JPS62124511A - Preparation of silicon wafer having optical waveguide film - Google Patents

Preparation of silicon wafer having optical waveguide film

Info

Publication number
JPS62124511A
JPS62124511A JP60264625A JP26462585A JPS62124511A JP S62124511 A JPS62124511 A JP S62124511A JP 60264625 A JP60264625 A JP 60264625A JP 26462585 A JP26462585 A JP 26462585A JP S62124511 A JPS62124511 A JP S62124511A
Authority
JP
Japan
Prior art keywords
silicon wafer
film
optical waveguide
dopant
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60264625A
Other languages
Japanese (ja)
Other versions
JP2622108B2 (en
Inventor
Masao Kawachi
河内 正夫
Mitsuho Yasu
安 光保
Yoichi Mada
間田 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60264625A priority Critical patent/JP2622108B2/en
Publication of JPS62124511A publication Critical patent/JPS62124511A/en
Application granted granted Critical
Publication of JP2622108B2 publication Critical patent/JP2622108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To enable formation of an electronic element on a substrate on which an optical circuit element has been formed without being restricted in relation to the process by retarding diffusion of dopant to the silicon substrate side by providing a diffusion inhibiting layer. CONSTITUTION:An inhibiting layer 2 for diffusion of dopant comprising SiO2 film is formed by oxidizing thermally the surface of a silicon wafer 1. The silicon wafer is a P type CZ wafer having (100) face bearings and 9OMEGA-cm resistivity. The thermal oxidation is carried out in dry CO2 atmosphere at 1,000 deg.C and the thickness of the SiO2 film is regulated to ca 1,000Angstrom . Succeedingly, gaseous starting material for forming glass consisting primarily of SiCl4 contg. appropriate amt. of GeCl4, BCl3, PCl3 as dopant is converted to fine glass particles by the frame hydrolysis of the gaseous starting material to deposit film 3 of fine glass particles having ca. 700mum thickness, which is heated in an electric furnace (in oxidizing atmosphere) to 1,150 deg.C and held for 2hr to vitrify the fine glass particle film 3 to transparent glass. Thus, optical waveguide film 4 is obtd. on the silicon wafer 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光鵡積回路分野で用いる光導波膜付シリコン
ウェハの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a silicon wafer with an optical waveguide film used in the field of optical bulk circuits.

〔従来技術・発明が解決しようとする問題点〕光導波膜
を形成したシ1;コ/ウェハは、導波形光部品や光% 
jJ回路を作製するための出発材料として期待されてい
る。特に、石英系光導波膜を形成したシリコンウェハは
、光伝送路の主流を占める石英系光ファイバとの接続特
性などの整合性に浸れていることから、実用的な導波形
光部品や光集積回路の実現手段として注目されている。
[Prior art/problems to be solved by the invention] The wafer on which the optical waveguide film is formed is not suitable for waveguide optical components or optical fibers.
It is expected to be a starting material for creating jJ circuits. In particular, silicon wafers on which silica-based optical waveguide films are formed are highly compatible with connection characteristics and other properties with silica-based optical fibers, which are the mainstream of optical transmission lines, and are therefore useful for practical waveguide optical components and optical integration. It is attracting attention as a means of realizing circuits.

従来、シリコンウェハ上に光7アイパと整合し得る石英
系光導波膜を形成するには、51cl!、を主成分とし
、Ge0141 TiCl4  HBe/3 + PC
lq等−を適正に添加したガラス形成原料ガスの火炎加
水分解反応により、シリコンウェハ上に、8 i o。
Conventionally, in order to form a quartz-based optical waveguide film on a silicon wafer that can match the optical 7-eyeper, 51 cl! , with Ge0141 TiCl4 HBe/3 + PC as the main component.
8 iO on a silicon wafer by flame hydrolysis reaction of a glass-forming raw material gas to which 1q, etc. have been appropriately added.

を主成分とし GeO2、Tie、 、 Bl O3、
P、O。
The main components are GeO2, Tie, , BlO3,
P.O.

等をドーパントとして含むガラス微粒子を堆積し、しか
る後、ガラス微粒子膜が堆積されたシリコンウェハを電
気炉中で高温(1100〜1400℃)に加熱して、ガ
ラス微粒子膜を焼結・透明ガラス化し、光導波膜付シリ
コンとする方法が用いられていた。ガラス微粒子堆積期
間中のガラス形成原料ガスの組成を時間的に変化させる
ことにより模厚方向に導波構造の形成に必要な屈折率分
布を与えることができるのである(参考文献: M −
Kawachi他: Japan、J、Appl、Ph
ys、vol、 22(1983)随12  p、19
32 Lガラス組成には、この屈折率分布を制御するド
ーパントGθO,,Ti○、の他に、ガラス微粒子の軟
化温度を低下さ?、透明ガラス化を容易にするためのド
ーパントB、O,、p、o、が添加されているが、本発
明者らの検討によれば、透明ガラス化時にBあるいはP
がシリコンウェハ内部にまで拡散し、それぞれP型、N
1tJのドーパントとして作用し、シリコンウェハの極
性や電気伝導度を大幅に変化さ?、その後のシリコンウ
ェハの緒特性を利用する光集積回路の構成に重大な支障
を及ぼすという問題点があった。
After that, the silicon wafer on which the glass fine particle film was deposited was heated to a high temperature (1100 to 1400°C) in an electric furnace to sinter the glass fine particle film and turn it into transparent vitrification. , a method of using silicon with an optical waveguide film was used. By temporally changing the composition of the glass-forming raw material gas during the glass particle deposition period, it is possible to provide the refractive index distribution necessary for forming a waveguide structure in the thickness direction (Reference: M-
Kawachi et al.: Japan, J., Appl., Ph.
ys, vol, 22 (1983) volume 12 p, 19
In addition to dopants GθO, Ti○, which control the refractive index distribution, the 32L glass composition also contains dopants that lower the softening temperature of the glass particles. , dopants B, O,, p, o are added to facilitate transparent vitrification, but according to the studies of the present inventors, B or P is added during transparent vitrification.
diffuses into the silicon wafer, forming P-type and N-type, respectively.
It acts as a 1tJ dopant and significantly changes the polarity and electrical conductivity of the silicon wafer. However, there was a problem in that it seriously hindered the subsequent construction of optical integrated circuits that utilized the characteristics of silicon wafers.

本発明の目的は、光導波膜付シリコンウェハの製造工程
において、石英系ガラス膜からシリコンウェハ側へのド
ーパント拡散を檀極的に制御して、光集積回路の+1成
に適した光導波膜付シリコンウェハの製造方法を提供す
ることにある。
An object of the present invention is to provide an optical waveguide film suitable for +1 formation of optical integrated circuits by controlling dopant diffusion from a silica-based glass film to the silicon wafer side in a manufacturing process of a silicon wafer with an optical waveguide film. An object of the present invention is to provide a method for manufacturing a silicon wafer with a silicon wafer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明ct、シリコン基板上への石英系光導波模の形成
に先だちドーパント拡散時lE用の拡散阻止層を設け、
しかる後ガラス数粒子膜を堆積し、高温で透明ガラス化
することを主要な特徴とする。
In the ct of the present invention, a diffusion prevention layer for IE during dopant diffusion is provided prior to the formation of a quartz-based optical waveguide pattern on a silicon substrate,
The main feature is that a film of several glass particles is then deposited and turned into transparent glass at a high temperature.

シリコンウェハ側へのドーパント拡散の影響に配aして
いる点で、従来の光導波膜付シリコンウェハの製造方法
とは異なるっ本発明によれば、拡散阻止層をパ4−ン状
に設けておくことKより、シ1)コンウェハへのドーパ
ント拡散を選択的に制御し、光^波膜形成と同時にシリ
コンウエノ・表面のドーパント分布をパターン状に変化
さ忙ることもできる。
The present invention differs from conventional methods of manufacturing silicon wafers with optical waveguide films in that it takes into consideration the influence of dopant diffusion to the silicon wafer side.According to the present invention, a diffusion blocking layer is provided in a pattern. From the following points, 1) It is possible to selectively control the dopant diffusion into the silicon wafer and change the dopant distribution on the silicon wafer surface in a pattern at the same time as the optical wave film is formed.

拡散阻止層としては、シリコンウェハ表面を熱酸化する
ことによって得られるSin、膜、あるいはCVD法な
どによりシリコンウェハ表面に形成される窒化シリコン
(SiN)$1を用いる。これらの膜は、その密度が高
いために、ドーパントの拡散を有効に阻止できることが
基本的な機能であるつそのなかにも、均一な薄い膜が形
成でき、シリコンウェハに大きな歪を与えないこと、以
後の処理においても結晶化を生じないこと、e!+体で
あるためにシリコンの伝導型に影響を与えreいなどの
特徴を有するっこの拡散阻止/4iは、シリコンウェハ
表面の全面に形成する場合と、全面忙形成した後、所望
の部分を除去する場合とがある。後者の場合は、拡散阻
止層を除去した部分では、シリコンウェハ上に堆積され
るガラス微粒子中のドーパントがガラス微粒子の透明化
の工程でシリコンウェハ中に拡散するために、その部分
の伝導型を制御することができ、シリコンウェハ中KW
別な機能を有する部分を形成するだめの第1の工程とな
りつる。
As the diffusion prevention layer, a film of Sin obtained by thermally oxidizing the surface of a silicon wafer, or silicon nitride (SiN) $1 formed on the surface of a silicon wafer by a CVD method or the like is used. The basic function of these films is to effectively prevent dopant diffusion due to their high density, but they also have the ability to form uniform thin films without causing large distortions to the silicon wafer. , no crystallization occurs in subsequent treatments, e! Diffusion prevention/4i, which has characteristics such as reluctance and influence on the conductivity type of silicon because it is a positive substance, can be formed on the entire surface of a silicon wafer, or after it has been formed on the entire surface of the silicon wafer, it can be formed on a desired part. It may be removed. In the latter case, the dopant in the glass particles deposited on the silicon wafer diffuses into the silicon wafer in the process of making the glass particles transparent in the area where the diffusion prevention layer has been removed, so the conductivity type of that area changes. Can control KW in silicon wafer
This is the first step in forming parts with different functions.

〔実施例1〕 第1図は、本発明の第一の実施例を説明する工程図であ
って、光導波β冒ζtシリコンウェハの断面を示す、ま
す、シリコンウェハ1の表面を熱酸化することにより、
810.膜からなるドーパント拡散阻止I→2を形成し
た(第1図(a))。使用したシリコンウェハは、P型
9面方位(1nQ)、抵抗率9ncrnのCZウニ・・
であろつ熱酸化は、ドライO,ガス雰囲気中1000℃
にて実施したもので、S10!膜厚は約1nnn Aで
ちろうつづいて、5IC14を主成分として、ドーパン
トとしてGe014 、BClg 、POlqを適宜添
加したガラス形成原料ガスの火炎加水分解反応により、
約700μm厚のガラス微粒子膜3を堆積した(第1図
fbl )。
[Example 1] FIG. 1 is a process diagram for explaining the first example of the present invention, showing a cross section of a silicon wafer exposed to the optical waveguide. First, the surface of the silicon wafer 1 is thermally oxidized. By this,
810. A dopant diffusion barrier I→2 consisting of a film was formed (FIG. 1(a)). The silicon wafer used was CZ sea urchin with P-type 9-plane orientation (1nQ) and resistivity of 9ncrn.
Thermal oxidation is carried out at 1000℃ in a dry O, gas atmosphere.
It was carried out at S10! The film thickness was approximately 1 nnn A. Next, by flame hydrolysis reaction of a glass forming raw material gas containing 5IC14 as a main component and appropriately adding Ge014, BClg, and POLq as dopants,
A glass particle film 3 having a thickness of about 700 μm was deposited (FIG. 1fbl).

つづいて、電気炉中(酸化性雰囲気)で1150℃にま
で加熱し、2時間保持してガラス微粒子膜3を透明ガラ
ス化し、シリコンウエノ・1上の光導波膜4を得た(第
1図(cl ) 、光導波I!1′¥4は、?R1図(
dl +C示すようにバッファN4a、コアtn−tb
、クラッド層4cから成る三Ry1t、N造を有し、ガ
ラス組成および層厚は以下の通りである。
Subsequently, it was heated to 1150°C in an electric furnace (oxidizing atmosphere) and held for 2 hours to turn the glass fine particle film 3 into transparent vitrification, thereby obtaining an optical waveguide film 4 on silicon Ueno-1 (Fig. 1). (cl), the optical waveguide I!1'\4 is ?R1 diagram (
dl +C buffer N4a, core tn-tb as shown
, cladding layer 4c, and the glass composition and layer thickness are as follows.

バッファ層 sto、  90モ/I/% 10μmB
、0.  6モ/l、% P、0.  4モルチ コ ア 層 Sin、  83モアt、% 50μmG
eO28モ/l、チ B、0.  5モ/L/チ p、o!14モルチ クラッド層 Sin、  90モルチ  5μm!3.
o、6モルチ P? O!+   4モ/L/s 第2図は透明ガラス化処理した光導波膜付シリコンウェ
ハでのガラス膜中ドーパントのシリコンウェハへの拡散
の様子を斜め研磨試料での広がり抵抗測定により調べ、
ドーパント拡散に換算したものである。pn判定器によ
り調べたシリコンウェハ表面の伝導厖はn型で、810
を膜中の拡散係数がホウ素(B)よりも数桁大きいリン
(P)の拡散が起こっていることがわかる。
Buffer layer sto, 90mo/I/% 10μmB
,0. 6 mo/l, % P, 0. 4 moltic core layer Sin, 83 moa t, % 50μmG
eO28 mo/l, ChiB, 0. 5mo/L/chip, o! 14 molti clad layer Sin, 90 molti 5μm! 3.
o, 6 molti P? O! +4Mo/L/s Figure 2 shows how the dopant in the glass film diffuses into the silicon wafer in a silicon wafer with an optical waveguide film that has been subjected to transparent vitrification treatment by measuring the spreading resistance using an obliquely polished sample.
This is converted to dopant diffusion. The conductivity on the surface of the silicon wafer examined using a pn determiner is n-type, and is 810
It can be seen that phosphorus (P), whose diffusion coefficient in the film is several orders of magnitude larger than that of boron (B), is diffusing.

第3図は、拡散阻止層を設けなかった場合の測定結果を
示す。第2図に比較して表面のPの濃度は、40倍以上
と高い5以上示したように、本発明の方法における厚さ
10(111Aの熱酸化Sio、%Sからなるドーパン
ト拡散阻止層により、ドーパントの拡散量を1/4o以
下に制御する効果を得た。
FIG. 3 shows the measurement results when no diffusion blocking layer was provided. As shown in Figure 2, the concentration of P on the surface is more than 40 times higher than that shown in Figure 2. , the effect of controlling the amount of dopant diffusion to 1/4o or less was obtained.

〔実施例2〕 実施例1における熱酸化51oJj’、の代わりに減圧
OVDにより2(100A厚の窒化シリ:ry(sIN
)71K ヲ+s着さぜたシリコンウェハにより同様の
光導波膜作製を行なったところ、やはり一部近いドーパ
ント拡散量の抑制効果が得られたつ 以上の実施例においては、シリコンウェハ表面に一様に
ドーパント拡散阻止層を設けたが、拡散阻止層をパター
ン状に設けておイことにより、以下に説明するようにシ
リコンウニノーへのドーパント拡散を局部的に制御でき
ろう 〔実施例3〕 第4図(at〜((11は、ドーパント拡散を故意に所
望部分に発生さ?る本発明の一実施例を示す工程図であ
る。シリコンクエバ1上に拡散阻止層2を形成する工程
第4図(atに綬いて、拡散阻止層2の所望部分を除去
し、パターン化された拡散阻止層2aを得る第4図(l
tl。次に、ガラス微粒子膜3を堆積し第4図(cl、
続いて高温電気炉中で暁結し、透明ガラス化し、光導波
膜4を付けたシリコンウェハとする第4図(d)5この
工程によれば、焼結透明ガラス化期間中、拡散阻止、N
2aの窓5を通してガラス微粒子膜3からシリコンウニ
ノー11111ヘドーノくントがl:?J部的に拡散し
た領域6が形成される。例えば、実施例1と同様のシリ
コンウニノ・と光導波膜形成条件ならびに抵抗率0.5
ΩσのP型シリコンウェハを用い、熱酸化S10.膜を
、レジストエ梶とフッ酸を利用してパターン化した例で
は、ドーパントが局部的に拡散した領域はn型で抵抗率
は0.10傭となり、その他のシリコンウニノ・領域は
p型0.5Ωσに留まり、パターン化された拡散阻止層
をシリコンウェハ尺面に形成することにより、シリコン
ウェハの所望部分にドーパントを肯択的に拡散できるこ
とがわかる。
[Example 2] Instead of thermal oxidation 51oJj' in Example 1, 2 (100A thick silicon nitride:ry(sIN
) When a similar optical waveguide film was fabricated using a silicon wafer coated with 71K wo + s, a similar effect of suppressing the amount of dopant diffusion was obtained. Although the dopant diffusion blocking layer was provided, by providing the diffusion blocking layer in a pattern, it would be possible to locally control the dopant diffusion into the silicon unicorn as described below. [Example 3] Part 4 (11 is a process diagram showing an embodiment of the present invention in which dopant diffusion is intentionally generated in a desired portion. 4 (l), a desired portion of the diffusion prevention layer 2 is removed to obtain a patterned diffusion prevention layer 2a.
tl. Next, a glass fine particle film 3 is deposited as shown in FIG.
Subsequently, it is sintered in a high-temperature electric furnace to form a transparent vitrified silicon wafer with an optical waveguide film 4 attached thereto. According to this process, during the sintering and transparent vitrification period, diffusion prevention, N
2a through the window 5 of the glass particulate film 3. A region 6 diffused in the J portion is formed. For example, the same silicone and optical waveguide film formation conditions as in Example 1 and the resistivity of 0.5 are used.
Using a P-type silicon wafer of Ωσ, thermal oxidation S10. In an example where the film is patterned using a resist layer and hydrofluoric acid, the region where the dopant is locally diffused is n-type and has a resistivity of 0.10m, and the other silicon regions are p-type 0.10m. It can be seen that by staying at 5Ωσ and forming a patterned diffusion blocking layer on the silicon wafer's lateral surface, the dopant can be positively diffused into the desired portion of the silicon wafer.

〔応用例〕[Application example]

第5図は、第4図の方法を利用して、光検出器付光導波
路を製造する工程の説明図である5第5図fatは、第
4図の方法で製造された光導波膜付シリコン基板であり
、p型シリコン基板1の一部6は、ドーパントが局部的
に拡散した領域(n型領域)が形成されている。第5図
fblは、光導波膜4の不要部分を反応性イオンエツチ
ング工程により除去してn型領域6に光導波路端部7e
Lが位置するように光導波路7を形成したものである。
Fig. 5 is an explanatory diagram of the process of manufacturing an optical waveguide with a photodetector using the method shown in Fig. 4. A part 6 of the p-type silicon substrate 1, which is a silicon substrate, has a region (n-type region) in which a dopant is locally diffused. FIG. 5fbl shows that unnecessary portions of the optical waveguide film 4 are removed by a reactive ion etching process to form an optical waveguide end 7e in the n-type region 6.
The optical waveguide 7 is formed so that L is located.

光導波路7を左方から伝播してくる信号光は、光導波路
端面7aから放射され、その一部はn型領域6へと吸収
される。n型領域は、p型シリコン基板1との間で深さ
数μ謂の位置にpn接合を有しているので、p型シリコ
ン基板1とn型領域6にそれぞれ電極リード(図では省
略)を設けることにより光起電力を取り出し、光検出器
として動作さ忙ることか可能とft−リ、光集積回路の
構成に介するところが大である。
Signal light propagating through the optical waveguide 7 from the left is emitted from the optical waveguide end face 7a, and a portion of it is absorbed into the n-type region 6. Since the n-type region has a pn junction at a depth of several micrometers with the p-type silicon substrate 1, electrode leads (not shown in the figure) are connected to the p-type silicon substrate 1 and the n-type region 6, respectively. It is possible to take out the photovoltaic force and operate it as a photodetector by providing a photodetector, which greatly depends on the structure of the optical integrated circuit.

その他の応用例としては、第4図の方法で形成されるp
n W合に逆バイアス」圧を印加することにより、複数
のn型領域上に装着したレーザダイオード等の光素子や
プリアンプ等の電子素子間の電気的アイソレーションを
容易にすること等を挙げることができる。これは、シリ
コン基板上に形成した石英系光導波路にレーザダイオー
ドアレイやプリアンプ、ドライバー回路51Fを複合搭
載したハイブリッド光集積回路の構成に有効である。
As another example of application, p formed by the method shown in FIG.
By applying a reverse bias pressure when n W is applied, electrical isolation between optical devices such as laser diodes and electronic devices such as preamplifiers mounted on multiple n-type regions can be facilitated. I can do it. This is effective for constructing a hybrid optical integrated circuit in which a laser diode array, preamplifier, and driver circuit 51F are mounted on a quartz-based optical waveguide formed on a silicon substrate.

また、シリコン基板の化学エツチング特性を活用して、
光集積回路構造に多様性を付与する技術分野に応用する
と、光導波膜の不要部分が除去され光導波路等が形成さ
れたシリコン基板表面の所望領域(例えばn型領域)の
みを化学エツチングにより掘り下げ、光フアイバ接続用
や光素子装着用ガイド溝として応用できることも付記し
てお(5これは、シリコン基板の化学エツチング速度が
シリコン基板の極性にきわめて敏感であることを利用し
ているものである。
In addition, by utilizing the chemical etching properties of silicon substrates,
When applied to the technical field of adding diversity to optical integrated circuit structures, unnecessary parts of the optical waveguide film are removed and only desired regions (for example, n-type regions) on the silicon substrate surface on which optical waveguides are formed are dug down by chemical etching. It is also noted that it can be applied as a guide groove for connecting optical fibers or mounting optical elements (5) This takes advantage of the fact that the chemical etching rate of silicon substrates is extremely sensitive to the polarity of the silicon substrate. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、拡散阻止層を設
けることにより、光導波膜作製時のシリコン基板側への
ドーパント拡散を1/4o以下に抑制することができる
。また、拡散阻止層をパターン化しておけば、所望部分
に選択的にドーパント拡散を引き起こすこともできる。
As described above, according to the present invention, by providing a diffusion prevention layer, dopant diffusion toward the silicon substrate side during fabrication of an optical waveguide film can be suppressed to 1/4 or less. Further, by patterning the diffusion blocking layer, dopant diffusion can be caused selectively in desired portions.

この発明は、光導波膜で光回路素子を形成したシリコン
基板に別プロセスで電子素子を製作する光集積回路への
応用において特に効果がある。すなわち、この発明によ
れば、光回路素子形成時の基板ドーパント濃度の変化を
極めて小さくできる。
This invention is particularly effective in application to optical integrated circuits in which electronic elements are manufactured in a separate process on a silicon substrate on which optical circuit elements are formed using optical waveguide films. That is, according to the present invention, changes in the substrate dopant concentration during formation of the optical circuit element can be made extremely small.

よって、従来法のように、光回路素子形成時のドーパン
ト拡散による基板ドーパント濃度の大幅な変化によって
生じるプロセス上の制約を受けることな(、光回路素子
形成済の基板に電子素子を製作できる。また、拡散阻止
層をパターン化しておけば、光導波膜を形成する間に電
子素子製作に必要な拡散工程を副次的に行なうことがで
きるため、プロセスを大幅に簡略化できるという利点が
生じるっまた高温熱処理を伴なう拡散工程を光回路素子
形成済行なう場合に生じる光回路素子の特性劣化を避け
られるほか、高温熱処理の回数を減ら?るため、電子素
子特性を支配する基板の結晶性を良好な状態に保ち易い
という特長も有する。光導波膜作製時のドーパント拡散
を抑制する本発明の光導波膜付シリコンウェハの製造方
法は、シリコン基板の緒特性を活用するシリコン基板上
の光集積回路の構成に際しその役割が大であるう
Therefore, unlike conventional methods, electronic devices can be fabricated on a substrate on which optical circuit elements have already been formed, without being subject to process constraints caused by large changes in substrate dopant concentration due to dopant diffusion during the formation of optical circuit elements. Additionally, if the diffusion blocking layer is patterned, the diffusion process required for electronic device fabrication can be performed as a secondary step while forming the optical waveguide film, which has the advantage of greatly simplifying the process. In addition, it is possible to avoid the deterioration of the characteristics of the optical circuit elements that occurs when the diffusion process involving high-temperature heat treatment is performed after the optical circuit elements have been formed. The method for manufacturing a silicon wafer with an optical waveguide film of the present invention, which suppresses dopant diffusion during the production of an optical waveguide film, has the advantage that it is easy to maintain good properties. It plays an important role in the construction of optical integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実、m9’llを示す図であって、第
1図(al〜(clは工程図、第1図(diは第1図(
cll矢印部部分拡大図、第2図は本発明の方法で作製
した拡散阻止層を有する光導波膜付シリコンクエバのド
ーパント濃度深さ方向分布の測定結果を示す図、第3図
は従来法におけろドーパント濃度深さ方向分布の測定結
果を示す図、第4図fal〜(d3は本発明の別の実m
 9+1を示す工程図、第5図(al、+btは本発明
を応用して作製した光検出器付光導波路の構造を示す図
である。 1・・・・・・シリコンウェハ、2・・・・・・ドーパ
ント拡散阻止層、5・・・・・・ガラス微粒子膜、4・
・・・・・光導波膜。
FIG. 1 is a diagram showing the fruit of the present invention, m9'll, and FIG. 1 (al to (cl) is a process chart, FIG.
Fig. 2 shows the measurement results of the dopant concentration distribution in the depth direction of a silicon cube with an optical waveguide film having a diffusion prevention layer manufactured by the method of the present invention, and Fig. 3 shows the results of the measurement of the dopant concentration distribution in the depth direction of the silicon quaver with a diffusion prevention layer manufactured by the method of the present invention. Diagrams showing the measurement results of the Kero dopant concentration distribution in the depth direction, Figure 4 fal ~ (d3 is another example of the present invention)
5 (al, +bt are diagrams showing the structure of an optical waveguide with a photodetector manufactured by applying the present invention. 1...Silicon wafer, 2... ... Dopant diffusion prevention layer, 5... Glass fine particle film, 4.
...Optical waveguide film.

Claims (1)

【特許請求の範囲】[Claims] シリコンウェハ上に、ガラス形成原料ガスの熱酸化ある
いは火炎加水分解反応により、SiO_2を主成分とし
、ドーパントを含むガラス微粒子膜を堆積した後、前記
シリコンウェハとガラス微粒子膜を加熱してガラス微粒
子膜を透明ガラス化する光導波膜付シリコンウェハの製
造方法において、ガラス微粒子膜の堆積に先だち、ドー
パントのシリコンウェハ側への拡散を抑制する拡散阻止
層をシリコンウェハ表面の所望の部分に形成しておくこ
とを特徴とする光導波膜付シリコンウェハの製造方法。
A glass particulate film containing SiO_2 as a main component and a dopant is deposited on a silicon wafer by thermal oxidation or flame hydrolysis reaction of a glass forming raw material gas, and then the silicon wafer and glass particulate film are heated to form a glass particulate film. In a method of manufacturing a silicon wafer with an optical waveguide film for transparent vitrification, a diffusion prevention layer for suppressing diffusion of dopant toward the silicon wafer is formed on a desired portion of the silicon wafer surface prior to depositing a glass fine particle film. A method for manufacturing a silicon wafer with an optical waveguide film, characterized by:
JP60264625A 1985-11-25 1985-11-25 Method for manufacturing silicon wafer with optical waveguide film Expired - Lifetime JP2622108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264625A JP2622108B2 (en) 1985-11-25 1985-11-25 Method for manufacturing silicon wafer with optical waveguide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264625A JP2622108B2 (en) 1985-11-25 1985-11-25 Method for manufacturing silicon wafer with optical waveguide film

Publications (2)

Publication Number Publication Date
JPS62124511A true JPS62124511A (en) 1987-06-05
JP2622108B2 JP2622108B2 (en) 1997-06-18

Family

ID=17405936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264625A Expired - Lifetime JP2622108B2 (en) 1985-11-25 1985-11-25 Method for manufacturing silicon wafer with optical waveguide film

Country Status (1)

Country Link
JP (1) JP2622108B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366511A (en) * 1986-09-09 1988-03-25 Fujitsu Ltd Production of quartz optical waveguide
US4927781A (en) * 1989-03-20 1990-05-22 Miller Robert O Method of making a silicon integrated circuit waveguide
JPH02253205A (en) * 1989-03-28 1990-10-12 Sumitomo Electric Ind Ltd Optical circuit
JPH05232335A (en) * 1992-02-20 1993-09-10 Hitachi Cable Ltd Production of glass waveguide
JPH0798420A (en) * 1993-04-26 1995-04-11 Hitachi Cable Ltd Production of optical waveguide
WO2000046618A1 (en) * 1999-02-05 2000-08-10 The University Court Of The University Of Glasgow Waveguide for an optical circuit and method of fabrication thereof
EP1160593A2 (en) * 2000-05-29 2001-12-05 Shin-Etsu Chemical Co., Ltd. Manufacture of optical waveguide substrate
EP1209493A1 (en) * 2000-11-24 2002-05-29 Shin-Etsu Chemical Co., Ltd. An optical waveguide and a method for producing it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202506A (en) * 1981-06-06 1982-12-11 Nippon Sheet Glass Co Ltd Optical circuit and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202506A (en) * 1981-06-06 1982-12-11 Nippon Sheet Glass Co Ltd Optical circuit and its production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366511A (en) * 1986-09-09 1988-03-25 Fujitsu Ltd Production of quartz optical waveguide
US4927781A (en) * 1989-03-20 1990-05-22 Miller Robert O Method of making a silicon integrated circuit waveguide
JPH02253205A (en) * 1989-03-28 1990-10-12 Sumitomo Electric Ind Ltd Optical circuit
JPH05232335A (en) * 1992-02-20 1993-09-10 Hitachi Cable Ltd Production of glass waveguide
JPH0798420A (en) * 1993-04-26 1995-04-11 Hitachi Cable Ltd Production of optical waveguide
WO2000046618A1 (en) * 1999-02-05 2000-08-10 The University Court Of The University Of Glasgow Waveguide for an optical circuit and method of fabrication thereof
GB2362963A (en) * 1999-02-05 2001-12-05 Univ Glasgow Waveguide for an optical circuit and method of fabrication thereof
GB2362963B (en) * 1999-02-05 2003-03-12 Univ Glasgow Waveguide for an optical circuit and method of fabrication thereof
US6735370B1 (en) 1999-02-05 2004-05-11 The University Court Of The University Of Glasgow Waveguide for an optical circuit and method of fabrication thereof
EP1160593A2 (en) * 2000-05-29 2001-12-05 Shin-Etsu Chemical Co., Ltd. Manufacture of optical waveguide substrate
EP1160593A3 (en) * 2000-05-29 2004-03-10 Shin-Etsu Chemical Co., Ltd. Manufacture of optical waveguide substrate
EP1209493A1 (en) * 2000-11-24 2002-05-29 Shin-Etsu Chemical Co., Ltd. An optical waveguide and a method for producing it

Also Published As

Publication number Publication date
JP2622108B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
JPS62124511A (en) Preparation of silicon wafer having optical waveguide film
US7123805B2 (en) Multiple oxidation smoothing method for reducing silicon waveguide roughness
JP3001406B2 (en) Manufacturing method of optical waveguide
JPH11125727A (en) Production of optical waveguide
JP2001264563A (en) Quartz-based optical waveguide and method of manufacturing the same
JPH0854528A (en) Production of optical waveguide
JP3245367B2 (en) Method of forming optical waveguide
JP3245347B2 (en) Manufacturing method of optical waveguide device
JP3245368B2 (en) Manufacturing method of optical waveguide
US6631235B1 (en) Planar lightwave circuit platform and method for manufacturing the same
EP1209493A1 (en) An optical waveguide and a method for producing it
CN111158084A (en) Manufacturing method of ion-exchange glass-based surface waveguide spot size converter
JP3697155B2 (en) Silicon dioxide film generation method and optical waveguide generation method
JPS6365619B2 (en)
JP2603652B2 (en) Optical waveguide manufacturing method
JP2003344685A (en) Optical switching element and method for manufacturing the same
JP2001074959A (en) Embedded type optical waveguide and its production
JP3293411B2 (en) Method for manufacturing quartz-based glass waveguide device
JP2827657B2 (en) Glass waveguide and manufacturing method thereof
KR100461874B1 (en) Fabrication of planar waveguide with photosensitivity during FHD process
CA1281536C (en) Fabrication of optical waveguides
JPH11194221A (en) Forming method of optical waveguide and optical waveguide element
JPH01152431A (en) Production of nonlinear light guide
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JPH09243846A (en) Production of high specific refractive index difference optical waveguide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term