JPS62125522A - Protective film for thin film magnetic disk - Google Patents

Protective film for thin film magnetic disk

Info

Publication number
JPS62125522A
JPS62125522A JP26479985A JP26479985A JPS62125522A JP S62125522 A JPS62125522 A JP S62125522A JP 26479985 A JP26479985 A JP 26479985A JP 26479985 A JP26479985 A JP 26479985A JP S62125522 A JPS62125522 A JP S62125522A
Authority
JP
Japan
Prior art keywords
film
protective film
recording medium
magnetic recording
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26479985A
Other languages
Japanese (ja)
Inventor
Takao Yonekawa
隆生 米川
Hiroyuki Kataoka
宏之 片岡
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26479985A priority Critical patent/JPS62125522A/en
Publication of JPS62125522A publication Critical patent/JPS62125522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To simultaneously improve the adhesive strength of a magnetic recording medium and of a carbon lubricating film by providing a concn. gradient of C contained in the protective film in the thickness direction of the carbide protective film. CONSTITUTION:Ni-P is plated in 30mum thickness on an aluminum alloy substrate which is worked in the form of a disk by electroplating. The disk substrate is ground to reduce the thickness of the plated film to 20mum, and the surface roughness Rmax of the Ni-P plating is controlled to <=0.01mum. Then a magnetic recording medium is formed on the substrate by RF sputtering. The RF sputtering is carried out in an (Ar+O2) atmosphere by using a Co(20%)Fe target to form an Fe3O4 film having 170mum thickness on the Ni-P plated substrate, the thermal oxidation of the magnetic medium is carried out in the atmosphere at 260 deg.C for 3hr, and the magnetic disk wherein the magnetic recording medium of gamma-Fe2O3 is formed on the Ni-P plates substrate is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、薄膜磁気ディスクにおいて磁気記録媒体を保
護する保護膜に係り、特に磁気ヘッドと磁気ディスクの
摺動に対する強度を向上させるために好適な薄膜磁気デ
ィスク用保護膜に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a protective film for protecting a magnetic recording medium in a thin-film magnetic disk, and particularly to a protective film suitable for improving the strength against sliding between a magnetic head and a magnetic disk. The present invention relates to a protective film for thin film magnetic disks.

〔発明の背景〕[Background of the invention]

従来の薄膜磁気ディスクの構成は1例えばアルミニウム
合金基板面上に酸化物やNi −Pなどの非磁金属の非
磁性下地層を形成し、これを研磨した基板上に合金また
は合金の酸化物の磁性層(磁気記録媒体)を形成する。
The structure of a conventional thin film magnetic disk is as follows: 1. For example, a nonmagnetic underlayer made of an oxide or a nonmagnetic metal such as Ni-P is formed on an aluminum alloy substrate, and then an alloy or an oxide of an alloy is deposited on the polished substrate. Form a magnetic layer (magnetic recording medium).

この後、コンタクト・スタート・ストップ(C8S”1
時の摩擦力を低減させるために磁気記録媒体表面を液体
もしくは固体潤滑剤により潤滑処理を施している構成と
なっている。一方、記録密度の高密度化に伴い磁気ヘッ
ドと磁気記録媒体との間隙(ヘッドスペーシング)が狭
くされて来ており、今後も狭スペース化が余儀な(され
てい(ものと考えられる。このため、磁気ディスクと磁
気ヘッドとのC8S時における摺動回数が増し、また狭
へラドスペーシング化のためにヘッドシータなどの原因
により磁気ディスクと磁気ヘッドとが接触する頻度が増
すことになることは明白である。この磁気ディスクと磁
気ヘッドの接触により磁気ディスク表面から磁気記録媒
体が脱落して記録信号の欠落(ドロップアウト)が発生
したり、磁気ヘッドの安定な低浮上性が得られなかった
り、ヘッド〃ラッシーを起したりすることがあった。
After this, contact start/stop (C8S”1
The magnetic recording medium surface is lubricated with a liquid or solid lubricant to reduce the frictional force caused by the magnetic recording medium. On the other hand, as recording density increases, the gap between the magnetic head and the magnetic recording medium (head spacing) is becoming narrower, and it is thought that this will continue to become narrower in the future. Therefore, the number of sliding movements between the magnetic disk and the magnetic head during C8S increases, and the frequency of contact between the magnetic disk and the magnetic head due to causes such as head seater due to narrower rad spacing increases. This is obvious. Due to this contact between the magnetic disk and the magnetic head, the magnetic recording medium may fall off the surface of the magnetic disk, resulting in a dropout of the recorded signal, or the magnetic head may not be able to maintain stable low flying characteristics. , sometimes caused head rash.

七二で特開昭53−21901号、特開昭53−219
02号公報等に挙げられている様に、従来からこれら不
良発生の回避方法として磁気記録媒体表面に比較的硬質
な膜を形成し、これを保護膜として機能させる方法がと
られて来た。
72, JP-A-53-21901, JP-A-53-219
As mentioned in Japanese Patent Application No. 02, etc., as a method of avoiding the occurrence of these defects, a method has conventionally been used in which a relatively hard film is formed on the surface of a magnetic recording medium and this film functions as a protective film.

炭化物保護膜は1本公知例でも示す様に硬質で磁気ヘッ
ドとの接触によっても傷が付きに((・が、磁気記録媒
体と炭化物保護膜との密着力が弱く、己慧に傷を付ける
と傷口から炭化物保護膜が剥離することがあった。本公
知例では。
As shown in one known example, the carbide protective film is hard and can be scratched even when it comes into contact with a magnetic head ((・However, the adhesion between the magnetic recording medium and the carbide protective film is weak, causing damage to self-reliance. In this known example, the carbide protective film sometimes peeled off from the wound.

この様な磁気記録媒体と保護膜との密着性、及び保護膜
と潤滑膜との密着性については配慮されていなかった。
No consideration was given to the adhesion between the magnetic recording medium and the protective film, and the adhesion between the protective film and the lubricating film.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、磁気ヘッドと磁気ディスクの摺動によ
り発生する磁気記録媒体の欠落やヘンドクランシュ事故
を回避するために硬質の炭化物保護膜を磁気記録媒体上
に形成する場合において、炭化物保護膜中のCの濃度を
制御することにより磁気記録媒体と炭化物保護膜、炭化
物保護膜と潤滑膜の密着力を向上させ、炭化物保護膜及
び潤滑膜の剥離を防上させ、磁気ディスクと磁気へ゛・
ドとの摺動に対する強度を持たせた磁気ディスクを提供
することにある。
An object of the present invention is to provide a carbide protection film in the case where a hard carbide protection film is formed on a magnetic recording medium in order to avoid chipping of the magnetic recording medium and hend crush accidents caused by sliding between a magnetic head and a magnetic disk. By controlling the concentration of C in the film, it is possible to improve the adhesion between the magnetic recording medium and the carbide protective film, and between the carbide protective film and the lubricant film, prevent peeling of the carbide protective film and the lubricant film, and improve the bond between the magnetic disk and the magnetism.・
An object of the present invention is to provide a magnetic disk that has strength against sliding with a hard disk.

〔発明の概要〕[Summary of the invention]

磁気ディスクの保護膜として従来より各種金属、酸化物
、窒化物、炭化物が考案されている。
Various metals, oxides, nitrides, and carbides have been devised as protective films for magnetic disks.

しかシ、狭ヘントスベーシング化に伴い保護膜の膜厚に
制限があり、各種′R模膜形成法より形成で紮る物質で
なげればならない。そこで、薄膜形成可能な物質の中か
ら発明者らの予備的な実験検討1(より炭化物を選択し
た。この選択理由として、炭化物はスパッタリング法、
またはイオンブソーティング法などによる薄膜形成手法
により薄膜形成した鳥合でも、非常に硬質で磁気ヘッド
との摺動や接触だけでは、傷が生じなかった。また、こ
れら薄膜形成手法では、膜中のCの組成比を制御するこ
とは、比較的簡単であり再現性も良い。
However, as the thickness of the protective film becomes narrower, there is a limit to the thickness of the protective film, and it is necessary to use a material that can be easily formed using various 'R pattern forming methods. Therefore, the inventors selected carbide from among the substances that can be formed into a thin film using the sputtering method.
Alternatively, a thin film formed by a thin film forming method such as an ion sorting method was extremely hard and did not cause any scratches simply by sliding or contacting with a magnetic head. Furthermore, in these thin film forming methods, controlling the composition ratio of C in the film is relatively easy and has good reproducibility.

一方、酸化物、窒化物(例えばSiO2,Si3N4な
ど)は、比較的硬質で薄膜形成が可能であるが、脆(、
炭化物保護膜と比較した場合、摺動に対する強度は炭化
物保護膜の方が強かった。
On the other hand, oxides and nitrides (e.g. SiO2, Si3N4, etc.) are relatively hard and can be formed into thin films, but are brittle (
When compared with the carbide protective film, the carbide protective film had higher strength against sliding.

それに駿化物、窒化物は、磁気ヘッドとの粘着が発生し
、コンタクト・スタートができない状態になることもあ
った。以上の理由で保護膜と1−で炭化物保護膜を選択
することにした。
In addition, fluorides and nitrides can cause adhesion to the magnetic head, making contact start impossible. For the above reasons, we decided to select a carbide protective film for the protective film and 1-.

しかし、炭化物保護膜は摺動に対する強度は強い反面、
膜剥離が発生することがあった。この膜剥離は、自然に
剥離するものではなく、己意に傷をけげた場合、その傷
口から膜剥離を生じるものである。この膜剥離の原因と
して考えられる事は、磁気記録媒体と炭化物保護膜の密
着力が低い事と、膜の内部応力が犬ぎい事が上げられる
However, while the carbide protective film has strong resistance to sliding,
Film peeling sometimes occurred. This membrane peeling does not occur naturally, but when a person injures himself or herself, the membrane peels off from the wound. Possible causes of this film peeling include low adhesion between the magnetic recording medium and the carbide protective film and excessive internal stress in the film.

そこで、この膜剥離の解決策として磁気記録媒体と炭化
物保護膜の密着力を向上させる事を考えた。
Therefore, as a solution to this film peeling problem, we considered improving the adhesion between the magnetic recording medium and the carbide protective film.

まず、磁気記録媒体と炭化物保護膜の密着力を各種成膜
条件のサンプルについて測定した所炭化物保護膜中のC
の濃度が高くなると磁気記録媒体と炭化物保護膜の密着
強度が低下することが判った。一方、潤滑膜にカーボン
膜を用いた場合、保護膜とカーボン膜との密着強度を測
定した所、炭化物保護膜中のCの濃度が低くなると炭化
物保護膜とカーボン膜の密着力が低下することが判った
。この相反する条件を満足する炭化物保護膜を得るため
に、膜中のCの濃度を制御し、膜間の密着力を向上させ
る方法を考案した。以下1本実施例で詳しく説明する。
First, the adhesion between the magnetic recording medium and the carbide protective film was measured on samples under various film formation conditions.
It was found that as the concentration of carbide increases, the adhesion strength between the magnetic recording medium and the carbide protective film decreases. On the other hand, when a carbon film is used as a lubricating film, measurements of the adhesion strength between the protective film and the carbon film show that as the concentration of C in the carbide protective film decreases, the adhesion between the carbide protective film and the carbon film decreases. It turns out. In order to obtain a carbide protective film that satisfies these contradictory conditions, we devised a method of controlling the concentration of C in the film and improving the adhesion between the films. This will be explained in detail below using one example.

〔発明の実施例〕[Embodiments of the invention]

まず1本実施例で使用する磁気ディスクの磁気記録媒体
製造までの工程を以下に述べる。まず、ディスク形状に
加工したアルミニウム合金基板に電気メツキ法によりN
i −Pを30μmの厚さまでメッキした。このディス
ク基板をN1−Pメッキ膜厚が20μmになるまで研磨
を行い、N1−Pメッキ表面粗さくRrtwt)が0.
01μm以下の磁気ディスク用基板を得た。次に、この
磁気ディスク用基板に磁気記録媒体をRFスパッタ法で
形成した。
First, the steps up to manufacturing the magnetic recording medium of the magnetic disk used in this embodiment will be described below. First, N was electroplated onto an aluminum alloy substrate processed into a disk shape.
i-P was plated to a thickness of 30 μm. This disk substrate was polished until the N1-P plating film thickness became 20 μm, and the N1-P plating surface roughness (Rrtwt) was 0.
A magnetic disk substrate with a diameter of 0.01 μm or less was obtained. Next, a magnetic recording medium was formed on this magnetic disk substrate by RF sputtering.

ここで磁気記録媒体の形成法について述べる。Here, a method for forming a magnetic recording medium will be described.

まず上記N1−Pメッキ基板上に、 Co (2,0%
)Feターゲットを用いAr+02雰囲気中でRFスパ
ッタを行い、 Fe3O4膜(膜厚170nm )を成
膜した。
First, Co (2,0%
) RF sputtering was performed using an Fe target in an Ar+02 atmosphere to form a Fe3O4 film (thickness: 170 nm).

この後、大気中で260℃、3時間の磁性媒体熱酸化を
行い、N1−Pメッキ基板上にγ−Fe2O3の磁気記
録媒体を形成した磁気ディスクを得た。
Thereafter, the magnetic medium was thermally oxidized at 260° C. for 3 hours in the atmosphere to obtain a magnetic disk in which a γ-Fe2O3 magnetic recording medium was formed on an N1-P plated substrate.

以上、磁気記号媒体製造までの大まかな工種を述べた力
t、以下この磁気記録媒体まで形成した。
The above is a general description of the steps involved in manufacturing a magnetic recording medium.

ディスクを用い本発明の実施例について述べる。An embodiment of the present invention will be described using a disk.

(実施例1) 第1 (at 、 (b1図は、今回ディスク面上に炭
化物保護膜を形成する際に使用したスパッタ装置の概略
的な断面図である。ただし第1(b)図は、第1(a)
図のA−A線から見た場合のスパッタ装置の概略的な断
面図である。本装置の大まかな特徴、及び動作を述べる
と、まず予備加熱室1とスパッタ室202室構成の装置
であり、各室は独立した真空排気系により高真空に排気
される。
(Example 1) 1st (at, (b) Figure 1 is a schematic cross-sectional view of the sputtering equipment used to form a carbide protective film on the disk surface. However, Figure 1(b) is Section 1(a)
FIG. 2 is a schematic cross-sectional view of the sputtering apparatus as viewed from line AA in the figure. To describe the general characteristics and operation of this apparatus, first, it is an apparatus consisting of a preheating chamber 1 and a sputtering chamber 202, and each chamber is evacuated to a high vacuum by an independent evacuation system.

予備加熱室1にセットされたディスク3−1は。The disk 3-1 is set in the preheating chamber 1.

ヒータ4により加熱される。その後、このセントされた
ディスク3−1は、基板搬送系6によりゲートバルブ5
を通り、ディスクホールドアーム7によりディスク3−
2は、力゛ソード8の前面に支持される。このカソード
は、プレーfマグネトロンカソードであり、ディスク表
裏両面同時に成膜が可能な様に2組設置されている。
It is heated by the heater 4. Thereafter, this cented disk 3-1 is transferred to the gate valve 5 by the substrate transport system 6.
, and the disc 3- is held by the disc hold arm 7.
2 is supported on the front side of the force sword 8. This cathode is a play-f magnetron cathode, and two sets are installed so that films can be formed on both the front and back surfaces of the disk simultaneously.

また、ディスク面上の膜厚が均一になる様にターゲット
9の前面に膜厚補正板10を設置し、ディスク基板3−
2を回転させなから成膜を行う。
In addition, a film thickness correction plate 10 is installed in front of the target 9 so that the film thickness on the disk surface is uniform, and a film thickness correction plate 10 is installed in front of the target 9.
Film formation is performed without rotating 2.

スパッタ甲不活性ガス11−1及び反応ガス11−2の
2種類を用意し、それぞれをガス流量コントローラ12
によりガス流量を調整し、またオリフィス13により排
気速度を調整し、所定のガス圧力を得た。
Two types of sputtering inert gas 11-1 and reaction gas 11-2 are prepared, and each is connected to the gas flow controller 12.
The gas flow rate was adjusted using the orifice 13, and the exhaust speed was adjusted using the orifice 13 to obtain a predetermined gas pressure.

実際に炭化物保護膜をディスク面上に成膜する場合の各
々の条件を以下に述べる。本発明では、保護膜にTiC
、SiC、WCの3種類の保護膜を検討した。まずTi
C保護膜の場合について第1図を用いて述べる。予備加
熱室lにセットした磁気記録媒体形成後のディスク3−
1を200°02時間保持した。スパッタガスは、不活
性ガス11−1としてArガスを用い1反応ガス11−
2としてAr + CH4(50vo1.%)のガスを
用いた。ターゲットは、 99.9%の純度のTiをタ
ーゲットを使用した。ディスク3−1を加熱保持してい
る間。
The conditions for actually forming a carbide protective film on the disk surface will be described below. In the present invention, TiC is used as the protective film.
Three types of protective films were investigated: , SiC, and WC. First, Ti
The case of the C protective film will be described using FIG. Disk 3- after magnetic recording medium formation set in preheating chamber l
1 was held at 200° for 2 hours. The sputtering gas uses Ar gas as the inert gas 11-1 and one reaction gas 11-1.
As No. 2, Ar + CH4 (50vol.%) gas was used. The target used was Ti with a purity of 99.9%. While heating and holding the disk 3-1.

スパッタ室2では、希望するガス濃度比、ガス圧、投入
電力などの成膜条件を設定し、プリスパッタを行った。
In the sputtering chamber 2, pre-sputtering was performed by setting desired film forming conditions such as the desired gas concentration ratio, gas pressure, and input power.

そして30分間放電を安定させるためにこれらを保持し
た。成膜を開始する場合。
These were then held for 30 minutes to stabilize the discharge. When starting film deposition.

ディスク基板3−1を基板搬送系6によりスパッタ室2
へ搬送し、ディスクホールドアーム7によりディスク基
板3−2を支持した。それからシャッタ14を開いて、
Ar+CH4雰囲気中で反応スバンタを行った。膜厚は
、全てのサンプルにおいて500A一定とし、投入電力
、成膜時間によって制御した。ただし、成膜時の基板回
転数は10 r pm一定とした。以上TiCを成膜す
る場合において、共通する成膜条件を述べたが、 Si
C。
The disk substrate 3-1 is transferred to the sputtering chamber 2 by the substrate transport system 6.
and supported the disk substrate 3-2 by the disk hold arm 7. Then open the shutter 14,
Reaction svanta was carried out in an Ar+CH4 atmosphere. The film thickness was kept constant at 500 A for all samples, and was controlled by input power and film formation time. However, the substrate rotation speed during film formation was kept constant at 10 rpm. The common film forming conditions were described above when forming a TiC film, but Si
C.

WCもTiCと同様な条件で成膜した。ただし、SiC
を成膜する場合は、ターゲット9を99.99%の純度
のSiターゲットを使用し、WCを成膜する場合は、タ
ーゲット9を99.9%の純度のWターゲ7)を使用し
1両者ともAr+CH4雰囲気中で反応スパッタを行っ
た。
WC was also formed under the same conditions as TiC. However, SiC
When forming a film, use a Si target with a purity of 99.99% as the target 9. When forming a film with WC, use a W target 7) with a purity of 99.9% as the target 9. In both cases, reactive sputtering was performed in an Ar+CH4 atmosphere.

ここで本発明に対する検討を行う前に、スパッタ雰囲気
中のCH4濃度を一定にしたまま成膜し、その時の成膜
条件と保護膜の組成を各々の保護膜について調べた。こ
れら成膜条件を表1に示す。保護膜の組成を分析する方
法は、一般的によく使われているX線光電子分光法(X
PS)Iてより行った。保護膜の深さ方向の分析は、 
Ar中でスパンタエンチを併用しながら行った。第2図
は、 TiC保護膜のスパッタ雰囲気中のCH4濃度に
よる組成変化を示したものである。第2図より、 CH
4濃度が5〜to vo 1.%の範囲でほぼ化学量論
組成のTiCを得ることができた。第3図は。
Before examining the present invention, films were formed while keeping the CH4 concentration in the sputtering atmosphere constant, and the film forming conditions and the composition of the protective film were investigated for each protective film. These film forming conditions are shown in Table 1. A commonly used method for analyzing the composition of the protective film is X-ray photoelectron spectroscopy (X
PS) I went there. Analysis of the protective film in the depth direction is
The test was carried out in Ar while also using spanta-quenching. FIG. 2 shows the change in composition of the TiC protective film depending on the CH4 concentration in the sputtering atmosphere. From Figure 2, CH
4 concentration is 5~to vo 1. It was possible to obtain TiC with a nearly stoichiometric composition within the range of 1.5%. Figure 3 is.

第2図から得た結果より、スパッタ雰囲気中のCH4濃
度がLOvol、%である成膜条件を選択し、成膜した
サンプルについて膜の深さ方向の組成を分析した結果で
ある。第2図から膜厚方向のTiCの組成分布は、はぼ
均質であることがわかる。
Based on the results obtained from FIG. 2, film formation conditions were selected in which the CH4 concentration in the sputtering atmosphere was LOvol,%, and the composition of the film formed in the depth direction was analyzed for the sample. It can be seen from FIG. 2 that the composition distribution of TiC in the film thickness direction is almost homogeneous.

この他のSiC,WC保護膜のスパッタ写囲気中のCH
4濃度による組成変什は、 TiCとほぼ同じでCH4
濃度が5〜10vol、%の範囲で化学量論組成に近く
なった。また、SiC,WC保護膜でCH411G!度
が10vo1.%のサンプルについて膜の深さ方向の組
成を分析した結果、 TiCと同様にほぼ均質な膜であ
った。
Other SiC, WC protective film sputter images CH in the atmosphere
The composition change due to concentration of CH4 is almost the same as that of TiC.
The concentration was close to stoichiometric composition in the range of 5 to 10 vol.%. Also, CH411G with SiC and WC protective film! The degree is 10vo1. As a result of analyzing the composition in the depth direction of the film for the sample, it was found that the film was almost homogeneous, similar to TiC.

次に表1の各条件で成膜した炭化物保護膜について引っ
掻き試験を行い、磁気記録媒体と炭化物保護膜の密着力
を調べた。引っ掻き試験条件は、スタイラスにRO,5
mm、のサファイヤ球を用い、保護膜面上にスタイラス
を乗せ、このスタイラスに荷重を加える。そして試料を
l crIL/secの速度で引(。この時、保護膜に
付く傷を観察し傷の部分及びその周辺で漠の剥離の有無
を確認した。そして剥離が生じた時の荷重を膜の密着力
の強度とした。第4図は1表1の各試料について引っ掻
き試験を行った場合の結果である。
Next, a scratch test was conducted on the carbide protective film formed under each condition shown in Table 1 to examine the adhesion between the magnetic recording medium and the carbide protective film. The scratch test conditions were as follows: RO,5 on the stylus.
Using a sapphire ball of mm, a stylus is placed on the protective film surface, and a load is applied to the stylus. Then, the sample was pulled at a speed of 1 crIL/sec.At this time, the scratches on the protective film were observed and the presence or absence of vague peeling was confirmed in and around the scratched area.Then, the load at which peeling occurred was calculated as Figure 4 shows the results of a scratch test performed on each sample in Table 1.

TiC、SiC、WCいずれの場合においても膜中のC
の濃度が0%の膜は、磁気記録媒体と炭化物保護膜の密
着強度が高いが、C濃度が高(なると逆に密着強度が低
(なることが判った。
In all cases of TiC, SiC, and WC, C in the film
It was found that a film with a concentration of 0% has a high adhesion strength between the magnetic recording medium and the carbide protective film, but when the C concentration is high, the adhesion strength becomes low.

以下余白 表1.炭化物保護膜の成膜条件(実施例1)(実施例2
) 実施例1の結果より磁気記録媒体と炭化物保護膜の密着
強度を上げるには、炭化物保護膜中のCの濃度な0%に
すればよい事が判った。一方、炭化物保護膜は、膜中に
Cを含有しない場合では、硬度が不足して傷が付きやす
い。そこで、磁気記録媒体と炭化物保護膜とが接する界
面より保護膜側に数十〜数百オングストロームの範囲で
Cを含有しない層を得げて置くことにより磁気記録媒体
と保護膜との密着力を高めることにした。
Margin table 1 below. Film-forming conditions for carbide protective film (Example 1) (Example 2)
) From the results of Example 1, it was found that in order to increase the adhesion strength between the magnetic recording medium and the carbide protective film, the C concentration in the carbide protective film should be reduced to 0%. On the other hand, if the carbide protective film does not contain C, it lacks hardness and is easily scratched. Therefore, by providing a layer that does not contain C in a range of several tens to hundreds of angstroms on the protective film side from the interface where the magnetic recording medium and the carbide protective film contact, the adhesion between the magnetic recording medium and the protective film can be improved. I decided to raise it.

次にこの成膜方法忙ついて述べる。実施例1で成膜した
方法とほぼ同じであるが、ス・くツタガスの導入方法を
変えることにより保護膜中のCの濃度を制御した。まず
、不活性ガス11−1のみでプリスパッタを行い、その
後直ちに成膜を開始した。そしく CS度カーθ%であ
る層が100^程度成膜された後1反応ガス11−2を
適量導入し保護膜中のCの濃度を制御した。この時。
Next, we will discuss the details of this film forming method. The method for forming the film in Example 1 was almost the same, but the concentration of C in the protective film was controlled by changing the method of introducing the ivy gas. First, pre-sputtering was performed using only the inert gas 11-1, and then film formation was immediately started. After a layer having a CS degree of θ% of about 100^ was formed, an appropriate amount of 1 reaction gas 11-2 was introduced to control the concentration of C in the protective film. At this time.

スパッタ室2内のガス圧力、及び投入電力な−定に保つ
?−まま行った。表2に各穐の保護膜についての成膜条
件を示す。また第5図には0表2の成膜条件で得られた
保護膜の内SiC保護膜の膜の深さ方向の組成を示す。
Do you keep the gas pressure in the sputtering chamber 2 and the input power constant? -I left. Table 2 shows the film forming conditions for each protective film. Further, FIG. 5 shows the composition in the depth direction of the SiC protective film among the protective films obtained under the film forming conditions shown in Table 2.

第5図より保護膜中の(1)qk±、磁気記録媒体との
界面附近で0%・どなっている事が判る。この他のTi
C,WCもSiCと同様なC濃度の分布であることを確
認した。次に表2に示した条件で成膜した試料について
、実施例1と同様に引っ掻き試験を行った。この結果を
第6図に示す。第6図より、各保護膜とも第4図に示し
た膜中のC濃度O%の時の密着強度を保っている。また
1表2の条件で成膜した各保護膜は9表1のCH4濃度
0voL%の条件でFB、膜した保護膜より十分硬質で
あるため、傷も付きに(かった。
It can be seen from FIG. 5 that (1)qk± in the protective film is 0% near the interface with the magnetic recording medium. Other Ti
It was confirmed that C and WC had the same C concentration distribution as SiC. Next, a scratch test was conducted in the same manner as in Example 1 for the samples formed under the conditions shown in Table 2. The results are shown in FIG. From FIG. 6, each protective film maintains the adhesion strength shown in FIG. 4 when the C concentration in the film is 0%. In addition, each of the protective films formed under the conditions shown in Table 1 and Table 2 was sufficiently harder than the protective film formed under the conditions of CH4 concentration of 0 vol% in Table 9, and was therefore less susceptible to scratches.

以下余白 表2.炭化物保護膜の成膜条件(実施例2)(実施例3
) 表1中のCH4濃度O%の条件で各保護膜を形成した磁
気ディスクと1表2の条件で各保護膜を形成した磁気デ
ィスクを用意し、これに潤滑膜トシてカーボンを形成し
た。カーボンの形成条件を表3に示す。成膜装置は、第
1図の装置を使用した。ただしターゲット9は、光点率
70%ツカ−ホンターゲットを使用した。この様にして
本発明の炭化物保護膜と、Cを含有していない金属だけ
の保護膜上にカーボン潤滑膜を200^の膜厚で成膜し
た。これら磁気ディスクをcss試験により保護膜、潤
滑膜の密着強度を比較した。C8S試験法は0周速20
m/secで0.2ttm浮上するMn −Zn −F
eのヘッドを使用した。回転、停止の周期は、それぞれ
20ff−で周速Oから20 m/seeまでの回転の
立ち上がり及び周速20からQrn/seeまでの回転
の立ち下がりをそれぞれ5secとした。
Margin table 2 below. Film-forming conditions for carbide protective film (Example 2) (Example 3)
) A magnetic disk on which each protective film was formed under the conditions of CH4 concentration of 0% in Table 1 and a magnetic disk on which each protective film was formed under the conditions in Table 1 and Table 2 were prepared, and a lubricating film was applied thereto to form carbon. Table 3 shows the carbon formation conditions. As the film forming apparatus, the apparatus shown in FIG. 1 was used. However, as target 9, a Tsukahon target with a light spot ratio of 70% was used. In this way, a carbon lubricant film was formed to a film thickness of 200^ on the carbide protective film of the present invention and the protective film made only of metal without containing C. These magnetic disks were subjected to a CSS test to compare the adhesion strength of the protective film and lubricant film. C8S test method is 0 lap speed 20
Mn-Zn-F levitates by 0.2ttm at m/sec
A head of e was used. The period of rotation and stop was 20 ff-, and the rise of the rotation from the circumferential speed O to 20 m/see and the fall of the rotation from the circumferential speed 20 to Qrn/see were each 5 sec.

また、実際に信号を書き込み、この信号のドロップアウ
トを観察した。そして何回のC8Sで保護膜、潤滑膜が
剥離、及び傷が付(かを観察した。表4にこれらC8S
の結果を示す。表4より1本発明の炭化物保護膜を用い
た場合、5万回のC8S試験後でも保護膜、及びカーボ
ン潤滑膜の剥離はなく、磁気記録媒体と炭化物保護膜の
間、及び炭化物保護膜とカーボン潤滑膜の間のそれぞれ
の密着強度は大きく、膜同士強固に密着していることが
判った。一方、保護膜中にCを含有させなかった保護膜
Ti 、 Si 、 Wハ。
Also, I actually wrote a signal and observed the dropout of this signal. We then observed how many times the protective film and lubricant film were peeled off and scratched after C8S. Table 4 shows how many times C8S
The results are shown below. From Table 4, when using the carbide protective film of the present invention, there was no peeling of the protective film and the carbon lubricant film even after 50,000 C8S tests, and there was no peeling of the protective film and the carbon lubricant film between the magnetic recording medium and the carbide protective film. It was found that the adhesion strength between the carbon lubricant films was large, and the films were firmly adhered to each other. On the other hand, the protective films Ti, Si, and W did not contain C.

磁気記録媒体との密着力は強いものの、カーボン潤滑膜
との密着力が弱く、いずれの保護膜の場合でも数千回の
C8Sでカーボン膜が剥離する部分があった。また、こ
れら保護膜は硬度も比較的小さいため、 Ti 、 W
は傷が入っていた。
Although the adhesion with the magnetic recording medium was strong, the adhesion with the carbon lubricant film was weak, and in the case of any of the protective films, there were parts where the carbon film peeled off after several thousand cycles of C8S. In addition, since these protective films have relatively low hardness, Ti, W
had scratches.

以上、膜間同士の密着強度の関係は、磁気記録媒体と保
護膜では、保護膜中にCが含有していない方が密着力が
強い。また保護膜とカーボン潤滑膜では、保護膜中にC
が含有している方が密着力が強いことが判った。
As described above, regarding the relationship between the adhesion strength between films, between the magnetic recording medium and the protective film, the adhesion is stronger when the protective film does not contain C. In addition, in the protective film and carbon lubricating film, C
It was found that the adhesion was stronger when it contained

表3. カーボン膜の成膜条件 表4.  C8S試験結果 〔発明の効果〕 本発明によれば、磁気記録媒体、炭化物保護膜、カーボ
ン潤滑膜の積層膜の系において、それぞれの膜の密着力
を向上させるために炭化物保護膜中のC濃度を制御した
。磁気記録媒体及びカーボン潤滑膜と炭化物保護膜との
密着強度は、炭化物保護膜中のC濃度により影響される
Table 3. Carbon film deposition condition table 4. C8S test results [Effects of the invention] According to the present invention, in a multilayer film system of a magnetic recording medium, a carbide protective film, and a carbon lubricant film, the C concentration in the carbide protective film is adjusted to improve the adhesion of each film. was controlled. The adhesion strength between the magnetic recording medium, the carbon lubricating film, and the carbide protective film is influenced by the C concentration in the carbide protective film.

磁気記録媒体は、炭化物保護膜中にCを含有したい膜、
カーボン潤滑膜は、Cを含有した膜と強(密着する。そ
こで炭化物保護膜のC濃度を制御し、磁気記録媒体との
界面の部分にC濃度0%の層を設けろことにYす、磁気
記録媒体及びカーボン@滑膜との密着力を同時に向上さ
せ。
The magnetic recording medium includes a film containing C in a carbide protective film,
The carbon lubricant film adheres strongly to the C-containing film.Therefore, the C concentration of the carbide protective film should be controlled and a layer with a C concentration of 0% should be provided at the interface with the magnetic recording medium. Simultaneously improves adhesion to recording media and carbon @ synovial membrane.

膜剥離の発生を抑I!:、できた。このことにより。Prevents film peeling! :,did it. Due to this.

この炭化物保護膜は、硬質の状態を保ったまま密着強度
を1.5〜2倍向上させろことができた、また、CSS
試験を行った結果6本発明の保護膜は、5万回のC8S
後でも膜の剥離、傷の発生、書き込み信号のドロップア
ウトなどは生じなかった。以上の結果より本発明による
炭化物保護膜は、炭化物保護膜自身、及びカーボン潤滑
膜の剥離を防止し、かつ摺動に対して強靭でおりるため
、ヘッドクラッシュやドロップアウトなどの不良発生の
抑止に効果がある。
This carbide protective film was able to improve the adhesion strength by 1.5 to 2 times while maintaining its hard state.
As a result of the test 6, the protective film of the present invention was tested after 50,000 cycles of C8S.
Even after that, no peeling of the film, no scratches, no write signal dropouts, etc. occurred. From the above results, the carbide protective film according to the present invention prevents the peeling of the carbide protective film itself and the carbon lubricant film, and is strong against sliding, thereby suppressing the occurrence of defects such as head crashes and dropouts. is effective.

【図面の簡単な説明】 第汎)≠は本発明の一実施例の炭化物保護膜バッタ装置
の概略的な断面図、第2図はスパッタ雰囲気中のCH4
濃度に対するTiC膜中のTiとCの組成の変化を示す
線図、第3図はスパッタ雰囲気中のCH4濃度を一定に
してTiC膜を形成した場合でのTiC膜の深さ方向の
組成の変化を示す線図、第4図は各種炭化物保護膜中の
C濃度に対する磁気記録媒体との密着強度の変化を示す
説明図、第5図は磁気記録媒体と保蹄膜との界面に81
層を設けたSiC保護膜の深さ方向の組成の変イヒの線
図、第6図は磁気記録媒体と保護膜との界面にCを含有
しない層を設けた炭化物保護膜の磁気記録媒体との密着
強度を示す説明図である。 1・・・予備加熱室、   2・・・スバンタ室。 3−1.3−2・・磁気ディスク。 4・・・加熱ヒータ、   5・・ゲートパルプ。 6・・・基板搬送系。 7・・ディスクホールドアーム。 8・・・カソード、    9・・・ターゲット。 10・・・膜厚補正板、11−1・・・不活性ガス。 11−2・・・反応ガス。 12・・・ガスKNコントローラ。 13・・・オリフィス、14・・・シャッタ。 代理人弁理士 小 川 勝 ”貸嘗l′第 2 の ズバ・・/2 カ′ロ気TのCs4ELL   CVo
L−%)第 3 図 人バー゛クタ エ一り今ニア闘聞 (広罰)′$ 4 
図 萬 5 図 スバ・ソフエ・・ノ+ユク′ 吟1%’l(、Q)第 
6 図 ガとイし物イ木側」ハ天
[Brief Description of the Drawings] Figure 2 is a schematic cross-sectional view of a carbide protective film battering device according to an embodiment of the present invention, and Figure 2 is a CH4 in a sputtering atmosphere.
A diagram showing the change in the composition of Ti and C in the TiC film with respect to the concentration. Figure 3 shows the change in the composition in the depth direction of the TiC film when the TiC film is formed with the CH4 concentration in the sputtering atmosphere constant. Figure 4 is an explanatory diagram showing the change in adhesion strength with the magnetic recording medium with respect to C concentration in various carbide protective films, and Figure 5 is a diagram showing the relationship between the magnetic recording medium and the hoof-retaining film.
Fig. 6 is a diagram of the change in composition in the depth direction of a SiC protective film provided with a layer, and a magnetic recording medium with a carbide protective film provided with a layer not containing C at the interface between the magnetic recording medium and the protective film. It is an explanatory view showing adhesion strength of. 1...Preheating chamber, 2...Svanta chamber. 3-1.3-2...Magnetic disk. 4...Heating heater, 5...Gate pulp. 6... Board transport system. 7. Disc hold arm. 8...Cathode, 9...Target. 10... Film thickness correction plate, 11-1... Inert gas. 11-2...Reactive gas. 12...Gas KN controller. 13... Orifice, 14... Shutter. Representative Patent Attorney Masaru Ogawa ``Rental Book 2nd Zuba.../2 Ka'roki T's Cs4ELL CVo
L-%) Figure 3: Human Baracter Eiji Konia Battle Story (Wide Punishment)'$ 4
Figure 5 Figure Suba Sofe...no+yuku'Gin1%'l(,Q) No.
6 Figures and objects on the wooden side "Haten"

Claims (1)

【特許請求の範囲】[Claims] 1、Ti、Si、Wを主性分とした金属の内、どれか一
種類の金属中にCを含有した磁気ディスク用炭化物保護
膜において、該保護膜中に含有するCが、該炭化物保護
膜の膜の厚さ方向で濃度に傾きを持つていることを特徴
とする薄膜磁気ディスク用保護膜。
1. In a carbide protective film for a magnetic disk containing C in any one of metals whose main components are Ti, Si, and W, the C contained in the protective film is A thin film magnetic disk protective film characterized by having a concentration gradient in the thickness direction of the film.
JP26479985A 1985-11-27 1985-11-27 Protective film for thin film magnetic disk Pending JPS62125522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26479985A JPS62125522A (en) 1985-11-27 1985-11-27 Protective film for thin film magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26479985A JPS62125522A (en) 1985-11-27 1985-11-27 Protective film for thin film magnetic disk

Publications (1)

Publication Number Publication Date
JPS62125522A true JPS62125522A (en) 1987-06-06

Family

ID=17408368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26479985A Pending JPS62125522A (en) 1985-11-27 1985-11-27 Protective film for thin film magnetic disk

Country Status (1)

Country Link
JP (1) JPS62125522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283816A (en) * 1988-09-19 1990-03-23 Semiconductor Energy Lab Co Ltd Magnetic recording medium
US5030494A (en) * 1989-01-26 1991-07-09 International Business Machines Corporation Carbon overcoat for a thin film magnetic recording disk containing discrete clusters of tungsten (W) or tungsten carbide (WC) which project from the surface of the overcoat
US5864452A (en) * 1994-08-03 1999-01-26 Sanyo Electric Co., Ltd. Thin-film magnetic head and method of forming carbon film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283816A (en) * 1988-09-19 1990-03-23 Semiconductor Energy Lab Co Ltd Magnetic recording medium
US5030494A (en) * 1989-01-26 1991-07-09 International Business Machines Corporation Carbon overcoat for a thin film magnetic recording disk containing discrete clusters of tungsten (W) or tungsten carbide (WC) which project from the surface of the overcoat
US5864452A (en) * 1994-08-03 1999-01-26 Sanyo Electric Co., Ltd. Thin-film magnetic head and method of forming carbon film

Similar Documents

Publication Publication Date Title
US5679431A (en) Sputtered carbon overcoat in a thin-film medium and sputtering method
US6146737A (en) Magnetic recording medium having a nitrogen-containing barrier layer
US4840844A (en) Magnetic recording medium
KR890003552B1 (en) Magnetic recording carrier
JPH02502138A (en) Improved protective layer for magnetic disks
US4900397A (en) Production of magnetic recording media
US9478243B2 (en) Magnetic recording medium for heat-assisted recording system and method for manufacturing same
US7147943B2 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JPS62125522A (en) Protective film for thin film magnetic disk
Rossi et al. Vacuum‐deposited thin‐metal‐film disk
JPH06111287A (en) Magnetic recording medium
JPH05143972A (en) Metal thin film magnetic recording medium and its production
JP2005353126A (en) Magnetic recording medium and magnetic recording device
JP2000212738A (en) Magnetron sputtering method and production of magnetic recording medium
JPH03259419A (en) Maufacture of magnetic disk substrate comprising titanium
US20060153975A1 (en) Magnetic recording medium, the manufacturing method and magnetic recording apparatus using the same
JP2004152462A (en) Magnetic recording medium and its manufacturing method
JPS62236116A (en) Magnetic recording medium
JPH07101502B2 (en) Magnetic recording medium
JPS61115229A (en) Magnetic recording medium
JPS61283027A (en) Making of magnetic recording element and thin film disc
JPH0256723A (en) Magnetic recording medium and its production and magnetic disk device
JPH0684168A (en) Magnetic recording medium
JPH0793720A (en) Magnetic head
JPS58177528A (en) Magnetic disk medium