JPS62124454A - Hetero junction type gas sensor - Google Patents

Hetero junction type gas sensor

Info

Publication number
JPS62124454A
JPS62124454A JP26374885A JP26374885A JPS62124454A JP S62124454 A JPS62124454 A JP S62124454A JP 26374885 A JP26374885 A JP 26374885A JP 26374885 A JP26374885 A JP 26374885A JP S62124454 A JPS62124454 A JP S62124454A
Authority
JP
Japan
Prior art keywords
gas
oxide semiconductor
joint part
type oxide
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26374885A
Other languages
Japanese (ja)
Inventor
Shigeyuki Tsurumi
重行 鶴見
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26374885A priority Critical patent/JPS62124454A/en
Publication of JPS62124454A publication Critical patent/JPS62124454A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good sensing characteristic for a combustible gas by providing many gas introducing holes by etching to the joint surface of an n-type oxide semiconductor and p-type oxide semiconductor in such a manner that the gas contacts said surface. CONSTITUTION:The joint part is made of an Li-doped NiO film having 1mum thickness as the p-type oxide semiconductor 1 and a ZnO film having 2mum thickness as the n-type oxide semiconductor to a 1mmX2mm size and the gas introducing holes 3 sized 10mum square and 2mum depth are formed at 15mum pitch thereto by reactive ion etching from above the semiconductor 1. A positive bias voltage is impressed to such element in the forward direction of a diode formed of the semiconductors 1 and 2 to operate the same. The combustible gas reacts with gaseous oxygen adsorbed to the joint part when the gas arrives at the joint part of the semiconductors 1 and 2 through the holes 3. The electrostatic potential in the joint part is then changed and the current flowing in the joint part changes. As a result, the concn. of the cmbustible gas is known from the current flowing in the joint part.

Description

【発明の詳細な説明】 (浬業上の第1」用分野) 本発明は小型にして消費電力が小さく、かつ高感度なガ
スセンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (First field of application in the industry) The present invention relates to a gas sensor that is small in size, has low power consumption, and is highly sensitive.

(従来技術及び発明が解決しょうとする問題点)従来の
ガスセンサは第1表に示すように電気抵抗式と非電気抵
抗式に大別さnる。現在商品化されているものは、はと
んどが電気抵抗式でこれらはS”o2+ ZnOなどの
n型の歌化物半導体材料で素子を作り、その電気抵抗値
からガス濃度を知る方式である。電気抵抗式のガスセン
サ素子の大きな欠点は400℃前後の筒温でのみ動作す
ることで消費電力が大きく、他の機能を持つセンナある
いは制御用の集積(ロ)路などとの集積化を阻む原因と
なっている。
(Prior Art and Problems to be Solved by the Invention) Conventional gas sensors are broadly classified into electrical resistance type and non-electrical resistance type, as shown in Table 1. Currently, most of the commercially available devices are electrical resistance type, in which the element is made of an n-type compound semiconductor material such as S''O2+ ZnO, and the gas concentration is determined from the electrical resistance value. The major disadvantage of electrical resistance type gas sensor elements is that they operate only at a cylinder temperature of around 400°C, which consumes a lot of power, which prevents integration with sensors with other functions or control integration paths. It is the cause.

ま之非也気抵抗式はガスの吸着や反応などによる半導体
の仕事関数全直接的あるいは間接的にガス検出に利用す
る方式で、具体的には金属/半導体接合ダイオードと金
楓ゲート膜を用いたMO8FET七ンサがあセンサ槁/
半導体接合ダイオードセンサはPd / CdS ff
iはじめとしてPt/Ti1t、Pt/Ti1tなどを
用いた素子が提案されているが、これらはPd 、 T
i ’(通過てきるH2ガスが主な感知ガスである。ま
た金属ゲート膜を用い友MO8FETセンサは5iFE
Tの耐熱性から動作温度が約150℃までとおさえられ
ているためH2,COなどの反応性の高いガスに限られ
ており、1足応答特性にも問題が残されている(文献1
)。
The non-resistance type is a method that uses the work function of a semiconductor through gas adsorption or reaction, either directly or indirectly, for gas detection. Specifically, it uses a metal/semiconductor junction diode and a gold maple gate film. There was MO8FET seven sensors/
Semiconductor junction diode sensor is Pd/CdS ff
Initially, elements using Pt/Ti1t, Pt/Ti1t, etc. have been proposed, but these are Pd, T
i' (H2 gas passing through is the main sensing gas. Also, the companion MO8FET sensor using a metal gate film is 5iFE
Due to the heat resistance of T, the operating temperature is limited to about 150°C, so it is limited to highly reactive gases such as H2 and CO, and there are still problems with the one-foot response characteristics (Reference 1).
).

酸化物半導体に関するヘテロ接合全応用した例としては
湿度センサがある(文献2)oこnは焼結体全慎械的に
互層したもので、焼結した粒子間に水分が入ることによ
るイオン電流の増加全利用したもので、感度は優れてい
るが安定性に問題がある。
An example of a full application of heterojunctions for oxide semiconductors is a humidity sensor (Reference 2). An oxide semiconductor is a sintered body in which the entire layer is carefully alternated, and an ionic current is generated when moisture enters between the sintered particles. Although the sensitivity is excellent, there are problems with stability.

(問題点金牌決するための手段) 不発明の目的は、酸化物半導体のへテロ接合が安定性の
悪い湿度センサにしか利用されない構造的欠陥−em決
した新しい構造の各種可燃性ガスセンサ全提供すること
VCある。
(Means for determining the problem) The purpose of the invention is to provide all kinds of flammable gas sensors with new structures that eliminate the structural defect in which heterojunctions of oxide semiconductors are used only for unstable humidity sensors. There is a thing called VC.

不発明は酸化物半導体のへテロ接合を用い友ガスセンサ
において、n型酸化物半導体とpW鍍化物牛導体の接合
面にガスが接触するエラに多数のガス導入穴をエツチン
グにニジ設けることを最も主要な特徴とする。従来技術
とは各種可燃性ガス(及び湿度)を安定に高感度に感知
できる点が異なる。
In a gas sensor using a heterojunction of an oxide semiconductor, it is most important to provide a large number of gas inlet holes by etching in the gills where gas comes into contact with the junction surface of the n-type oxide semiconductor and the pW chloride conductor. Main characteristics. It differs from conventional technology in that it can stably and highly sensitively sense various flammable gases (and humidity).

次に実施例について説明する。Next, an example will be described.

第1図は本発明の第一の実施例を説明する図であって、
(イ)は平面図、(ロ)は断面図金示す。図において1
はp型酸化物半導体(LiiドープしたNiO)、Z 
u n型酸化物半導体(ZnO)、3は反応性イオンエ
ツチングにより形成したガス導入穴、4はリード線、5
はp型酸化物半導体とオーミックな接合を形成する電極
、6はSt基板、7はヒータ、8はn型酸化物半導体と
オーミックな接合を形成する電極、9はSiQ熱酸化膜
(Stow)を示す。
FIG. 1 is a diagram illustrating a first embodiment of the present invention,
(a) is a plan view, and (b) is a cross-sectional view. In the figure 1
is a p-type oxide semiconductor (Lii-doped NiO), Z
u n-type oxide semiconductor (ZnO), 3 is a gas introduction hole formed by reactive ion etching, 4 is a lead wire, 5
is an electrode that forms an ohmic contact with a p-type oxide semiconductor, 6 is an St substrate, 7 is a heater, 8 is an electrode that forms an ohmic contact with an n-type oxide semiconductor, and 9 is a SiQ thermal oxide film (Stow). show.

これを動作するにはpギ酸化物半導体1とn型酸化物半
導体2とで形成するダイオードの順方向に正のバイアス
電圧を与える。口」゛燃性ガスがガス導入穴3全通して
pギ酸化物半導体1とn型酸化物半導体2の接合部に達
すると接合部に吸着してい友酸素ガスと反応し接合部の
静電ポテンシャルが変化して、接合部を流れる電流が変
化する。この結果、接合部を流れる電流により可燃ガス
の濃度を知ることができる。pギ酸化物半導体1として
厚さ1μmのLiミラドープ7jNiO@、n型酸化物
半導体2として厚さ2μmZnO膜でlツ×2#の寸法
で接合を作p、p型酸化物半導体1の上から、反応性イ
オンエツチング10μm角深さ2μmのガス導入穴3’
i15μmピッチで作製する。
To operate this, a positive bias voltage is applied in the forward direction of the diode formed by the p-type oxide semiconductor 1 and the n-type oxide semiconductor 2. ``When the flammable gas passes through the gas introduction hole 3 and reaches the junction between the p-type oxide semiconductor 1 and the n-type oxide semiconductor 2, it is adsorbed to the junction and reacts with friendly oxygen gas, increasing the electrostatic potential of the junction. changes, causing a change in the current flowing through the junction. As a result, the concentration of combustible gas can be determined from the current flowing through the joint. A junction was made with a dimension of 1×2# using a 1 μm thick Li mira-doped 7jNiO@ as the p-type oxide semiconductor 1 and a 2 μm-thick ZnO film as the n-type oxide semiconductor 2. Reactive ion etching 10μm square 2μm deep gas introduction hole 3'
It is manufactured with a pitch of 15 μm.

この素子による可燃性ガスの感知特性を第2図に示す。Fig. 2 shows the sensing characteristics of combustible gas by this element.

(素子温度100℃である。)図において■。は大気中
の素子電流、工はガス雰囲気中の素子の電流を示i。
(The element temperature is 100°C.) In the figure, ■. is the device current in the atmosphere, and d is the device current in the gas atmosphere.

このLつなガス導入穴と接合部全加熱するヒータを設け
た構造になっているため、従来、湿度のみを不安定に感
知してい九へテロ接合が可燃性ガス@度を感知できるよ
うになつ九。
Because the structure includes this L-shaped gas inlet hole and a heater that heats the entire joint, the 9-heterojunction can now sense flammable gas, whereas conventionally only humidity was sensed unstablely. Natsu9.

〔実施子タリ2 〕 第3図は本発明の第二の実施例を説明する図であって、
10は表面に10μmの5iCht付は友方位(100
)のSiウエノ”tエチレンジアミンとピロカテコール
の混合液で異方性エツチングして作製し几ダイヤフラム
の空間である。11は素子の出力の対する演算、ヒータ
の温度条件等を制御する集積回路である。その他の符号
は、第1図の場合と同様のものを示す。n型酸化物半導
体2としてALfドープしたZnO1p型酸化物型環化
物半導てLiff1ドープしfc CuOf、それぞれ
スノくツタ法に工り1+mX1.5mの寸法で作製する
[Embodiment 2] FIG. 3 is a diagram illustrating a second embodiment of the present invention,
10 has 5iCht of 10 μm on the surface is a friend direction (100
) is the space of a diaphragm produced by anisotropic etching with a mixture of ethylenediamine and pyrocatechol. 11 is an integrated circuit that controls calculations for the output of the element, temperature conditions of the heater, etc. .Other symbols are the same as those in Fig. 1.As the n-type oxide semiconductor 2, an ALf-doped ZnO1, a Liff1-doped ZnO, a Liff1-doped fc, and a CuOf, respectively. Manufactured with dimensions of 1+m x 1.5m.

この後、n型酸化物半導体の上面から5μ角のガス導入
穴ヲ10μmピッチで設ける。ヒータ7及びその上の素
子はダイヤスラムに=9形成され几空間の上の10μm
の5iO1膜のみで支えられており、ヒータの熱は集積
回路11に伝達しにくい構造となっている。
Thereafter, gas introduction holes of 5 μm square are provided at a pitch of 10 μm from the upper surface of the n-type oxide semiconductor. The heater 7 and the element above it are formed in a diamond slam with a distance of 10 μm above the space.
The integrated circuit 11 is supported only by the 5iO1 film, and has a structure in which heat from the heater is difficult to transfer to the integrated circuit 11.

このような構造になっているからヒータ温度があげられ
、ガス導入穴の効果と合わせ高感度に可燃性ガスの感知
が可能となる。第4図にその結果を示す。ここに工。は
大気中の素子電流、■はガス雰囲気中の素子電流である
。この結果から明らかなように従来、湿度センサとして
しか用いられなかつtヘテロ接合のセンサが可燃性ガス
ガスセンサとして使用できる改善があつt。
With this structure, the heater temperature can be raised, and in combination with the effect of the gas introduction hole, combustible gas can be sensed with high sensitivity. Figure 4 shows the results. Engineering here. is the device current in the atmosphere, and ■ is the device current in the gas atmosphere. As is clear from these results, there has been an improvement in that a heterojunction sensor, which has conventionally been used only as a humidity sensor, can now be used as a combustible gas sensor.

(発明の効果) 以上説明した工うに本発明のガスセンサに:れば、n型
酸化物半導体とp型酸化物半導体のpn接合において接
合部よ#)深い位置まで多数のガス導入穴を設け、ヒー
タで加熱する構造であるから、H2,CO,メタン、エ
タン、グロバン。
(Effects of the Invention) According to the above-described method, in the gas sensor of the present invention, a large number of gas introduction holes are provided deep into the pn junction between an n-type oxide semiconductor and a p-type oxide semiconductor, and Since the structure is heated with a heater, H2, CO, methane, ethane, and globan are used.

イソプロピレン等の可燃性ガスに対して良好な感知特性
が得られる効果がある。
This has the effect of providing good sensing characteristics for flammable gases such as isopropylene.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の特徴を表わす第一の実施例で(イ)は
上面図、に)ノは断面図、第2因は第一の実施例による
効果を示すデータ、第3図は第二の実施例を示すもので
(イ)は上面図、(ロ)は前面図、第4図は第二の実施
例による効果を示すデータである。 1・・・・・・p型酸化物半導体 2・・・・・nW#化物半導体 3・・・・・・ガス導入穴 4・・・・・・リード線 5・・・・・・p型酸化物半尋体のオーミック電極6・
・・・・・Si基板 7・・・・・・ヒータ 8・・・・・・n型酸化物半導体のオーミック電極9・
・・・・・熱酸化Sin、膜 lO・・・・・・ダイヤフラムの空間 11・・・・・・集積回路 参考文献 (1)高山、酒井;セ/す技術vo1.4 、 m13
p 39〜43 (1984) (2)中村、池尻、宮山、河本、柳田;日本化学会誌1
985 (6) P1154〜1159特許出願人  
日本電イキ電話株式会社第1図 9−一−だ1\MAえイ乙5102月5己第2図 第3図 ]] (ロ) 第4図 素手5毘/’L (’C)
Figure 1 is a first embodiment showing the features of the present invention, (a) is a top view, (b) is a sectional view, the second factor is data showing the effect of the first embodiment, and Figure 3 is a top view. Embodiment 2 is shown in which (a) is a top view, (b) is a front view, and FIG. 4 is data showing the effects of the second embodiment. 1...p-type oxide semiconductor 2...nW# compound semiconductor 3...gas introduction hole 4...lead wire 5...p-type Oxide semicircular ohmic electrode 6.
...Si substrate 7 ... Heater 8 ... N-type oxide semiconductor ohmic electrode 9
...Thermal oxidation of Sin, film lO...Diaphragm space 11...Integrated circuit references (1) Takayama, Sakai; Center Technology vol. 1.4, m13
p 39-43 (1984) (2) Nakamura, Ikejiri, Miyayama, Kawamoto, Yanagita; Journal of the Chemical Society of Japan 1
985 (6) P1154-1159 patent applicant
Nippon Denki Denwa Co., Ltd. Fig. 1 9-1-da 1\MA Ei Otsu 510 February 5 self Fig. 2 Fig. 3]] (b) Fig. 4 Bare hand 5 bi/'L ('C)

Claims (1)

【特許請求の範囲】[Claims] n型の酸化物半導体とp型酸化物半導体からなるpn接
合において、いずれか一方の酸化物半導体側から接合部
を通つて深い位置まで及ぶ多数のガス導入穴と、前記接
合部を加熱するヒータとを具備することを特徴とするヘ
テロ接合型ガスセンサ。
In a pn junction consisting of an n-type oxide semiconductor and a p-type oxide semiconductor, a large number of gas introduction holes extending from one of the oxide semiconductors to a deep position through the junction, and a heater that heats the junction A heterojunction gas sensor comprising:
JP26374885A 1985-11-26 1985-11-26 Hetero junction type gas sensor Pending JPS62124454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26374885A JPS62124454A (en) 1985-11-26 1985-11-26 Hetero junction type gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26374885A JPS62124454A (en) 1985-11-26 1985-11-26 Hetero junction type gas sensor

Publications (1)

Publication Number Publication Date
JPS62124454A true JPS62124454A (en) 1987-06-05

Family

ID=17393739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26374885A Pending JPS62124454A (en) 1985-11-26 1985-11-26 Hetero junction type gas sensor

Country Status (1)

Country Link
JP (1) JPS62124454A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928964A2 (en) * 1992-01-10 1999-07-14 Mikuni Corporation Gas sensors and their manufacturing methods
JP2003533006A (en) * 1998-08-03 2003-11-05 ザ・キュレーターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ Zinc oxide film containing p-type dopant and method for producing the same
JP2003344340A (en) * 2002-05-30 2003-12-03 Glory Ltd Membrane stress variable thin membrane and thin membrane gas sensor using the same
US6684651B1 (en) 1998-07-02 2004-02-03 Kabushiki Kaisha Saginomiya Seisakusho Channel selector valve and method of driving the same, compressor with the channel selector valve, and device for controlling refrigerating cycle
CN110596196A (en) * 2019-09-16 2019-12-20 山东大学 Semiconductor heterojunction gas sensitive material and preparation method and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928964A2 (en) * 1992-01-10 1999-07-14 Mikuni Corporation Gas sensors and their manufacturing methods
EP0928964A3 (en) * 1992-01-10 2003-05-21 Mikuni Corporation Gas sensors and their manufacturing methods
US6684651B1 (en) 1998-07-02 2004-02-03 Kabushiki Kaisha Saginomiya Seisakusho Channel selector valve and method of driving the same, compressor with the channel selector valve, and device for controlling refrigerating cycle
JP2003533006A (en) * 1998-08-03 2003-11-05 ザ・キュレーターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ Zinc oxide film containing p-type dopant and method for producing the same
JP2003344340A (en) * 2002-05-30 2003-12-03 Glory Ltd Membrane stress variable thin membrane and thin membrane gas sensor using the same
CN110596196A (en) * 2019-09-16 2019-12-20 山东大学 Semiconductor heterojunction gas sensitive material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3542614B2 (en) Temperature sensor and method for manufacturing the temperature sensor
JPS6323500B2 (en)
US8007169B2 (en) Sensor
Nicoletti et al. Use of different sensing materials and deposition techniques for thin-film sensors to increase sensitivity and selectivity
JPS62124454A (en) Hetero junction type gas sensor
JPS58103654A (en) Multifunctional gas sensor
Rettig et al. α-Iron oxide: An intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors
US4356150A (en) Humidity sensor with electrical rejection of contaminants
KR102651194B1 (en) GASS SENSOR BASED ON THE 3ω-METHOD USING A SUSPENDED CARBON NANOWIRE AND METHOD FOR MANUFACTURING GASS SENSOR
JP2003098012A (en) Temperature measuring device and gas concentration measuring device using it
US6218687B1 (en) Smart microsensor arrays with silicon-on-insulator readouts for damage control
JPH06174674A (en) Semiconductor gas sensor
Chung et al. Characterization of porous tin oxide thin films and their application to microsensor fabrication
JPS63101740A (en) Vertical fet type gas sensor
JPS62124453A (en) Diode type gas sensor
JP2005249722A (en) Semiconductor type gas sensor
JPS6249251A (en) Gas sensor
CN108155179A (en) One kind has gas detection function semiconductor devices
JPS6040945A (en) Semiconductor gas sensor
JPS63139241A (en) Diode type humidity sensor
JPS6245484B2 (en)
JP2004317449A (en) Hydrogen gas sensor
JPH06148115A (en) Gas sensor
KR960010681B1 (en) Semiconductor junction gas sensor
JPS6371648A (en) Diode type humidity sensor