. A heat-resistant and impact-resistant resin composition characterized in that it consists of parts by weight.
JP11520882A 1982-07-02 1982-07-02 Heat- and impact-resistant resin composition Granted JPS596253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11520882A JPS596253A (en) 1982-07-02 1982-07-02 Heat- and impact-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11520882A JPS596253A (en) 1982-07-02 1982-07-02 Heat- and impact-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS596253A JPS596253A (en) 1984-01-13
JPS6212944B2 true JPS6212944B2 (en) 1987-03-23

Family

ID=14657032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11520882A Granted JPS596253A (en) 1982-07-02 1982-07-02 Heat- and impact-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS596253A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199055A (en) * 1984-03-23 1985-10-08 Daicel Chem Ind Ltd Polycarbonate resin composition
SG72917A1 (en) * 1998-01-28 2000-05-23 Gen Electric Flame retardant polycarbonate resin/abs graft copolymer blends
JP5614407B2 (en) 2009-08-17 2014-10-29 旭硝子株式会社 Molten glass manufacturing method, glass melting furnace, glass product manufacturing method, and glass product manufacturing apparatus

Also Published As

Publication number Publication date
JPS596253A (en) 1984-01-13

Similar Documents

Publication Publication Date Title
US4097556A (en) PPO-Graft copolymer and process for producing the same
TW199180B (en)
JPS62164758A (en) Thermoplastic polyester resin composition
US4423186A (en) Impact resistant polyamide moulding compositions
JPH0260912A (en) Styrenic copolymer modified with block copolymer rubber
US5912305A (en) Dulled thermoplastic molding material
EP3827035B1 (en) Polyacrylate graft rubber copolymer and impact modified thermoplastic molding composition
JPS585921B2 (en) NETSUKASOSEISEIKYO
JPS6212944B2 (en)
JP3283461B2 (en) Rubber modified styrenic resin composition
EP0393685A1 (en) Imidated copolymers and uses thereof
JPH02272050A (en) Transparent thermoplastic resin composition
JPH02185554A (en) Polymer alloy
JPS6225700B2 (en)
JP3662617B2 (en) Thermoplastic resin composition
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
JP3256453B2 (en) Modifier consisting of copolymer with good thermal stability
JPS6324608B2 (en)
JPH0613635B2 (en) Method for producing polycarbonate resin composition
US3925513A (en) Moulding compositions
JPH032265A (en) Polycarbonate blend of impact resistance and chemical resistance and production and use thereof
JP2632830B2 (en) Rubber-modified styrenic copolymer composition
JP2632831B2 (en) Rubber-modified styrenic copolymer composition
JPH0737550B2 (en) Heat resistant resin composition
JPS5946532B2 (en) Flame retardant resin composition