JPS6212257B2 - - Google Patents

Info

Publication number
JPS6212257B2
JPS6212257B2 JP5597278A JP5597278A JPS6212257B2 JP S6212257 B2 JPS6212257 B2 JP S6212257B2 JP 5597278 A JP5597278 A JP 5597278A JP 5597278 A JP5597278 A JP 5597278A JP S6212257 B2 JPS6212257 B2 JP S6212257B2
Authority
JP
Japan
Prior art keywords
conductive
weight
plasticizer
polyamide resin
nitrile rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5597278A
Other languages
Japanese (ja)
Other versions
JPS54146849A (en
Inventor
Juzo Hata
Takuji Nanba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5597278A priority Critical patent/JPS54146849A/en
Publication of JPS54146849A publication Critical patent/JPS54146849A/en
Publication of JPS6212257B2 publication Critical patent/JPS6212257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性を有し、しかも物性の良好なポ
リアミド樹脂組成物を提供するものであり、さら
に詳しくは、ポリアミド樹脂に炭素または金属よ
りなる導電性微粒子もしくは繊維状物質、ポリア
ミドと相溶性のある可塑剤およびニトリルゴムを
均一に混練分散することにより物性の良好な導電
性ポリアミド樹脂組成物を得るものである。 プラスチツクスは本来絶縁材料でありこれまで
電気電子技術の分野で広く応用されてきたが、最
近プラスチツクスに導電性を付与する試みが盛ん
になつてきた。このような傾向は材料に新しくよ
り高度な機能を与え付加価値を得ようとする動き
の現われであり、近い将来いろいろな形で電気製
品の中に応用されることが期待できる。 このような背景の中ですでにポリアミド樹脂に
導電性を持たせることは行われており、その方法
は導電性物質をポリアミド樹脂に均一に分散させ
導電性物質の相互連結により導電路を形成させて
得られる。しかしながら、導電性を高めるために
は導電性物質を多量必要となりポリアミドの持つ
本来の優れた物性を相当に損われることになり、
用途開発の大きな障害となつているのが現状であ
る。 本発明者らはその欠点を改良すべく鋭意研究を
重ねた結果、ポリアミド樹脂に導電性物質を添加
しただけの従来の組成物にさらにポリアミドと相
溶性のある可塑剤およびニトリルゴムを添加する
ことにより目的を達することができた。すなわ
ち、可塑剤およびニトリルゴムを添加した導電性
ポリアミド組成物は従来の組成物に比べて衝撃強
さが顕しく改良されると同時に導電性も向上させ
ることができる。従つて、導電性物質をその分に
匹敵するだけ少なくできるためさらにポリアミド
樹脂本来の物性の維持に有利となる。 以下、具体的に本発明を説明する。 本発明の対象となるポリアミド樹脂はナイロン
6,ナイロン66,ナイロン610,ナイロン11,ナ
イロン12などの単独重合体およびこれらの2種以
上の混合物もしくは共重合を挙げることができる
が、一般に分子鎖中にアミド基を有する直鎖状ポ
リマーであればよい。 本発明に使用できる導電性物質は微粒子状のも
のと繊維状のものがある。導電性微粒子としては
アセチレンブラツク,コンダクテイブフアーネス
ブラツク,コンダクテイブチヤンネルブラツク等
のカーボンブラツクまたはグラフアイト等の炭素
微粒子およびAl,Cu,Fe,Ni,Sn,Ti,Zn等あ
るいは真ちゆう、ブロンズ等の合金微粒子を用い
ることができる。尚、導電性微粒子の大きさは20
μ以下であるが、好ましくは5μ以下である。ま
た導電性繊維としては炭素繊維および金属繊維を
用いることができ、その直径は1〜20μが好まし
い。 本発明における導電性ポリアミド樹脂組成物の
導電率は10-8Ω-1cm-1以上であり、それを満足す
るためには導電性物質を少なくとも10〜40重量%
添加する必要がある。導電性繊維では長いほど少
量の添加で良いが、導電性に方向性がみられる。
導電性微粒子では繊維より多量の添加をしなけれ
ばならないが、方向性が少ない利点がある。ま
た、添加量が40重量%以上の場合導電率は勿論高
くなるが、ポリアミド樹脂組成物の製造および加
工が困難なこととたとえ製造加工ができても物性
の向上が望めず、また経剤性の面からも好ましく
ない。 本発明に用いる可塑剤はポリアミド樹脂と相溶
性がよく、しかも可塑化作用のある物質である。
たとえばベンゼンスルホンアミド,N―ブチルベ
ンゼンスルホンアミド,N―シクロヘキシルベン
ゼンスルホンアミド,パラトルエンスルホンアミ
ド,N―ブチルパラトルエンスルホンアミド等の
スルホンアミド系可塑剤あるいはパラオキシベン
ゾエートオクチルエステル,ペンタデシルフエノ
ール等のフエノール系可塑剤等が用いられる。し
かしポリアミド樹脂と相溶性のある可塑剤であれ
ばこれらに限つたものではない。本発明に必要な
可塑剤の添加量は5〜20重量%であり、5重量%
未満では耐衝撃性の向上が乏しく、20重量%を越
えるとポリアミド樹脂の特性である機械的強さ、
耐熱性、耐摩耗性などを損ねたり、可塑剤がブル
ーミングを起こしたりするので好ましくない。 本発明に用いられるニトリルゴムは添加量は20
重量%以下である。また可塑剤とニトリルゴムの
総添加量は全体の5〜50重量%であり、それらの
比率はどんな割合でもよいが、可塑剤/ニトリル
ゴムの比率が0.5以上であることが好ましい。 さらに本発明は上記添加剤以外に導電性および
物性を大きく損わない範囲で滑剤、分散剤、離型
剤、耐熱剤、耐候剤、難燃剤等を添加することが
できる。 本発明においてポリアミド樹脂に導電性物質、
可塑剤およびニトリルゴムを混練する方法として
均一に分散できる装置であればよく、一度に混練
が困難な場合は二度以上の混練を行つても良い
が、結果として四成分が均一に分散した状態の組
成物が得られることが必要である。 以下、実施例でもつて本発明の効果を詳細に説
明するが、本発明はこれらに限定されるものでは
ない。 尚、本実施例に示す体積抵抗率はASTM―D
―257の方法、アイゾツト衝撃強さはASTM―D
―256の方法に従つて行つた。体積抵抗率につい
ては直径100mmφ、厚さ3.2mmの円板を用い、これ
を23℃50%RHの雰囲気に48時間放置してから測
定に供した。またアイゾツト衝撃強さは長さ63.5
mm、一辺の長さ12.7mmの角柱状の試験片に規定の
ノツチをつけ、これを23℃50%RHの雰囲気に96
時間放置してから測定を行つた。 実施例 1 ナイロン6ペレツトにコンダクテイブフアーネ
スブラツク(平均粒径20mμ)、Nブチルベンゼ
ンスルホンアミドおよび粉末状のニトリルゴム
(アクリロニトリル成分40%)を表1の組成にな
るようそれぞれタンブラーでブレンドしその後
250℃に設定したベント式二軸押出機で均一に混
練し、ガツト状に押出し水冷後カツターでペレツ
ト化し減圧乾燥後試験片の成形を行つた。表1に
各組成物について体積抵抗率とアイゾツト衝撃強
さの測定結果を示す。
The present invention provides a polyamide resin composition that is electrically conductive and has good physical properties.More specifically, the present invention provides a polyamide resin composition that is conductive and has good physical properties. A conductive polyamide resin composition with good physical properties is obtained by uniformly kneading and dispersing a certain plasticizer and nitrile rubber. Plastics are originally insulating materials and have been widely applied in the field of electrical and electronic technology, but recently there has been an increase in attempts to impart electrical conductivity to plastics. This trend is an expression of the movement to add new value to materials by giving them new and more advanced functions, and we can expect them to be applied in various forms in electrical products in the near future. Against this background, attempts have already been made to make polyamide resin conductive.The method is to uniformly disperse conductive substances in polyamide resin and form conductive paths by interconnecting the conductive substances. can be obtained. However, in order to increase conductivity, a large amount of conductive substance is required, which considerably impairs the original excellent physical properties of polyamide.
The current situation is a major obstacle to the development of new applications. The inventors of the present invention have conducted extensive research in order to improve this drawback, and have discovered that a plasticizer and nitrile rubber that are compatible with polyamide are further added to the conventional composition, in which a conductive substance is simply added to polyamide resin. I was able to reach my goal. That is, a conductive polyamide composition to which a plasticizer and nitrile rubber are added can significantly improve impact strength and improve conductivity as compared to conventional compositions. Therefore, the amount of conductive material can be reduced by a corresponding amount, which is further advantageous in maintaining the original physical properties of the polyamide resin. The present invention will be specifically explained below. Polyamide resins that are the object of the present invention include homopolymers such as nylon 6, nylon 66, nylon 610, nylon 11, and nylon 12, as well as mixtures or copolymers of two or more of these. Any linear polymer having an amide group may be used. The conductive substances that can be used in the present invention include those in the form of fine particles and those in the form of fibers. Examples of conductive fine particles include carbon black such as acetylene black, conductive furnace black, conductive channel black, carbon fine particles such as graphite, and Al, Cu, Fe, Ni, Sn, Ti, Zn, etc., or brass. Fine alloy particles such as bronze can be used. Furthermore, the size of the conductive fine particles is 20
It is not more than μ, preferably not more than 5 μ. Further, carbon fibers and metal fibers can be used as the conductive fibers, and the diameter thereof is preferably 1 to 20 μm. The conductivity of the conductive polyamide resin composition in the present invention is 10 -8 Ω -1 cm -1 or more, and in order to satisfy this, at least 10 to 40% by weight of the conductive substance is required.
need to be added. For conductive fibers, the longer they are, the smaller the amount of addition required, but the conductivity is directional.
Although conductive fine particles must be added in larger amounts than fibers, they have the advantage of having less directionality. In addition, if the amount added is 40% by weight or more, the electrical conductivity will of course increase, but it is difficult to manufacture and process the polyamide resin composition, and even if it can be manufactured and processed, no improvement in physical properties can be expected. It is also unfavorable from this point of view. The plasticizer used in the present invention is a substance that has good compatibility with the polyamide resin and has a plasticizing effect.
For example, sulfonamide plasticizers such as benzenesulfonamide, N-butylbenzenesulfonamide, N-cyclohexylbenzenesulfonamide, para-toluenesulfonamide, and N-butylparatoluenesulfonamide, or phenols such as paraoxybenzoate octyl ester and pentadecylphenol. A plasticizer or the like is used. However, the plasticizer is not limited to these as long as it is compatible with the polyamide resin. The amount of plasticizer added necessary for the present invention is 5 to 20% by weight, and 5% by weight.
If it is less than 20% by weight, there will be little improvement in impact resistance, and if it exceeds 20% by weight, the mechanical strength, which is a characteristic of polyamide resin, will deteriorate.
It is not preferable because it impairs heat resistance, abrasion resistance, etc., and the plasticizer causes blooming. The amount of nitrile rubber used in the present invention is 20
% by weight or less. Further, the total amount of plasticizer and nitrile rubber added is 5 to 50% by weight of the whole, and although any ratio may be used, it is preferable that the ratio of plasticizer/nitrile rubber is 0.5 or more. Furthermore, in the present invention, in addition to the above-mentioned additives, lubricants, dispersants, mold release agents, heat resistant agents, weathering agents, flame retardants, etc. can be added within ranges that do not significantly impair conductivity and physical properties. In the present invention, a conductive substance is added to the polyamide resin.
As a method of kneading the plasticizer and nitrile rubber, any device that can uniformly disperse the plasticizer and nitrile rubber may be used.If kneading is difficult at once, kneading may be performed two or more times, but the result is a state in which the four components are uniformly dispersed. It is necessary to obtain a composition of Hereinafter, the effects of the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. The volume resistivity shown in this example is ASTM-D.
-257 method, Izotsu impact strength is ASTM-D
- I followed the method of 256. For volume resistivity, a disk with a diameter of 100 mmφ and a thickness of 3.2 mm was used, and the disk was left in an atmosphere of 23° C. and 50% RH for 48 hours before measurement. In addition, the Izotsu impact strength is 63.5 in length.
A prismatic test piece with a side length of 12.7 mm was made with a specified notch and placed in an atmosphere of 23°C and 50% RH for 96°C.
After leaving it for a while, measurements were taken. Example 1 Nylon 6 pellets were blended with conductive furnace black (average particle size 20 mμ), N-butylbenzenesulfonamide, and powdered nitrile rubber (acrylonitrile content 40%) in a tumbler to give the composition shown in Table 1.
The mixture was uniformly kneaded using a vented twin-screw extruder set at 250°C, extruded into a gut shape, cooled with water, pelletized using a cutter, dried under reduced pressure, and then molded into test pieces. Table 1 shows the measurement results of volume resistivity and Izot impact strength for each composition.

【表】 表1より明らかなように可塑剤とニトリルゴを
添加しない導電性組成物に比べアイゾツト衝撃強
さの良好な導電性組成物が得られることがわか
る。また、体積抵抗率では可塑剤およびニトリル
ゴムの添加量が多くなるほど低くなり、すなわち
導電性が向上し同じ導電率を得るために導電性物
質の量を減らすことができる。 実施例 2 ナイロン6にパラオキシベンゾエートオクチル
エステル17.65重量%、豆粒状のニトリルゴム
11.76重量%を65mmφの押出機で混練しペレツト
化した後、この組成物にアセチレンブラツク15重
量%を添加しベント式二軸押出機で均一に混練し
実施例1と同様にして試験片を得た。この組成物
はアセチレンブラツク(平均粒径50mμ)15重量
%、パラオキシベンゾエートオクチルエステル15
重量%、ブチルゴム10重量%を有する導電性ナイ
ロン6組成物であり、体積抵抗率は3.7×104Ω・
cm、アイゾツト衝撃強さは15Kg・cm/cmノツチで
あり、可塑剤およびニトリルゴムを添加しない組
成物に比べ体積抵抗率は低下し、衝撃強さは著し
く優れていることがわかる。 実施例 3 ナイロン66に3mmにカツトした炭素繊維(直径
10μ)およびNブチルベンゼンスルホンアミド、
粉末状のニトリルゴム(アクリロニトリル成分48
%)を表2の組成になるようそれぞれ実施例1と
同様にして試験片を作成し測定を行つた。その結
果を表2に示す。
[Table] As is clear from Table 1, a conductive composition with better Izod impact strength can be obtained than a conductive composition without the addition of a plasticizer and nitrile rubber. In addition, the volume resistivity decreases as the amount of plasticizer and nitrile rubber added increases, that is, the conductivity improves and the amount of conductive substance can be reduced to obtain the same conductivity. Example 2 Nylon 6, paraoxybenzoate octyl ester 17.65% by weight, nitrile rubber in the form of beans
After kneading 11.76% by weight in a 65 mmφ extruder and pelletizing it, 15% by weight of acetylene black was added to this composition and uniformly kneaded in a vented twin-screw extruder to obtain a test piece in the same manner as in Example 1. Ta. This composition contains 15% by weight of acetylene black (average particle size 50 mμ), 15% of paraoxybenzoate octyl ester.
It is a conductive nylon 6 composition with 10% by weight of butyl rubber and a volume resistivity of 3.7×10 4 Ω・
cm, Izot impact strength was 15 Kg·cm/cm notch, indicating that the volume resistivity was lower and the impact strength was significantly superior compared to the composition without the addition of plasticizer and nitrile rubber. Example 3 Carbon fiber cut to 3 mm in nylon 66 (diameter
10μ) and N-butylbenzenesulfonamide,
Powdered nitrile rubber (acrylonitrile component 48
Test pieces were prepared and measured in the same manner as in Example 1 so that the compositions (%) were as shown in Table 2. The results are shown in Table 2.

【表】 表2の結果よりナイロン66に炭素繊維、可塑
剤、ニトリルゴムを添加した導電性ナイロン66組
成物は優れた衝撃強さおよび体積抵抗率の低下が
みられる。 実施例 4 ナイロン6にアルミニウム粉末(平均粒径2
μ)を30重量%、Nブチルパラトルエンスルホン
アミド15重量%、粉末状のニトリルゴム(アクリ
ロニトリル成分40%)15重量%を実施例1と同様
にして試験片を作成し測定を行つた。その結果、
体積抵抗率は7.4×104Ω・cm、アイゾツト衝撃強
さは7.2Kg・cm/cmノツチであつた。また、ナイ
ロン6にアルミ粉末を30重量%だけ添加した組成
物を同様にして作成し測定したところ、体積抵抗
率は3.2×106Ω・cm、アイゾツト衝撃強さは1.5
Kg・cm/cmノツチであり、本発明の効果がよく現
われていることがわかる。
[Table] From the results in Table 2, the conductive nylon 66 composition in which carbon fiber, plasticizer, and nitrile rubber are added to nylon 66 has excellent impact strength and a decrease in volume resistivity. Example 4 Aluminum powder (average particle size 2) on nylon 6
A test piece was prepared in the same manner as in Example 1 using 30% by weight of N-butyl para-toluenesulfonamide, 15% by weight of powdered nitrile rubber (40% acrylonitrile component), and measurements were performed. the result,
The volume resistivity was 7.4×10 4 Ω·cm, and the isot impact strength was 7.2 Kg·cm/cm notch. In addition, when a composition in which 30% by weight of aluminum powder was added to nylon 6 was similarly prepared and measured, the volume resistivity was 3.2×10 6 Ω・cm and the Izot impact strength was 1.5.
Kg・cm/cm notch, and it can be seen that the effects of the present invention are clearly exhibited.

Claims (1)

【特許請求の範囲】 1 ポリアミド樹脂に対して炭素または金属の微
粒子もしくは繊維状の導電性物質(A)を10〜40重量
%、ポリアミドと相溶性のある可塑剤(B)を5〜20
重量%及びニトリルゴム(C)を2.0〜20重量%の割
合で均一に混練することを特徴とする導電性ポリ
アミド樹脂組成物。 2 (B)及び(C)が全体の5〜50重量%であり、しか
もその比率が(B)/(C)≧0.5である特許請求の範囲
第1項記載の導電性ポリアミド樹脂組成物。
[Claims] 1. 10 to 40% by weight of carbon or metal fine particles or fibrous conductive substance (A) based on the polyamide resin, and 5 to 20% of a plasticizer (B) compatible with the polyamide.
1. A conductive polyamide resin composition characterized by uniformly kneading nitrile rubber (C) in a proportion of 2.0 to 20% by weight. 2. The conductive polyamide resin composition according to claim 1, wherein (B) and (C) account for 5 to 50% by weight of the total, and the ratio thereof is (B)/(C)≧0.5.
JP5597278A 1978-05-10 1978-05-10 Conductive polyamide resin composition Granted JPS54146849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5597278A JPS54146849A (en) 1978-05-10 1978-05-10 Conductive polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5597278A JPS54146849A (en) 1978-05-10 1978-05-10 Conductive polyamide resin composition

Publications (2)

Publication Number Publication Date
JPS54146849A JPS54146849A (en) 1979-11-16
JPS6212257B2 true JPS6212257B2 (en) 1987-03-17

Family

ID=13013982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5597278A Granted JPS54146849A (en) 1978-05-10 1978-05-10 Conductive polyamide resin composition

Country Status (1)

Country Link
JP (1) JPS54146849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107243A (en) * 1997-12-23 2012-06-07 Arkema France Antistatic composition based on polyamide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198544A (en) * 1982-05-17 1983-11-18 Otsuka Chem Co Ltd Thermoplastic resin composition
JPS59213730A (en) * 1983-05-18 1984-12-03 Mishima Seishi Kk Conductive film and its manufacture
JPH0657772B2 (en) * 1985-12-13 1994-08-03 東芝ケミカル株式会社 Conductive elastomer composition
EP1652887B1 (en) * 2002-03-04 2012-10-31 Arkema France Polyamide-based composition for the making of flexible hoses containing oil or gas
US20050263202A1 (en) * 2004-05-20 2005-12-01 Cheng Paul P Polymeric fuel system components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107243A (en) * 1997-12-23 2012-06-07 Arkema France Antistatic composition based on polyamide

Also Published As

Publication number Publication date
JPS54146849A (en) 1979-11-16

Similar Documents

Publication Publication Date Title
US4490283A (en) Flame retardant thermoplastic molding compounds of high electroconductivity
EP0099573A1 (en) Improved conductive resinous composites
CA1248661A (en) Moulding compositions having flame-resistant properties
US5958303A (en) Electrically conductive compositions and methods for producing same
JPH0238109B2 (en)
CN101591463B (en) Fire-retardant ACS/PVC plastic alloy and manufacturing method thereof
EP0337487A1 (en) Electroconductive polymer composition
JPS6212257B2 (en)
US5213736A (en) Process for making an electroconductive polymer composition
US5023036A (en) Method of manufacturing electrostatic dissipating composition
JP2002075052A (en) Conductive resin composition and sheet
GB2094317A (en) Molding components for pvc
JP2002053757A (en) Electroconductive resin composition and molded article thereof
US3919122A (en) Manufacture of resinous compositions having high electroconductivity
US4329278A (en) Molding compositions
US4390458A (en) Electrically conductive articles
JPH0139453B2 (en)
JP3075796B2 (en) High dielectric resin composition
JPS6281450A (en) Polyphenylene sulfide resin composition
JP2001261975A (en) Electroconductive thermoplastic resin composition
JPS6268854A (en) Electrically conductive resin composition
JP2002212443A (en) Conductive resin composition and conductive molding
JPS5930837A (en) Electroconductive resin composition
JPH0247500B2 (en)
JP2002117721A (en) Conductive plastic