JPS62123637A - Manufacture of fluorescent lamp - Google Patents

Manufacture of fluorescent lamp

Info

Publication number
JPS62123637A
JPS62123637A JP26336285A JP26336285A JPS62123637A JP S62123637 A JPS62123637 A JP S62123637A JP 26336285 A JP26336285 A JP 26336285A JP 26336285 A JP26336285 A JP 26336285A JP S62123637 A JPS62123637 A JP S62123637A
Authority
JP
Japan
Prior art keywords
glass
glass tube
amalgam
fluorescent lamp
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26336285A
Other languages
Japanese (ja)
Other versions
JP2506646B2 (en
Inventor
Makoto Fukuda
誠 福田
Masaki Suo
周防 正毅
Keiichi Asada
浅田 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60263362A priority Critical patent/JP2506646B2/en
Publication of JPS62123637A publication Critical patent/JPS62123637A/en
Application granted granted Critical
Publication of JP2506646B2 publication Critical patent/JP2506646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To aim at improvement in luminous efficiency, by sealing a tip-opened glass tubule, where amalgam forming material is injected inside, by heating and, after cooling this sealed part to the extent of temperature of less than a melting point of the amalgam forming material, sealing mercury in this glass tubule upon heating and exhausting. CONSTITUTION:A glass solid bar as a spacer 8 is inserted into a tip-opened glass tubule 10, then a pellet of a Bi-In alloy as amalgam forming material 9 is inserted thereinto. Afterward, in a direction as it is, an upper part of the pellet is heated by a tip burner, sealing the glass tubule. And, this sealed part is cooled by air with such a time schedule that no deformation occurs in the glass tubule 10, then upper and lower positions of a glass tube 1 is turned over. After that, it is processed through an ordinary heating and exhausting process and, after mercury and argon gas are sealed in the glass tube 1 from the glass tubule on one side finally, the glass tubule on the other is sealed. And, a fluorescent lamp is unitized, as usual, together with a form diffusion-enclosed glass outer tube 2 and a ballast 3, thus a bulb type fluorescent lamp device is secured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は螢光ランプの製造方法に関し、特にアマルガム
形成物質によって管内水銀蒸気圧が制御される螢光ラン
プの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a fluorescent lamp, and more particularly to a method for manufacturing a fluorescent lamp in which the mercury vapor pressure inside the tube is controlled by an amalgam-forming substance.

従来の技術 2ヘー/ 白熱電球に対する省電力効果を求めて、U形またはダブ
ルU形に成形した螢光ランプを、安定器。
Conventional technology 2: A fluorescent lamp shaped into a U-shape or double U-shape is used as a ballast in order to save energy compared to incandescent light bulbs.

点灯管および電球口金とともに密閉外管内に一体化した
構造の螢光ランプ装置が広く普及してきている。
2. Description of the Related Art Fluorescent lamp devices having a structure in which a lighting tube and a lamp base are integrated into a sealed outer tube are becoming widely used.

ところが、このような構成の螢光ランプ装置では、螢光
ランフγ(外管内に密閉される構造を採る関係上、螢光
ランプの周囲温度が最適の20〜26℃を越えて著しく
高くなる。このような場合には、水銀蒸気圧の過上昇を
抑え、発光効率の低下を防ぐため、純粋水銀より蒸気圧
の低いアマルガム形成物質を用いることが知られている
。同物質としては、純粋In またはIn系の合金例え
ばB1In。
However, in a fluorescent lamp device having such a structure, the ambient temperature of the fluorescent lamp exceeds the optimum temperature of 20 to 26 DEG C. and becomes extremely high because the fluorescent lamp γ is hermetically sealed within the outer bulb. In such cases, it is known to use an amalgam-forming substance that has a lower vapor pressure than pure mercury in order to suppress an excessive rise in mercury vapor pressure and prevent a decrease in luminous efficiency. Or an In-based alloy such as B1In.

In5nPb等が最適とされており、現在製品化されて
広く用いられている。これらのアマルガム形成物質には
水銀蒸気圧に対し、それぞれに固有の最適温度があって
、それは通常その金属または合金の溶融点付近である。
In5nPb and the like are considered to be optimal, and are currently commercialized and widely used. Each of these amalgam-forming materials has its own optimum temperature relative to the mercury vapor pressure, which is usually around the melting point of the metal or alloy.

しだがって、ガラス管内にアマルガム形成物質を設ける
場所は、その物質の種類によって決まることになる。放
電空間を避け3へ一/゛ てステム上に設けられることもあるが、一般には製造上
の観点からもガラス管内に通じるガラス細管内が選ばれ
る。ランプの点灯方向は口金上の場合が大部分であるの
で、ガラス細管内に規定長さのガラス無空棒をスペーサ
として介してその上面にアマルガム形成物質が保持され
、ランプ点灯中電極輝点からの輻射熱によってアマルガ
ムの温度がその作用に最も適した温度に達するようにな
っている。
Therefore, the location of the amalgam-forming material within the glass tube will depend on the type of material. Although it is sometimes provided on the stem to avoid the discharge space, it is generally chosen to be inside the glass thin tube that communicates with the inside of the glass tube from the viewpoint of manufacturing. Since the lighting direction of the lamp is mostly on the cap, an amalgam-forming substance is held on the upper surface of the glass capillary via a glass blank rod of a specified length as a spacer, and the amalgam-forming substance is held on the top surface of the glass capillary, so that it does not move away from the electrode bright spot during lamp lighting. The radiant heat of the amalgam brings the temperature of the amalgam to the temperature most suitable for its action.

第3図はガラス管1の両端に設けられた一対の電極のう
ち、アマルガム形成物質9を有する側の拡大断面図であ
って、電極コイル5は内部リード線6によって保持され
ている。一端を封止されたガラス細管1oの他端はガラ
ス管1の内部に向かう開口部7になっている。ガラス細
管1oの中にはスペーサ8を介して球形のアマルガム形
成物質9が位置している。
FIG. 3 is an enlarged cross-sectional view of the side having the amalgam-forming substance 9 of the pair of electrodes provided at both ends of the glass tube 1, in which the electrode coil 5 is held by an internal lead wire 6. One end of the glass capillary tube 1o is sealed, and the other end thereof forms an opening 7 toward the inside of the glass tube 1. A spherical amalgam-forming substance 9 is placed in the glass capillary 1o with a spacer 8 in between.

発明が解決しようとする問題点 ところで、インジウム系の合金は溶けやすいうえに、簡
単にガラス表面に付着する。そして、口金上点灯の場合
、第4図に示すようにアマルガム形成物質がガラス細管
10の頂部内面に付着したまま、スペーサ8の」二面上
に位置しないことがある。
Problems to be Solved by the Invention Incidentally, indium-based alloys are easily melted and also easily adhere to glass surfaces. In the case of lighting on the cap, the amalgam-forming substance may remain attached to the inner surface of the top of the glass capillary 10 and not be located on the second surface of the spacer 8, as shown in FIG.

このような状態になると、アマルガム形成物質9と電極
輝点間の距離は、スペーサ8によって規定されている当
初の距離より長くなり、アマルガム形成物質9は最適温
度よりはるかに低いままに放置されランプ効率は著しく
低下する。
In such a situation, the distance between the amalgam-forming material 9 and the electrode bright spot will be longer than the original distance defined by the spacer 8, and the amalgam-forming material 9 will be left at a much lower temperature than the optimum temperature, causing the lamp to burn out. Efficiency is significantly reduced.

本発明は、このような問題点を解決するためにkされた
もので、アマルガム形成物質の効果を十分に発揮させ、
高い発光効率を維持することができる螢光ランプの製造
方法を提供するものである。
The present invention has been made to solve these problems, and is designed to fully demonstrate the effects of amalgam-forming substances,
The present invention provides a method for manufacturing a fluorescent lamp that can maintain high luminous efficiency.

問題点を解決するだめの手段 発明者らは、アマルガム形成物質のガラス細管内面への
付着力が螢光ランプ製造工程における同物質の溶融状態
に大きな影響を受けることを知見し、本発明を完成する
に至った。
Means to Solve the Problem The inventors discovered that the adhesion of an amalgam-forming substance to the inner surface of a glass tube is greatly affected by the melting state of the substance during the fluorescent lamp manufacturing process, and completed the present invention. I ended up doing it.

すなわち、本発明の螢光ランプの製造方法は、ガラス管
の一端に設けられ、かつ内部にアマルガム形成物質が挿
入された先端開口のガラス細管の5ページ 前記開口が上向きとなるように、前記ガラス管を保持し
、前記ガラス細管を加熱して封止し、次いで前記ガラス
細管の封止部分を前記アマルガム形成物質の溶融点以下
の温度まで冷却させた後、前記ガラス管の上下位置を反
転させ、しかる後前記ガラス管を加熱排気しこのガラス
管内に水銀を封入して螢光ランプを得ることを特徴とす
るものである。
That is, in the method for manufacturing a fluorescent lamp of the present invention, a glass capillary tube with an opening at the tip provided at one end of the glass tube and into which an amalgam-forming substance is inserted is arranged so that the opening faces upward. holding the tube, heating and sealing the glass capillary, then cooling the sealed portion of the glass capillary to a temperature below the melting point of the amalgam-forming substance, and then inverting the vertical position of the glass tube. Then, the glass tube is heated and evacuated, and mercury is sealed in the glass tube to obtain a fluorescent lamp.

作  用 ガラス細管を加熱して封止した後、そのままガラス管を
上下に反転させると、アマルガム形成物質がまだ高温の
ガラス細管内面に触れて瞬時に溶解してその内面に付着
する。この場合の付着は非常に強固なものであるととも
に、この溶融が通常空気中で行なわれることから、材質
が酸化し、表面張力を失うため、再度この物質が室温ま
で冷えても球形になりにくく、ガラス細管内面に付着し
たままでいることが多い。
Function After heating and sealing the glass tube, when the glass tube is turned upside down, the amalgam-forming substances touch the still-hot inner surface of the glass tube, instantly melt, and adhere to the inner surface. In this case, the adhesion is very strong, and since this melting is usually done in air, the material oxidizes and loses surface tension, making it difficult for the material to become spherical even when it cools down to room temperature. , often remain attached to the inner surface of glass tubules.

しかし、ガラス細管の封止後、この封止部分を、アマル
ガム形成物質の溶融以下に冷却させ、次い6ヘー/′ でガラス管の上下を反転させると、アマルガム形成物質
は溶けずに原形を保っており、その後の加熱排気工程で
はじめて溶ける。この場合は、非酸化性雰囲気中であり
、アマルガム形成物質の接触しているガラス細管内面と
同時にアマルガム形成物質の温度が上昇して同物質の溶
融が徐々に進むので、材質の酸化もなく、表面張力も失
われなhしたがって、螢光ランプ完成後再び室温まで温
度が下ると、アマルガム形成物質は球形となり、ガラス
細管内面に付着せず、本来の機能を十分に発揮すること
となって、ランプは高い発光効率を示す。
However, after sealing the glass tube, if this sealed part is cooled to a temperature below the melting of the amalgam-forming material and then the glass tube is turned upside down at 6 H/', the amalgam-forming material does not melt and retains its original shape. It only melts during the subsequent heating and exhaust process. In this case, the atmosphere is non-oxidizing, and the temperature of the amalgam-forming material rises at the same time as the inner surface of the glass tube is in contact with the amalgam-forming material, and the material gradually melts, so there is no oxidation of the material. Surface tension is not lost either. Therefore, when the temperature drops to room temperature again after the completion of the fluorescent lamp, the amalgam-forming substance becomes spherical, does not adhere to the inner surface of the glass tube, and is able to fully perform its original function. The lamp exhibits high luminous efficiency.

実施例 以下、本発明の一実施例について図面を用いて説明する
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図(a)において、先端開口の内径3.3鵡のガラ
ス細管1oの中に、まずスペーサ8として、外径2.6
m+nl長さ11喘のガラス無空棒を挿入し、次にアマ
ルガム形成物質9として、外径2.8閣、長さ4箇2重
さ180■のBi In合金のべし7ヘーノ ノト(融点110℃)を挿入した。その後、第1図(b
)に示すように、その捷まの方向でペレットの近傍3喘
上の部分をチップバーナ(図示せず)で加熱してガラス
細管10を封止した。しかる後、ガラス細管1oに歪が
発生しない時間スケジュールで封止部分を空冷し、この
部分の温度を110℃以下とした。続いて第1図(C)
に示すように、ガラス管1の上下位置を反転させる。こ
の反転工程では、図に示すとおり、ペレットは溶融せず
原形を保っていた。以後、通常のとおりの加熱排気工程
を経て、最後に他方のガラス細管からガラス管1内に6
■の水銀と400 Pa のアルゴンガスを封入した後
、第1図(d)に示すように他方のガラス細管を封止し
てアマルガム形成物質を有する螢光ランプを完成した。
In FIG. 1(a), a spacer 8 with an outer diameter of 2.6 mm is placed inside a glass capillary tube 1o with an inner diameter of 3.3 mm at its tip opening.
A glass blank rod with a length of m+nl and 11 cm was inserted, and then as the amalgam forming material 9, a BiIn alloy rod with an outer diameter of 2.8 cm, a length of 4, and a weight of 180 cm was inserted (melting point: 110°C). ) was inserted. After that, Figure 1 (b
), the glass capillary tube 10 was sealed by heating the three upper portions of the pellet in the direction of the twist using a chip burner (not shown). Thereafter, the sealed portion was air-cooled on a time schedule that did not cause distortion in the glass capillary tube 1o, and the temperature of this portion was brought to 110° C. or lower. Next, Figure 1 (C)
The vertical position of the glass tube 1 is reversed as shown in FIG. During this reversal process, the pellets did not melt and maintained their original shape, as shown in the figure. After that, after going through the usual heating and exhausting process, finally 6
After filling with mercury (3) and argon gas (400 Pa), the other glass capillary was sealed as shown in FIG. 1(d) to complete a fluorescent lamp containing an amalgam-forming substance.

なお、ダブルU形に成形したガラス管1の径は15.5
mm、電極間距離は280調で、その内面には、色温度
2800Kに発光する三波長発光域形の稀土類螢光体を
5■/dの割合で塗布した。
The diameter of the glass tube 1 formed into a double U shape is 15.5
The distance between the electrodes was 280 mm, and a rare earth phosphor with a three-wavelength emission range emitting light at a color temperature of 2800 K was coated on the inner surface at a rate of 5 μ/d.

この螢光ランプを通常のとおり、第2図に示す形状の拡
散・密閉形の外径104mmのガラス外管2、安定器3
とともに一体化して電球形螢光ランプ装置を完成した。
This fluorescent lamp is heated as usual, including a diffused/sealed glass outer tube 2 with an outer diameter of 104 mm and a ballast 3 as shown in FIG.
Together with this, we completed a light bulb-shaped fluorescent lamp device.

なお、第2図中、4は電球口金を示す。In addition, in FIG. 2, 4 indicates a lamp base.

このランプを周囲温度26℃、口金上の点灯方向で安定
器損をも含めた全入力電力17Wで点灯したところ、ア
マルガム形成物質は所定の効果を発揮し、451m/W
の高効率を示した。この値は、従来のガラス細管内面に
アマルガム形成物質が付着した場合におけるランプ効率
約41tm/Wに比較し10%の大幅な向」二となった
ものである。
When this lamp was lit at an ambient temperature of 26°C and a lighting direction above the base with a total input power of 17W including ballast loss, the amalgam-forming substance exhibited the specified effect, and the lamp was rated at 451m/W.
showed high efficiency. This value is a significant improvement of 10% compared to the conventional lamp efficiency of about 41 tm/W when an amalgam-forming substance is attached to the inner surface of the glass capillary.

本発明において、ガラス細管を封止した後にガラス管の
上下位置を反転させるのは次の理由による。すなわち、
一般に、アマルガム形成物質としては、融点200℃以
下の低融点合金が用いられるので、もし400℃以上の
高温になる螢光ランプの加熱排気工程において、第1図
(b)に示す状態、でアマルガム形成物質が溶融してス
ペーサの外周9ベーン 面とガラス細管の内周面との間隙を通してガラス管の内
部に落下するという危険がある。
In the present invention, the reason why the vertical position of the glass tube is reversed after the glass tube is sealed is as follows. That is,
In general, a low melting point alloy with a melting point of 200°C or lower is used as an amalgam-forming substance, so if the amalgam is formed in the state shown in Figure 1(b) during the heating and exhaust process of a fluorescent lamp, which reaches a high temperature of 400°C or higher, There is a risk that the forming material will melt and fall into the interior of the glass tube through the gap between the outer circumferential nine vane surface of the spacer and the inner circumferential surface of the glass tube.

そこで、本発明においては、加熱排気工程において、ガ
ラス細管の封止部分の底面部にアマルガム形成物質を保
持すべく、ガラス細管の封止後、ガラス管の上下位置を
反転させるのである。
Therefore, in the present invention, the vertical position of the glass tube is reversed after the glass tube is sealed in order to retain the amalgam-forming substance on the bottom surface of the sealed portion of the glass tube in the heating and exhausting process.

また、本発明において、ガラス細管の封止後、この封止
部分をアマルガム形成物質の溶融点以下の温度まで冷却
させるのは次の理由による。すなわち、もし前記冷却工
程を経ないで、ガラス管を上下反転させたならば、まだ
高温になっているガラス細管の封止部分の内面にアマル
ガム形成物質が接触して溶融するため、同物質がその内
面に付着するという不都合を生じる。
Further, in the present invention, after the glass capillary is sealed, the sealed portion is cooled to a temperature below the melting point of the amalgam-forming substance for the following reason. In other words, if the glass tube is turned upside down without going through the cooling process, the amalgam-forming substance will come into contact with the inner surface of the sealed portion of the glass capillary, which is still at high temperature, and will melt. This causes the inconvenience of adhesion to the inner surface.

しかし、本発明のように、ガラス細管の封止部分の温度
をアマルガム形成物質の溶融点以下の温度まで冷却させ
ると、ガラス管を上下反転させ、′ため、同物質がガラ
ス細管内面に付着するという1oヘー。
However, as in the present invention, when the temperature of the sealed portion of the glass tube is cooled to a temperature below the melting point of the amalgam-forming substance, the glass tube is turned upside down and the substance adheres to the inner surface of the glass tube. 1o heh.

不都合を回避することができるのである。Inconveniences can be avoided.

発明の詳細 な説明したように、本発明の製造方法によれば、ガラス
管の一端に設けられ、かつ内部にアマルガム形成物質が
挿入された先端開口のガラス細管の前記開口が上向きと
なるように、前記ガラス管を保持し、前記ガラス細管を
加熱して封止し、次いで前記ガラス細管の封止部分を前
記アマルガム形成物質の溶融点以下の温度まで冷却させ
た後、前記ガラス管の上下位置を反転させ、しかる後前
記ガラス管を加熱排気しこのガラス管内に水銀を封入し
て螢光ランプを得るようにしたので、アマルガム形成物
質のガラス細管内面への付着をなくすことができ、した
がってアマルガム形成物質本来の機能を十分に発揮させ
ることができ、所定の発光効率を示す螢光ランプを得る
ことができるとともに、何らの付加的な材料を追加使用
する必要もなく、その効果はきわめて大きなものである
As described in detail, according to the manufacturing method of the present invention, the opening of the glass capillary tube provided at one end of the glass tube and having an amalgam-forming substance inserted therein is directed upward. , holding the glass tube, heating and sealing the glass tube, and then cooling the sealed portion of the glass tube to a temperature below the melting point of the amalgam-forming substance, and then adjusting the vertical position of the glass tube. The glass tube is then heated and evacuated, and mercury is sealed in the glass tube to obtain a fluorescent lamp. This eliminates the adhesion of amalgam-forming substances to the inner surface of the glass tube. It is possible to fully demonstrate the original functions of the forming substances, and it is possible to obtain a fluorescent lamp that exhibits a predetermined luminous efficiency, and there is no need to use any additional materials, and the effect is extremely large. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(−)〜(d)は本発明の一実施例における螢光
11 ページ ランプの製造方法の工程図、第2図はこの螢光ランプを
組み込んだ螢光ランプ装置の一例を示す正面図、第3図
は従来の螢光ランプの一部拡大断面図、第4図は従来の
螢光ランプの製造方法における不都合を説明するだめの
図である。 1・・・・・・ガラス管、9・・・・・・アマルガム形
成物質、10・・・・・ガラス細管。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@1
図 (oJ) <b)
Figures 1 (-) to (d) are process diagrams of a method for manufacturing a fluorescent 11 page lamp according to an embodiment of the present invention, and Figure 2 is a front view showing an example of a fluorescent lamp device incorporating this fluorescent lamp. 3 are partially enlarged sectional views of a conventional fluorescent lamp, and FIG. 4 is a diagram for explaining disadvantages in the conventional method of manufacturing a fluorescent lamp. 1...Glass tube, 9...Amalgam-forming substance, 10...Glass tubule. Name of agent: Patent attorney Toshio Nakao and 1 other person @1
Figure (oJ) <b)

Claims (1)

【特許請求の範囲】[Claims] ガラス管の一端に設けられ、かつ内部にアマルガム形成
物質が挿入された先端開口のガラス細管の前記開口が上
向きとなるように、前記ガラス管を保持し、前記ガラス
細管を加熱して封止し、次いで前記ガラス細管の封止部
分を前記アマルガム形成物質の溶融点以下の温度まで冷
却させた後、前記ガラス管の上下位置を反転させ、しか
る後前記ガラス管を加熱排気しこのガラス管内に水銀を
封入して螢光ランプを得ることを特徴とする螢光ランプ
の製造方法。
The glass tube is held at one end of the glass tube and has an amalgam-forming substance inserted therein, and the glass tube is held such that the opening faces upward, and the glass tube is sealed by heating. Then, after cooling the sealed portion of the glass tube to a temperature below the melting point of the amalgam-forming substance, the vertical position of the glass tube is reversed, and then the glass tube is heated and evacuated to inject mercury into the glass tube. 1. A method for producing a fluorescent lamp, characterized in that a fluorescent lamp is obtained by enclosing a fluorescent lamp.
JP60263362A 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method Expired - Lifetime JP2506646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60263362A JP2506646B2 (en) 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263362A JP2506646B2 (en) 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method

Publications (2)

Publication Number Publication Date
JPS62123637A true JPS62123637A (en) 1987-06-04
JP2506646B2 JP2506646B2 (en) 1996-06-12

Family

ID=17388433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263362A Expired - Lifetime JP2506646B2 (en) 1985-11-22 1985-11-22 Fluorescent lamp manufacturing method

Country Status (1)

Country Link
JP (1) JP2506646B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330238A (en) * 1989-06-27 1991-02-08 Matsushita Electric Works Ltd Manufacture of electrodeless discharge lamp
KR100437555B1 (en) * 1995-03-31 2004-08-16 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 Low-pressure mercury-vapour discharge lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255842A (en) * 1985-09-03 1987-03-11 Toshiba Corp Manufacture of low pressure mercury vapor discharge lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255842A (en) * 1985-09-03 1987-03-11 Toshiba Corp Manufacture of low pressure mercury vapor discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330238A (en) * 1989-06-27 1991-02-08 Matsushita Electric Works Ltd Manufacture of electrodeless discharge lamp
KR100437555B1 (en) * 1995-03-31 2004-08-16 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 Low-pressure mercury-vapour discharge lamp

Also Published As

Publication number Publication date
JP2506646B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US4065691A (en) Ceramic lamp having electrodes supported by crimped tubular inlead
JP2007095665A (en) Short-arc type high-pressure discharge electrode, short-arc type high-pressure discharge tube, short-arc type high-pressure discharge light source device and their manufacturing methods
US4136298A (en) Electrode-inlead for miniature discharge lamps
US4202999A (en) Fused silica lamp envelope and seal
JP3395750B2 (en) Fluorescent lamp and method of manufacturing the same
JPS62123637A (en) Manufacture of fluorescent lamp
US2845557A (en) Arc tube mounting
JP3217313B2 (en) High pressure discharge lamp and method of manufacturing the same
US6685525B1 (en) Method for manufacturing an incandescent lamp
JP3773023B2 (en) High pressure discharge lamp and lighting device
JP2005183267A (en) Lamp
JP2871499B2 (en) Manufacturing method of cold cathode fluorescent lamp
JP2668831B2 (en) Miniature lamp manufacturing method
JP3211612B2 (en) Discharge lamp and method of manufacturing the same
JPS61176034A (en) Manufacture of mercury vapor discharge lamp
JPH0589828A (en) Fluorescent lamp
JP3617228B2 (en) Manufacturing method of fluorescent lamp
JPH03171529A (en) Manufacture of fluorescent lamp
JP2729997B2 (en) Manufacturing method of mercury-filled discharge lamp
JPH034436A (en) Metal halide lamp and lighting device therefor
JPH01243339A (en) Manufacture of fluorescent lamp
JPH11195401A (en) Discharge lamp
JPH06140000A (en) Low pressure electric discharge lamp and manufacture thereof
JPH041980B2 (en)
JP2001291488A (en) Double ring fluorescent lamp