JPS62128517A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS62128517A
JPS62128517A JP26970885A JP26970885A JPS62128517A JP S62128517 A JPS62128517 A JP S62128517A JP 26970885 A JP26970885 A JP 26970885A JP 26970885 A JP26970885 A JP 26970885A JP S62128517 A JPS62128517 A JP S62128517A
Authority
JP
Japan
Prior art keywords
substrate
carbon
heated
vapor phase
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26970885A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Seiji Onaka
清司 大仲
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26970885A priority Critical patent/JPS62128517A/en
Publication of JPS62128517A publication Critical patent/JPS62128517A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain a crystal having high quality with excellent uniformity extending over a large area, and to reduce the cost of a device manufacture by the growth crystal largely by depositing carbon on the back of a substrate, heating carbon through high-frequency induction and heating the substrate by heat from heated carbon. CONSTITUTION:A substrate 13, on the back thereof carbon 21 in thickness of 300mum is deposited through a CVD method, is positioned on a susceptor 20 made of quartz placed with a slight angle. Carbon 21 is heated through high-frequency induction, and the substrate 13 is heated by heat from carbon 21. There is no clearance between the substrate and carbon as a heating body, thus uniformly heating the substrate even under decompression.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等を基板上に結晶成長す。[Detailed description of the invention] Industrial applications The present invention grows crystals of compound semiconductors and the like on a substrate.

る場合に用いられる気相成長方法に関するものである。The present invention relates to a vapor phase growth method used when

従来の技術 近年、■−■族および■−■族等化合物および混晶半導
体の気相エピタキシャル成長法、特に有機金属気相成長
法(M OOV D : Metal Drganic
Chemical Vapor Deposition
法)が、大面積にわたる均一性、量産性、膜厚や組成の
制御性等の点から注目を集め、各所で研究開発が活発に
行なわれている。
Background Art In recent years, vapor phase epitaxial growth methods for ■-■ group and ■-■ group compounds and mixed crystal semiconductors, particularly metal organic vapor phase epitaxy (MOOVD), have been developed.
Chemical Vapor Deposition
(method) has attracted attention due to its uniformity over a large area, mass productivity, and controllability of film thickness and composition, and research and development is being actively conducted in various places.

一般に、この種の気相成長法に用いられる装置は、結晶
成長室内の気体の圧力によって、常圧(大気+1)MO
CVD装置オヨヒ減1′EMOcVD装置に大別される
。常圧(大気圧)MOCVD装置の方が、装置の構造が
簡単であり、原料ガスの切り変え等による結晶成長室内
の圧力変動も少ない。しかし、エピタキシャル成長する
材料によっては、結晶成長室内の圧力が大気圧よりも低
い方が好ましい場合がある。特にZnP系の場合顕著で
ある。Inの原料ガス材料である例えばトリエチルイン
ジウムT E X ((C,、H5)、In″lは、低
温で分解し易く不安定であるために、サセプタからの熱
によって基板に達するまでに分解し、成長に全く寄与し
なくなる場合がある。そこで、TEIが結晶成長室内に
入るとすみやかに基板上に達するようにする方法として
減圧下でrnP系の結晶成長を行なう試みがなされてい
る。減圧下で行なう気相成長法では、TlClのガス分
子のモ均自由行程が長くでき、基板表面へすみやかに輸
送できる。
Generally, the equipment used for this type of vapor phase growth method uses the pressure of the gas in the crystal growth chamber to produce MO at normal pressure (atmosphere + 1).
CVD equipment is broadly classified into 1'EMOcVD equipment. A normal pressure (atmospheric pressure) MOCVD apparatus has a simpler structure and less pressure fluctuations in the crystal growth chamber due to switching of raw material gas, etc. However, depending on the material to be epitaxially grown, it may be preferable for the pressure inside the crystal growth chamber to be lower than atmospheric pressure. This is particularly noticeable in the case of ZnP. For example, triethylindium TEX ((C,,H5), In''l, which is a raw material gas material for In, is unstable and easily decomposes at low temperatures, so it is decomposed by the heat from the susceptor before reaching the substrate. Therefore, attempts have been made to grow rnP-based crystals under reduced pressure as a way to ensure that TEI reaches the substrate quickly once it enters the crystal growth chamber. Under reduced pressure In the vapor phase growth method carried out, the homogeneous free path of TlCl gas molecules can be lengthened, and they can be quickly transported to the substrate surface.

第2図に減圧下で気相成長を行う際に用いられる代表的
な気相装置の構成を示す。同図中の1は有機In化合物
TEI()リエチルインジウム(02H5) 5In 
)、2はTFLIの蒸気圧を制御するための恒温槽、3
は■族元素の水素化物PH,(ホスフィン)を各々示す
。結晶成長室6内の排気はロータリポンプ10’i5用
いて行なわれる。納品成長室e内の圧力はゲートバルブ
9の開閉の度合いと制菌して行なう。ロータリボング1
0の排気ラインは原料ガスベントライン5と接続されて
有害物質除去用排ガス処理装置11に導ひかれている。
FIG. 2 shows the configuration of a typical vapor phase apparatus used for vapor phase growth under reduced pressure. 1 in the figure is an organic In compound TEI () ethyl indium (02H5) 5In
), 2 is a constant temperature bath for controlling the vapor pressure of TFLI, 3
represent the hydrides PH and (phosphine) of group (Ⅰ) elements, respectively. The inside of the crystal growth chamber 6 is evacuated using a rotary pump 10'i5. The pressure inside the delivery growth chamber e is controlled by controlling the degree of opening and closing of the gate valve 9. rotary bong 1
The exhaust line 0 is connected to a raw material gas vent line 5 and led to an exhaust gas treatment device 11 for removing harmful substances.

半導体基板13はカーボン製サセプタ12上に載置し、
高周波誘導によってカーボン製サセプタ12を加熱して
その熱によって半導体基板13を加熱するようになって
いた。
The semiconductor substrate 13 is placed on the carbon susceptor 12,
The carbon susceptor 12 is heated by high frequency induction, and the semiconductor substrate 13 is heated by the heat.

発明が解決しようとする問題点 しかしながら上記の様な装置だと減圧下において、カー
ボン製サセプタ上に載置された半導体基板を均一に加熱
することは難しい。例えば基板裏面とサセプタ表面が密
着していないと均一加熱は難しいし、又、サセプタその
ものが不均一加熱されている場合がなく、ウェハーが2
インチ、3インチ  と大きくなると基板の均一加熱は
非常に困難であった。
Problems to be Solved by the Invention However, with the above-mentioned apparatus, it is difficult to uniformly heat a semiconductor substrate placed on a carbon susceptor under reduced pressure. For example, if the back surface of the substrate and the surface of the susceptor are not in close contact, uniform heating is difficult, and the susceptor itself is not heated unevenly, and the wafer is
It was very difficult to uniformly heat the substrate when the size was as large as 3 inches.

問題点を解決するだめの手段 本発明は、上記問題点を触決するため、基板裏面に炭素
を堆積し、高周波誘導により前記炭素を加熱し、加熱さ
れた炭素からの熱で前記基板全加熱して前記基板上に薄
膜全形成するものである。
Means to Solve the Problems In order to solve the above problems, the present invention deposits carbon on the back surface of the substrate, heats the carbon by high frequency induction, and completely heats the substrate with the heat from the heated carbon. The thin film is entirely formed on the substrate.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、基板裏面に炭素全堆積し、高周波誘導により
前記炭素を加熱し、加熱された炭素からの熱で前記基板
を加熱するので、基板と加熱体炭素との間にすき間がな
い。したがって、減圧下においても基板?均一に加熱す
ることができる〇実施例 本発明の一実施例における気相成長方法を実施する気相
成長装置の具体的な一例を第1図に示−ち20は少し角
度を付けた石英製サセプタて、21は基板13の裏面に
CVD法により堆積された例えば厚み300μmの炭素
である。
That is, since all of the carbon is deposited on the back surface of the substrate, the carbon is heated by high frequency induction, and the substrate is heated with the heat from the heated carbon, there is no gap between the substrate and the heating element carbon. Therefore, the substrate even under reduced pressure? Embodiment in which uniform heating is possible A specific example of a vapor phase growth apparatus for carrying out the vapor phase growth method according to an embodiment of the present invention is shown in FIG. The susceptor 21 is carbon with a thickness of, for example, 300 μm deposited on the back surface of the substrate 13 by the CVD method.

次に本発明の効果ケより明らかにするため、炭素が堆積
されたXnP基板上にInP/InGaAsP系多重童
子井戸栴造を作製し、膜厚9組成の均一性および界面の
急峻性を調べた。
Next, in order to clarify the effects of the present invention, an InP/InGaAsP multi-dojido layer was fabricated on an XnP substrate on which carbon was deposited, and the uniformity of the film thickness (9) and the steepness of the interface were investigated. .

使用した■族原料有機金属はT X I (トIJエチ
ルインジウム(02H5) 、In) ’)、T RG
 ()リエチルガリウム(C2H3) 、Ga ’:l
で、■族原料ガスはPH3(ホスフィン)と、AsH3
(アルシン)である。
The organometallic group III raw materials used were T
() ethyl gallium (C2H3), Ga':l
So, the group III raw material gases are PH3 (phosphine) and AsH3.
(Arsine).

キャリアガスはPd拡散Il!Iを通った水素で613
7m1nである。基板温度は、基板裏面から赤外線温度
計により測定し、6アO’Cである。結晶成長室内圧力
は160丁orrである。’!’EI、TEG。
The carrier gas is Pd diffusion Il! 613 with hydrogen passing through I
It is 7m1n. The substrate temperature was measured from the back side of the substrate using an infrared thermometer and was 6 O'C. The pressure inside the crystal growth chamber is 160 C orr. '! 'EI, TEG.

PH3,AsH,の流量はそれぞれ35 cc/win
 、 s。
Flow rate of PH3, AsH, each is 35 cc/win
, s.

PH3(i7予め流す。上記流量で成長された結晶はI
nP基板に格子整合した(1Δa/a l (1o ’
)In、、GaxAs、、P、−y(x 〜0.27.
  y 〜O−57)4元混晶が得られる。膜厚のばら
つきは数チ以内にあり、又、組成のバラツキはフォトル
ミから、1 nm以内にある。
PH3 (i7 is flowed in advance. The crystal grown at the above flow rate is I
Lattice matched to nP substrate (1Δa/a l (1o'
)In,,GaxAs,,P,-y(x~0.27.
y ~O-57) A quaternary mixed crystal is obtained. The variation in film thickness is within a few inches, and the variation in composition is within 1 nm from photoluminescence.

次[T E G トA、H5(D On−0f’f’カ
ら、100八InP 、 100 A InGaASP
(7) 11:)へ7からなる超格子を作成しS IM
SでIn、Ga、As、Pの厚さ方向の分布を分析した
。形成された積層構造で、いずれの元素もヘテロ界面に
おいて、遷移領域は10八以下であり、界面の急峻性は
飛躍的に向上した。
Next
(7) Create a superlattice consisting of 7 to 11:) and SIM
The distribution of In, Ga, As, and P in the thickness direction was analyzed using S. In the formed layered structure, the transition region of each element at the hetero interface was 108 or less, and the steepness of the interface was dramatically improved.

以上述べた実姐例において、InP /InGaAsP
系の結晶成長について説明したが、本発明による気相成
長方法は、AlGaAs / GaAs系、 AlGa
工nP /GaAs系は勿論のこと、他のII −V族
およびn−■族化合物半導体および混晶半導体の結晶成
長に用いることができる。さらに、以上述べた実悔例は
有機金属気相成長法の場合であったが、ハイドライド気
相エピタキシャル成長法やクロライド気相エピタキシャ
ル成長法等の他の気相成長法の場合にも適用できる。又
、化合物半導体の気相成長だけテナク、SiO□ヤ81
3N4等ノ各種C’1DfP:にも用いることができる
のは言うまでもない。
In the practical example described above, InP /InGaAsP
Although the crystal growth of the AlGaAs/GaAs system has been described, the vapor phase growth method according to the present invention can be applied to AlGaAs/GaAs systems, AlGaAs
It can be used for the crystal growth of not only the nP/GaAs system but also other II-V group and n-2 group compound semiconductors and mixed crystal semiconductors. Furthermore, although the above-mentioned example of regret was a case of metal-organic vapor phase epitaxy, it can also be applied to other vapor phase epitaxy methods such as hydride vapor phase epitaxial growth method and chloride vapor phase epitaxial growth method. In addition, Tenac, SiO
Needless to say, it can also be used for various C'1DfPs such as 3N4.

発明の効果 本発明の気相成長方法は、基板裏面に炭素を堆積し、均
一に基板を加熱するので、高品質の結晶が大面積にわた
って均一性よく保たれ、組成、不純物濃度のばらつきも
少なく、ヘテロ界面の遷移層は10Å以下で界面の急峻
性は飛躍的に向上した。その結果、その成長結晶により
作られるデバイスのコストも大幅に削減することが可能
とな枚非常に実用的効果は大きい。
Effects of the Invention The vapor phase growth method of the present invention deposits carbon on the back surface of the substrate and heats the substrate uniformly, so high quality crystals are maintained with good uniformity over a large area, and there is little variation in composition and impurity concentration. , the transition layer at the heterointerface was less than 10 Å, and the steepness of the interface was dramatically improved. As a result, it is possible to significantly reduce the cost of devices manufactured using the grown crystal, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における気相成長方法に用い
る気相成長装置の概略溝底図、第2図は従来の気相成長
方法に用いる気相成長装置の概略構成図である。 6・・・・・・結晶成長室、7・・・・・・高周波コイ
ル、13・・・・・・基板、21・・・・・・炭素、2
0・・・・・・石英ガラス製サセプタっ
FIG. 1 is a schematic groove bottom diagram of a vapor phase growth apparatus used in a vapor phase growth method according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a vapor phase growth apparatus used in a conventional vapor phase growth method. 6...Crystal growth chamber, 7...High frequency coil, 13...Substrate, 21...Carbon, 2
0...Quartz glass susceptor

Claims (1)

【特許請求の範囲】[Claims] 結晶成長室に反応ガスを導入し、前記結晶成長室内に載
置された基板に薄膜を形成する際、基板裏面に炭素を堆
積し、高周波誘導により前記炭素を加熱し、加熱された
炭素からの熱で前記基板を加熱して前記基板上に薄膜を
形成することを特徴とする気相成長方法。
When a reactive gas is introduced into a crystal growth chamber and a thin film is formed on a substrate placed in the crystal growth chamber, carbon is deposited on the back surface of the substrate, the carbon is heated by high frequency induction, and the carbon is removed from the heated carbon. A vapor phase growth method comprising heating the substrate with heat to form a thin film on the substrate.
JP26970885A 1985-11-29 1985-11-29 Vapor growth method Pending JPS62128517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26970885A JPS62128517A (en) 1985-11-29 1985-11-29 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26970885A JPS62128517A (en) 1985-11-29 1985-11-29 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS62128517A true JPS62128517A (en) 1987-06-10

Family

ID=17476072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26970885A Pending JPS62128517A (en) 1985-11-29 1985-11-29 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS62128517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129284B2 (en) 2009-04-28 2012-03-06 Dainippon Screen Mfg. Co., Ltd. Heat treatment method and heat treatment apparatus for heating substrate by light irradiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129284B2 (en) 2009-04-28 2012-03-06 Dainippon Screen Mfg. Co., Ltd. Heat treatment method and heat treatment apparatus for heating substrate by light irradiation
US8787741B2 (en) 2009-04-28 2014-07-22 Dainippon Screen Mfg. Co., Ltd. Heat treatment method and heat treatment apparatus for heating substrate by light irradiation

Similar Documents

Publication Publication Date Title
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JPS62128517A (en) Vapor growth method
CA1305910C (en) Chemical vapor deposition method for the gaas thin film
JP2736655B2 (en) Compound semiconductor crystal growth method
JPS58151397A (en) Production of vapor phase epitaxial crystal
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
Tsang Chemical beam epitaxy of InGaAs
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPH01220432A (en) Manufacture of compound semiconductor layer
JP3221318B2 (en) Vapor phase growth method of III-V compound semiconductor
JPH01313927A (en) Compound-semiconductor crystal growth method
JP3035953B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPH0547674A (en) Apparatus and method for vapor growth
JPS61242011A (en) Vapor-phase growth device
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH03280419A (en) Method for formation of compound semiconductor thin film
JPS6290925A (en) Method for vapor growth
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JPH01206618A (en) Organic metal vapor growth method
JP4427694B2 (en) Film forming apparatus and film forming method
JPH01109715A (en) Vapor phase epitaxy method
JPH06140331A (en) Organic metallic molecular beam epitaxial growth method
JP2982332B2 (en) Vapor growth method
JPH02116120A (en) Crystal growth method