JPS62123094A - Susceptor for vapor growth of semiconductor - Google Patents

Susceptor for vapor growth of semiconductor

Info

Publication number
JPS62123094A
JPS62123094A JP26136985A JP26136985A JPS62123094A JP S62123094 A JPS62123094 A JP S62123094A JP 26136985 A JP26136985 A JP 26136985A JP 26136985 A JP26136985 A JP 26136985A JP S62123094 A JPS62123094 A JP S62123094A
Authority
JP
Japan
Prior art keywords
susceptor
atn
film
semiconductor
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26136985A
Other languages
Japanese (ja)
Other versions
JPH0566919B2 (en
Inventor
Hiroaki Tanji
丹治 宏彰
Masaharu Suzuki
正治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP26136985A priority Critical patent/JPS62123094A/en
Publication of JPS62123094A publication Critical patent/JPS62123094A/en
Publication of JPH0566919B2 publication Critical patent/JPH0566919B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent contamination of impurities from a carbonaceous substrate and form a high-quality semiconductor film, by coating the surface of the carbonaceous substrate with a crystalline aluminum nitride film deposited from the vapor phase. CONSTITUTION:A crystalline aluminum nitride film having >=5mu thickness is formed from the vapor phase on the surface of a carbonaceous substrate by a chemical vapor deposition method. As for raw materials, an aluminum halide or organoaluminum compound is used as an aluminum source and NH3 is used as a nitrogen source. If this susceptor is used to carry out vapor-phase growth of a semiconductor, particularly a III-V compound semiconductor, contamination of impurities from the carbonaceous substrate is prevented to afford the aimed high-quality III-V compound semiconductor film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体、特にGaAs 、  InP等のIT
I −V族化合物半導体の気相成長に用いられるサセプ
タに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to semiconductors, particularly IT devices such as GaAs and InP.
The present invention relates to a susceptor used for vapor phase growth of I-V compound semiconductors.

〔従来技術とその問題点〕[Prior art and its problems]

■−v族化合物半導体(混晶を含む)は、キャリア易動
度が高く高速素子として用いられている他、発光素子と
して用いられている等、シリコン半導体に見られない特
徴を有することから、活発な研究開発が行なわれている
。そのためデバイス形成に必要な■−v族化合物半導体
エピタキシャルウェハの量産が進められておυ、特に高
性能デバイス用の高品質エピタキシャルウェハに対する
需要が急速に高まりつつある。
■-V group compound semiconductors (including mixed crystals) have characteristics not found in silicon semiconductors, such as having high carrier mobility and being used as high-speed devices, as well as being used as light-emitting devices. Active research and development is underway. For this reason, mass production of ■-V group compound semiconductor epitaxial wafers necessary for device formation is progressing, and demand for high-quality epitaxial wafers for high-performance devices in particular is rapidly increasing.

エビタキシャ〃ウェハの製造は量産性の面から気相成長
法により行なわれる事が多い。気相成長法では化合物半
導体の原料ガス、例えばGaAsの場合にはGa 源と
してGaC63やGa(CH,)3を、As源としてA
s4やAsH3を、H2などのキャリアガスにより気相
成長炉内に搬送する。成長炉内にはGaAs基板ウェハ
がサセプタ上に置かれており、高周波誘導加熱方式や赤
外ランプ加熱方式により基板加熱が行なわれる。サセプ
タは炭素(黒鉛を含む)鯛で、炭素中の不純物による汚
染を防ぐためにSiCや熱分解黒鉛により被覆されてい
る。このようなサセプタは、シリコン半導体の気相成長
用として従来からIt、lいられていたものを化合物半
導体用に転用したものであるが、高品質の化合物半導体
膜を成長させる場合に問題を生じていた。即ち、サセプ
タ表面のSiCや熱分解黒鉛IJ!!覆自身はCVD法
により形成されており高純度であるが、被覆物質が周期
律表第■属の元素から構成されているため、これらが■
−■族化合物半導体中に混入すると電気的特性が低下す
る。特にサセプタと基板ウェハは高温で直接接触してい
るため、SiCや黒鉛のサセプタ上の被覆物質が基板ウ
ェハ側に拡散等して、成長する化合物半導体膜の電気特
性低下を招く可能性が非常に高かったのである。
From the viewpoint of mass production, the production of Ebitaxia wafers is often carried out by vapor phase growth. In the vapor phase growth method, the raw material gas for compound semiconductors, for example, in the case of GaAs, GaC63 or Ga(CH,)3 is used as a Ga source, and A as an As source.
s4 and AsH3 are transported into a vapor phase growth reactor using a carrier gas such as H2. A GaAs substrate wafer is placed on a susceptor in the growth furnace, and the substrate is heated by a high frequency induction heating method or an infrared lamp heating method. The susceptor is made of carbon (including graphite) and is coated with SiC or pyrolytic graphite to prevent contamination from impurities in the carbon. This kind of susceptor was originally used for vapor phase growth of silicon semiconductors, but was repurposed for compound semiconductors, but it caused problems when growing high-quality compound semiconductor films. was. That is, SiC and pyrolytic graphite IJ on the surface of the susceptor! ! The coating itself is formed by the CVD method and has high purity, but since the coating material is composed of elements from group Ⅰ of the periodic table, these are
- If mixed into a group compound semiconductor, the electrical characteristics will deteriorate. In particular, since the susceptor and the substrate wafer are in direct contact at high temperatures, there is a strong possibility that the coating material on the SiC or graphite susceptor will diffuse toward the substrate wafer, leading to a decrease in the electrical properties of the growing compound semiconductor film. It was expensive.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者等は従来のサセプタの前記問題点を解決するた
めに、炭素製サセプタからの不純物汚染を防止し、かつ
化合物半導体に対して電気的に中性な材料からなる被&
層の開発について検討し、trt −v族化合物半導体
材料と同族元素からなるAtN被覆層が好ましい性能を
有することを見出し、特に炭素基材の表面を気相から析
出した結晶質窒化アルミニウム(AtN )膜により被
覆した場合に最も性能の安定したサセプタが得られるこ
とを見出だした。即ち本発明は、炭素基材の表面を気相
から析出した結晶質窒化アルミニウム膜により被覆した
ことを特徴とする半導体気相成長用サセプタである。
In order to solve the above-mentioned problems of conventional susceptors, the present inventors have attempted to prevent impurity contamination from carbon susceptors, and to prevent impurity contamination from carbon susceptors, and to
We investigated the development of the layer and found that an AtN coating layer made of a trt-v group compound semiconductor material and an element in the same group has favorable performance. In particular, we developed a coating layer of crystalline aluminum nitride (AtN) deposited from the gas phase on the surface of a carbon substrate. It has been found that a susceptor with the most stable performance can be obtained when coated with a membrane. That is, the present invention is a susceptor for semiconductor vapor phase growth, characterized in that the surface of a carbon base material is coated with a crystalline aluminum nitride film deposited from the vapor phase.

AtN膜は化学気相蒸着(CVD )法により気相から
炭素残材表面上に析出される。原料としてA/−源には
AtC/=、やAtBr3などのハロゲン化アルミニウ
ムやAtEt3()リエチルアルミニウム)などの有機
アルミニウム化合物が用いられ、N源にはNH,が一般
に用いられる。NH3はAt源に対して七ル比で0.5
から20倍、より好ましくは1〜5倍の割合で供給する
のがよい。
The AtN film is deposited on the carbon residue surface from the gas phase by a chemical vapor deposition (CVD) method. As raw materials, aluminum halides such as AtC/=, AtBr3, and organic aluminum compounds such as AtEt3 (ethylaluminum) are used as the A/- source, and NH is generally used as the N source. NH3 has a ratio of 0.5 to the At source.
It is preferable to supply at a rate of 20 times, more preferably 1 to 5 times.

NH,の供給量が少いと反応率が低下してAt源が無駄
になり、また多すぎると過剰のNH3によってCVD反
応室の腐食等がおこり好ましくないからである。At源
のハロゲン化アルミニウム、有機アルミニウム化合物は
常温で固体もしくは液体であるので、適当な蒸気圧が得
られる温度まで加熱して、N2やN2  などのキャリ
アガスにより気体原料としてCVD反応炉内に送られる
。反応炉内には基材(この場合には所定のサセプタの形
状に加工された炭素基材)が置かれ、所定の温度・圧力
等の条件の下、基材表面にAtNが析出される。この時
の温度・圧力条件等によって析出するAtN膜の性状が
変化するが、本発明が目的とするサセプタとして好まし
い特性のものはAtN膜が結晶質の場合にのみ得られ、
非晶質AtN膜ではサセプタに好ましくない。
This is because if the amount of NH3 supplied is too small, the reaction rate will decrease and the At source will be wasted, while if it is too large, corrosion of the CVD reaction chamber will occur due to excessive NH3, which is undesirable. Aluminum halides and organoaluminum compounds that are At sources are solid or liquid at room temperature, so they are heated to a temperature at which an appropriate vapor pressure is obtained, and then sent as gaseous raw materials into the CVD reactor using a carrier gas such as N2 or N2. It will be done. A base material (in this case, a carbon base material processed into the shape of a predetermined susceptor) is placed in a reactor, and AtN is deposited on the surface of the base material under conditions such as predetermined temperature and pressure. The properties of the AtN film deposited change depending on the temperature and pressure conditions at this time, but the desirable characteristics as a susceptor, which is the object of the present invention, can be obtained only when the AtN film is crystalline.
An amorphous AtN film is not suitable for a susceptor.

非晶質AtN 114はCVD温度が低い場合(たとえ
ば500℃)に得られるが、このような膜は繰り返しの
加熱冷却によりクツツクの発生を起こしやすく、も(材
炭素の不純物がクラック部分から出て来るという問題が
ある。また非晶質AtN膜は空気中の水分により容易に
加水分解するためその取り扱いが著しく困難で、実用性
に著しい難点がある。これに対し、6oo℃以上、より
好ましくは800℃以上の高温でAtN膜のCVDを行
うと結晶質の朕が得られる。結晶質AtN 19はサセ
プタのように繰り返しの加熱冷却を受ける場合でもクラ
ックの発生を起こすことがなく、壕だ加水分解性もない
のでサセプタ彼役として)ψれた特性を有している。A
tN自身が■族(At)  とV族(N)の化合物であ
るのでSiC被覆サセプタを用いる場合のような■−v
族化合物半導体への■族元素の混入汚染という問題がな
く、また本発明におけるAtN ill、覆は気相から
の析出により形成されるので極めて高純度であり、他の
不純物による汚染の心配もない。
Amorphous AtN 114 can be obtained when the CVD temperature is low (for example, 500°C), but such a film is prone to cracking due to repeated heating and cooling, and also (impurities in the material carbon come out from the cracks). In addition, since amorphous AtN films are easily hydrolyzed by moisture in the air, they are extremely difficult to handle and are extremely difficult to put into practical use. A crystalline film can be obtained by CVDing an AtN film at a high temperature of 800°C or higher.Crystalline AtN 19 does not generate cracks even when subjected to repeated heating and cooling like a susceptor, and is highly resistant to hydration. Since it is not decomposable, it has unique characteristics as a susceptor. A
Since tN itself is a compound of Group ■ (At) and Group V (N), ■-v such as when using a SiC coated susceptor
There is no problem of contamination of group compound semiconductors with group elements, and since the AtN layer in the present invention is formed by precipitation from the gas phase, it has extremely high purity and there is no fear of contamination by other impurities. .

このため本発明のサセプタは高品質の■−V族化合物半
導体を気相成長させる上で最適の特性を有するものであ
る。
Therefore, the susceptor of the present invention has optimal characteristics for vapor phase growth of high-quality -V group compound semiconductors.

サセプタを構成する炭素基材は高純度のものが好ましく
、灰分0.1%以下であることが望まれる。またAtN
被覆層の厚さは5μm以上が好ましい。灰分が0.1チ
を越える炭素基材を用いたり、AtN層が5μm未満で
あると基材炭素中の不純物がAtN層を拡散して外部に
出現し、成長膜を汚染するからである。尚、AtN層を
CVD法により析出させる際に高周波プラズマやマイク
ロ波プラズマを併用するプラズマCVD法を採用するこ
とも勿論可能である。
The carbon base material constituting the susceptor is preferably of high purity, and desirably has an ash content of 0.1% or less. Also AtN
The thickness of the coating layer is preferably 5 μm or more. This is because if a carbon base material with an ash content exceeding 0.1 inch is used or the AtN layer is less than 5 μm, impurities in the base carbon will diffuse through the AtN layer and appear outside, contaminating the grown film. Note that when depositing the AtN layer by the CVD method, it is of course possible to employ a plasma CVD method that uses high frequency plasma or microwave plasma in combination.

また、結晶性AtN膜を10μrIL/hr 以上の高
蒸着速度で析出させるためにはCVDを100TOrr
以下の圧力で行うことが好ましい。これ以上の圧力で行
うと原料ガスが気1目中で反応してA/、N微粒子を形
成するため怜社蒸着速度が低下するばかりでなく、微粒
子が膜中に取り込壕れて欠陥となり、クラック発生を起
こしやすくなる等の悪影響を及ぼすからである。
In addition, in order to deposit a crystalline AtN film at a high deposition rate of 10μrIL/hr or more, CVD should be performed at 100TOrr.
It is preferable to carry out the reaction at the following pressure. If the pressure is higher than this, the raw material gas will react in the atmosphere and form A/N fine particles, which will not only reduce the deposition rate, but also cause the fine particles to become trapped in the film and cause defects. This is because it has an adverse effect such as making it easier for cracks to occur.

次に実施例により本発明を更に詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

〔実施例〕〔Example〕

A/=C/−3とNH3を原料として、減圧C’VD法
によりサセプタ形状に加工した炭素基材上にAtN膜を
析出させた。A L CAsをガス状原料として減圧C
VD炉内に搬送するため、Atct3を入れた容器を1
70℃に加熱し、この容器にキャリアガスとしてN、ガ
スを流し、Atct3容器とCVD炉の間のA L C
As供給用ガス配管部を200℃に加熱してAtCl3
の再析出を防止するようにした。
Using A/=C/-3 and NH3 as raw materials, an AtN film was deposited on a carbon substrate processed into a susceptor shape by a reduced pressure C'VD method. Reduced pressure C using A L CAs as gaseous raw material
In order to transport the container into the VD furnace, the container containing Atct3 is
Heat to 70°C, flow N gas as a carrier gas into this container, and connect the A L C between the Atct3 container and the CVD furnace.
The As supply gas piping section is heated to 200°C and AtCl3
This prevents the re-precipitation of

kl、ct3の170℃における蒸気圧とキャリアN2
ガスの流量とからAtct3のCVD炉内への供給量が
計算できる。NH3の流量を1 t/minとし、At
ct3の流量が0.5 t/minとなるようキャリア
N。
Vapor pressure of kl, ct3 at 170°C and carrier N2
The amount of Atct3 supplied into the CVD furnace can be calculated from the gas flow rate. The flow rate of NH3 is 1 t/min, and At
Carrier N so that the flow rate of ct3 is 0.5 t/min.

ガスの流量を調節し、圧力5Torr、基材温度100
0℃の条件で炭素拭材上にAtN膜を析出させた。
Adjust the gas flow rate, pressure 5 Torr, base material temperature 100
An AtN film was deposited on the carbon wiping material at 0°C.

CVDを8時間行い、400μmの厚さのAtN膜を析
出させた(実施例)。X線回折法により析出膜を調べた
ところ、A、tNのシャープなX線回折ピークが測定さ
れ、結晶質A、tN膜が析出していることが確認された
。比較のため、基材温度を450℃とした他は上と同一
の条件でAtN膜を析出させたが、X線回折を行っても
ピークは検出されず、非晶質A 乙N膜であった(比較
例)。
CVD was performed for 8 hours to deposit an AtN film with a thickness of 400 μm (Example). When the deposited film was examined by X-ray diffraction method, sharp X-ray diffraction peaks of A and tN were measured, and it was confirmed that a crystalline A and tN film was deposited. For comparison, an AtN film was deposited under the same conditions as above except that the substrate temperature was 450°C, but no peak was detected even when X-ray diffraction was performed, indicating that it was an amorphous A-N film. (Comparative example)

サセプタとして使用される半を想定し、実施例と比較例
のサセプタをN、雰囲気中で高周波誘導加熱により60
0℃に加熱した後、自然冷却するサイクルを繰り返し、
毎サイクルごとにサセプタ上のAtN被覆の様子を調べ
た。実施例のサセプタは20回の加熱・冷却の繰り返し
後も何の変化も々く、AtN層は強固に基材に付着し、
クラックの発生も全く認められなかった。これに対し比
較例のサセプタは第1回目のサイクルでクラックが無数
に発生し、AtN層の部分的欠落が起きており、炭素基
材表面を被覆するAtN層が結晶質でなければならない
ことが明白に示された。
Assuming that the susceptors will be used as susceptors, the susceptors of Examples and Comparative Examples were heated to 60°C by high-frequency induction heating in a N atmosphere.
Repeat the cycle of heating to 0°C and then cooling naturally,
The state of the AtN coating on the susceptor was examined every cycle. The susceptor of the example showed no change even after repeated heating and cooling 20 times, and the AtN layer firmly adhered to the base material.
No cracks were observed at all. On the other hand, in the susceptor of the comparative example, numerous cracks occurred in the first cycle, and the AtN layer was partially missing, indicating that the AtN layer covering the carbon base material surface must be crystalline. clearly shown.

また、2種のサセプタを温度25℃、湿度60チの条件
下で1ケ月放置した後、外観を検査したところ、実施例
のサセプタのAtN被覆層には何の変化も認められなか
ったが、比較例のサセプタではA/J被覆層が白色化し
、また無数のクラックが発生していた。
In addition, when the two types of susceptors were left for one month at a temperature of 25°C and a humidity of 60°C, their appearance was inspected, and no change was observed in the AtN coating layer of the susceptor of the example. In the susceptor of the comparative example, the A/J coating layer turned white and numerous cracks were generated.

実施例のサセプタと従来のSiC被覆サセプタを用いて
C)aAsウェハ上にGaAsのエピタキシャル成長を
実施した。得られたエビタキンヤル膜中の不純物濃度を
測定したところ、実施例のサセプタを用いた場合には2
 X 10’atoms/口3 と高純度であったが、
従来のSiC被覆サセプタを用いた場合には5X1gl
s原子/cm3  と1桁悪い純度となっていた。
C) Epitaxial growth of GaAs was performed on an aAs wafer using the susceptor of the example and a conventional SiC-coated susceptor. When the impurity concentration in the obtained Evita Kinyal film was measured, it was found that when the susceptor of the example was used, it was 2.
Although it was highly pure with X 10'atoms/3,
5X1gl when using a conventional SiC coated susceptor
The purity was one order of magnitude worse at s atoms/cm3.

〔発明の効果〕〔Effect of the invention〕

本発明のサセプタを用いて■−V族化合物半導体の気相
成長を行えば、サセプタの基材炭素からの不純物混入が
抑止できるだけでなく、サセプタ被覆層物質の混入によ
る電気的特性低下がなくなるので、高品質の化合物半導
体膜を成長させることができる。
By using the susceptor of the present invention to perform vapor phase growth of a -V group compound semiconductor, not only can the contamination of impurities from the base carbon of the susceptor be suppressed, but also the deterioration of electrical characteristics due to the contamination of the susceptor coating layer material can be eliminated. , high quality compound semiconductor films can be grown.

Claims (1)

【特許請求の範囲】[Claims] 炭素基材の表面を気相から析出した結晶質窒化アルミニ
ウム膜により被覆したことを特徴とする半導体気相成長
用サセプタ。
A susceptor for semiconductor vapor phase growth, characterized in that the surface of a carbon base material is coated with a crystalline aluminum nitride film deposited from the vapor phase.
JP26136985A 1985-11-22 1985-11-22 Susceptor for vapor growth of semiconductor Granted JPS62123094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26136985A JPS62123094A (en) 1985-11-22 1985-11-22 Susceptor for vapor growth of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26136985A JPS62123094A (en) 1985-11-22 1985-11-22 Susceptor for vapor growth of semiconductor

Publications (2)

Publication Number Publication Date
JPS62123094A true JPS62123094A (en) 1987-06-04
JPH0566919B2 JPH0566919B2 (en) 1993-09-22

Family

ID=17360881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26136985A Granted JPS62123094A (en) 1985-11-22 1985-11-22 Susceptor for vapor growth of semiconductor

Country Status (1)

Country Link
JP (1) JPS62123094A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251365A (en) * 1991-05-28 1993-09-28 Ngk Insulators Ltd Corrosion-resistant member
JPH06163428A (en) * 1992-11-26 1994-06-10 Ngk Insulators Ltd Corrosion-resistant member
NL1015550C2 (en) * 2000-06-28 2002-01-02 Xycarb Ceramics B V A method for manufacturing a core-built susceptor, thus-obtained susceptor, and a method for applying active layers to a semiconductor substrate using such a susceptor.
US8247080B2 (en) 2004-07-07 2012-08-21 Momentive Performance Materials Inc. Coating structure and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392338A (en) * 1976-12-28 1978-08-14 Suwa Seikosha Kk Sheath parts for portable watch
JPS54157778A (en) * 1978-06-02 1979-12-12 Toshiba Ceramics Co Susceptor
JPS56158866A (en) * 1980-05-09 1981-12-07 Toshiba Corp Structural material for use at high temperature
JPS60216536A (en) * 1984-04-12 1985-10-30 Nippon Telegr & Teleph Corp <Ntt> Base plate for substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392338A (en) * 1976-12-28 1978-08-14 Suwa Seikosha Kk Sheath parts for portable watch
JPS54157778A (en) * 1978-06-02 1979-12-12 Toshiba Ceramics Co Susceptor
JPS56158866A (en) * 1980-05-09 1981-12-07 Toshiba Corp Structural material for use at high temperature
JPS60216536A (en) * 1984-04-12 1985-10-30 Nippon Telegr & Teleph Corp <Ntt> Base plate for substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251365A (en) * 1991-05-28 1993-09-28 Ngk Insulators Ltd Corrosion-resistant member
JPH06163428A (en) * 1992-11-26 1994-06-10 Ngk Insulators Ltd Corrosion-resistant member
NL1015550C2 (en) * 2000-06-28 2002-01-02 Xycarb Ceramics B V A method for manufacturing a core-built susceptor, thus-obtained susceptor, and a method for applying active layers to a semiconductor substrate using such a susceptor.
WO2002000968A1 (en) * 2000-06-28 2002-01-03 Xycarb Ceramics B.V. A method for manufacturing a susceptor, a susceptor thus obtained and its application
US8247080B2 (en) 2004-07-07 2012-08-21 Momentive Performance Materials Inc. Coating structure and method

Also Published As

Publication number Publication date
JPH0566919B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
EP0632145B1 (en) Method of forming crystalline silicon carbide coatings
Kouvetakis et al. Chemical vapor deposition of gallium nitride from diethylgallium azide
JP2704181B2 (en) Method for growing compound semiconductor single crystal thin film
Takahashi et al. Low‐temperature growth of 3 C‐SiC on Si substrate by chemical vapor deposition using hexamethyldisilane as a source material
US11047041B2 (en) Method and system for preparing polycrystalline group III metal nitride
JP3239622B2 (en) Method of forming semiconductor thin film
US5471946A (en) Method for producing a wafer with a monocrystalline silicon carbide layer
JPH01162326A (en) Manufacture of beta-silicon carbide layer
US20180209063A1 (en) Growing epitaxial 3c-sic on single-crystal silicon
Ho et al. MOVPE of AlN and GaN by using novel precursors
US6254675B1 (en) Production of epitactic GaN layers on substrates
US6911084B2 (en) Low temperature epitaxial growth of quaternary wide bandgap semiconductors
Tischler et al. Growth and characterization of compound semiconductors by atomic layer epitaxy
JP2009543946A (en) Wide band gap semiconductor materials
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JPH04175294A (en) Vapor growth equipment
US5492752A (en) Substrates for the growth of 3C-silicon carbide
Fu et al. Residual stress in GaN epilayers grown on silicon substrates
JPS62123094A (en) Susceptor for vapor growth of semiconductor
Nagasawa et al. Mechanisms of SiC growth by alternate supply of SiH2Cl2 and C2H2
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS6115150B2 (en)
JPS62124732A (en) Susceptor for vapor growth of semiconductor