JPS62119969A - Complex optical integrated device - Google Patents

Complex optical integrated device

Info

Publication number
JPS62119969A
JPS62119969A JP60259979A JP25997985A JPS62119969A JP S62119969 A JPS62119969 A JP S62119969A JP 60259979 A JP60259979 A JP 60259979A JP 25997985 A JP25997985 A JP 25997985A JP S62119969 A JPS62119969 A JP S62119969A
Authority
JP
Japan
Prior art keywords
layer
laser
photodetector
substrate
cladding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60259979A
Other languages
Japanese (ja)
Inventor
Mamoru Uchida
護 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60259979A priority Critical patent/JPS62119969A/en
Publication of JPS62119969A publication Critical patent/JPS62119969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To integrate a complex optical integrated device with the most suitable structure by a method wherein a cladding layer, an active layer and a cladding layer are formed and laminated on a GaAs substrate and the substrate is divided into a laser and a photodetector by a groove dug in the center part of the substrate and a narrow stripe shape diffused layer and a wide stripe shape diffused layer are provided in the laser and the photodetector respectively so as to face each other. CONSTITUTION:An Al0.38Ga0.62As cladding layer 12, a GaAs active layer 13 and a cladding layer 14 of the same composition as the first one are laminated and made to grow on a GaAs substrate 11 with a (100) face. A recessed part, penetrating through those layers and into the substrate 11, is dug to divide those layers into a laser and a photodetector. Then SiO2 films 15 are partially formed on the laser and the photodetector and a narrow stripe aperture and a wide stripe aperture are made on the laser and the photodetector respectively so as to face each other. ZnZS2 is diffused through these apertures to create respective diffused layers 18b and 18a. As the layer 18b is narrow, it stays above the layer 13 and, as the layer 18b is wide, it invades into the layer 12 so that high coupling efficiency between the laser and the photodetector can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合光集積素子に関し、特に半導体レーザと受
光素子の集積化に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a composite optical integrated device, and particularly to the integration of a semiconductor laser and a light receiving device.

(従来の技術) 光集積回路は今後発展が期待される分野である。(Conventional technology) Optical integrated circuits are a field that is expected to develop in the future.

その最も単純、かつ基本的な構成の1つとして、半導体
レーザと受光器のモノリシックな集積化が挙げられる。
One of the simplest and most basic configurations is monolithic integration of a semiconductor laser and a photodetector.

従来性なわれてきた一般的な方法は。The common method that has been traditionally used is.

通常のレーザ結晶に化学エツチングを用いて共通の共振
軸をもつ複数のエツチド−キャビティを形成し、その1
つをレーザ、他の1つを受光器として用いるものである
。その代表的な例が、和田らによる「モノリシックに集
積化した光検出器付GaAs系エツチドキャビティレー
ザ(1)及ヒ(n)J(第32回応用物理学関係連合講
演会1p−ZB−5及び6)である。
Chemical etching is used in an ordinary laser crystal to form multiple etched cavities with a common resonant axis.
One is used as a laser and the other as a light receiver. A typical example is Wada et al.'s ``Monolithically integrated GaAs-based etched cavity laser with photodetector (1) and H(n)J (32nd Applied Physics Association Conference 1p-ZB- 5 and 6).

次に、第2図を参照して従来例を説明する。Next, a conventional example will be explained with reference to FIG.

第2図は従来例の模式図である。その製作法は。FIG. 2 is a schematic diagram of a conventional example. How is it made?

まず、pJJlGaAs基板21にストライプ状のメサ
を形成したあと、n型GaAsブロック層22で完全に
メサt?埋め込んだあと、2つのりッジを形成し、その
中央の溝が基板のメサに達するまでエツチング行なう。
First, after forming a striped mesa on a pJJlGaAs substrate 21, the mesa is completely covered with an n-type GaAs block layer 22. After implantation, two ridges are formed and etched until the central groove reaches the mesa of the substrate.

次に2回目の液相成長により、pmAlyGal−YA
sクラッド層23.p型AJXGa1−xAs活性層2
41n型AlyGat−yAsクラッド層25.n型G
 a A sキャラプ層26を積層する。メサ上のエピ
タキシャル層は成長速度が遅(なることを利用し、薄膜
活性層による高出力動作を可能にしている。
Next, by second liquid phase growth, pmAlyGal-YA
s cladding layer 23. p-type AJXGa1-xAs active layer 2
41n-type AlyGat-yAs cladding layer 25. n-type G
a A s The carapace layer 26 is laminated. The epitaxial layer on the mesa has a slow growth rate, which enables high-power operation with a thin film active layer.

このB TRS (Buried Twin几idge
 5ubstrate)構造のウェハを用いて化学エツ
チングを行ない複数のエツチドキャビティを形成し、1
つをレーザ。
This B TRS (Buried Twin ridge)
A plurality of etched cavities are formed by chemical etching using a wafer with a structure of 1
One laser.

他の1つを受光器として用いるものである。The other one is used as a light receiver.

(発明が解決しようとする問題点) 半導体レーザと受光器を集積する場合、受光器に求めら
れる特性の1つとして、受光効率が高いことが挙げられ
る。受光効率は(レーザ光の受光器への結合効率)X(
受光器の量子効率)で表わされる。したがって、結合効
率及び量子効率の双方を大きくできれば、受光効率は飛
躍的に向上することが期待される。
(Problems to be Solved by the Invention) When a semiconductor laser and a light receiver are integrated, one of the characteristics required of the light receiver is high light receiving efficiency. Light reception efficiency is (coupling efficiency of laser light to receiver) x (
quantum efficiency of the photoreceiver). Therefore, if both the coupling efficiency and the quantum efficiency can be increased, it is expected that the light receiving efficiency will be dramatically improved.

しかし、従来例では、単にレーザを受光器としてそのま
ま用いているために、受光器としてはかなり不十分なも
のになっている。つまり、レーザとして、駆動電流を下
げ、発振モードを安定にするため、活性領域は小さくな
っている。このことは受光器にとっては、受光面積が小
さいことを意味し、レーザ光の受光器への結合効率は小
さくなる。ま九、光吸収層は活性層と全く同一であるた
め、吸収端近傍で光吸収が行なわれることになり。
However, in the conventional example, since the laser is simply used as a light receiver, it is quite insufficient as a light receiver. In other words, the active region is made smaller in order to lower the driving current and stabilize the oscillation mode as a laser. For the light receiver, this means that the light receiving area is small, and the coupling efficiency of the laser beam to the light receiver is reduced. Ninth, since the light absorption layer is exactly the same as the active layer, light absorption occurs near the absorption edge.

高い量子効率は望めない。以上の問題点を解決する最も
単純な方法は、同一基板上にレーザ部と受光器部を別々
にエピタキシャル成長することであるが、現状ではこの
選択成長技術はかなり困難である。
High quantum efficiency cannot be expected. The simplest method to solve the above problems is to epitaxially grow the laser section and the photodetector section separately on the same substrate, but this selective growth technique is currently quite difficult.

本発明の目的は、レーザと受、光器を最適構造で集積し
た複合光集積素子を提供することにある。
An object of the present invention is to provide a composite optical integrated device in which a laser, receiver, and optical device are integrated in an optimal structure.

(問題点を解決するための手段) 本発明の複合集積素子は、第2導wtmの半導体基板上
に少なくとも第1導電型のクラッド層、第1導′11!
型の活性層、第1導−It型のクラッド層の順次積層さ
れた半導体レーザ結晶と、該半導体レーザ結晶の表面か
ら該結晶の導電型を反転し得る第2導電型不純物を前記
活性層に達するまでストライプ状に選択的に注入して形
成された拡散jIと、該ストライプ状の拡散層と直角方
向に深さが前記半導体基板に達し前記ストライプ状の拡
散層を分離するより形成された溝とを含み前記溝によっ
て隔てられた2つのストライプ形状は異なる形状を慶し
、かつ前記溝の側面の少なくとも一方はレーザ共振器面
となされることにより構成される。
(Means for Solving the Problems) The composite integrated device of the present invention includes at least a cladding layer of the first conductivity type on the semiconductor substrate of the second conductivity wtm, the first conductivity '11!
A semiconductor laser crystal including a first-conductivity type active layer and a first-It type cladding layer, and a second conductivity type impurity capable of reversing the conductivity type of the crystal from the surface of the semiconductor laser crystal is added to the active layer. Diffusions jI formed by selectively implanting in a stripe shape until reaching the semiconductor substrate, and grooves formed in a direction perpendicular to the stripe-shaped diffusion layer whose depth reaches the semiconductor substrate and separates the stripe-shaped diffusion layer. and the two stripes separated by the groove have different shapes, and at least one side surface of the groove is a laser resonator surface.

(作用) ウィンド・ストライプ型レーザ(以下WS−LDと略記
する)は、通常の半導体レーザと異なり、亜鉛拡散によ
りp1接合を形成する。したがって、亜鉛拡散の方法を
変化させることによって同一のレーザ結晶の光学的性質
をフォトダイオードに適したものに変えることができる
。WS−LDの例としては、1979年発行のジャーナ
ル・オフ・カンタム・エレクトロニクス(Journa
l ofQuantum Electronics) 
QE −15、p775゜に発表があり、その概要は以
下の如くである。
(Function) A wind stripe laser (hereinafter abbreviated as WS-LD) differs from a normal semiconductor laser in that a p1 junction is formed by zinc diffusion. Therefore, by changing the method of zinc diffusion, the optical properties of the same laser crystal can be changed to make it suitable for photodiodes. An example of WS-LD is the Journal of Quantum Electronics published in 1979.
of Quantum Electronics)
There was a presentation in QE-15, p775゜, and the summary is as follows.

1型GaAs基板にすべてn型のクラッド層、活性層、
り2ラド層を順次積層し、亜鉛を結晶の表面からストラ
イプ状のマスクを通して活性層に達するまで選択的に拡
散し、pn接合を形成する。
All n-type cladding layer, active layer,
Two RAD layers are sequentially laminated, and zinc is selectively diffused from the surface of the crystal through a striped mask until it reaches the active layer, forming a pn junction.

この結果、活性層の非拡散部に比べ屈折率が高くなるた
めプレーナ構造でありながら横モードの安定化が可能で
、なおかつ、共脹器端直に発振光に対して「窓領域」を
設けているため高出力動作が可能となる。
As a result, the refractive index is higher than that of the non-diffused part of the active layer, making it possible to stabilize the transverse mode even though it has a planar structure.In addition, a "window region" is provided for the oscillated light directly at the edge of the resonator. This enables high output operation.

レーザ部より受光部の方が拡散ストライプ幅が広いこと
の作用の1つは、受光面積が広がったことにょるレーザ
光の受光器への結合効率の向上である。この効果は、背
巾(レーザ部と受光器部間の距離)をせまくできないウ
ェットエツチングの場合に大きいと思われる。第2に受
光器の鍵子効率の向上である。レーザ部の拡散ストライ
ブ幅は2μm8度であり、受光部のストライプ幅を10
prrLとすると、拡散条件が同じならば、拡散フ、ロ
ントは、レーザ部に−比べ受光部の方が1.5倍程度深
い。
One of the effects of having a wider diffusion stripe width in the light receiving part than in the laser part is that the coupling efficiency of laser light to the light receiver is improved due to the expanded light receiving area. This effect is considered to be large in the case of wet etching, where the back width (distance between the laser section and the photodetector section) cannot be made narrow. The second is an improvement in the key element efficiency of the light receiver. The diffusion stripe width of the laser part is 2 μm 8 degrees, and the stripe width of the light receiving part is 10
Assuming prrL, if the diffusion conditions are the same, the diffusion front is about 1.5 times deeper in the light receiving part than in the laser part.

このことは、受光部の活性層(おけるホール濃度がレー
ザ部より大きいことを意味する。つまり受光部の実効的
なバンドギャップがより小さくなるため、レーザ光に対
する量子効率が向上することになる。
This means that the hole concentration in the active layer of the light receiving section is higher than that of the laser section. In other words, the effective bandgap of the light receiving section becomes smaller, which improves the quantum efficiency with respect to laser light.

(実施例) 次に1本発明の実施例について図面?参照して説明する
(Example) Next, what are the drawings for an example of the present invention? Refer to and explain.

第1図は本発明の実施例の模式図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

まず結晶としては従来のWS−LDと同様のものを使用
する。即ち(100)面を有するQ a A s基板1
1上に、有機金属熱分解気相成長法(MOCVD法)に
、Jet)入1 o、as G a O8@2 A 5
1クラット層(Se  )” −7”、キャリア濃度n
= 1 x 10%−j層厚2.0μm)12.GaA
g活性15(seトープ、キャリア濃度3 X 10 
”an−”、  層厚0.15μm)13、入lo、、
、Gao、、!Asクラッド層(Se)’−7”、キャ
リア濃度” ” I X 1017c!IL”−”、層
厚1.5μm)14゜GaAsキャップ層(アンドーグ
、層厚0.7μm、ただし図では表示していない)を順
次積層する。次に、SiNx膜を3000λ程度結晶表
面にデポジット1.フォトリングラフィ技術を用いて、
し−一ザ部には幅1.5〜2μmのウィンドウストライ
プパターンを、受光器部には幅10μmのストライプパ
ターンを形成し、拡散マスクとする。次にZnAsmを
拡散源とし、拡散温度617℃、拡散時間150分の条
件下で封管拡散を行なう。この結果、ホール濃度3xl
Ocm  程度の急峻なフロントが、クラッド層12中
に形成される。その後、ウェハ全面をSi0gスパッタ
膜(厚さ約4000λ)で覆い、750℃で5〜7時間
押込み拡散することにより、拡散フロントはレーザ部で
は活性層13に達し、ホール濃度5 X 10 ”Cl
117’のpn接合が活性層13中に形成される。この
とき、受光器部では拡散マスクが10μmと広いため、
より深く拡散が進み、活性層では1xlOcaに近いホ
ール濃度となる。
First, the same crystal as the conventional WS-LD is used. That is, a Q a A s substrate 1 having a (100) plane
On top of 1, metal organic pyrolysis vapor deposition method (MOCVD method), Jet) is added 1 o, as G a O8@2 A 5
1 crat layer (Se)"-7", carrier concentration n
= 1 x 10%-j layer thickness 2.0 μm)12. GaA
g activity 15 (se tope, carrier concentration 3 x 10
"an-", layer thickness 0.15μm) 13, input lo,,
, Gao,,! As cladding layer (Se)'-7", carrier concentration "I Next, a SiNx film of about 3000λ is deposited on the crystal surface using photolithography technology.
A window stripe pattern with a width of 1.5 to 2 .mu.m is formed in the laser part, and a stripe pattern with a width of 10 .mu.m is formed in the light receiver part, and these are used as a diffusion mask. Next, using ZnAsm as a diffusion source, sealed tube diffusion was performed under conditions of a diffusion temperature of 617° C. and a diffusion time of 150 minutes. As a result, the hole concentration is 3xl
A steep front on the order of Ocm is formed in the cladding layer 12. Thereafter, the entire surface of the wafer is covered with a Si0g sputtered film (thickness: approximately 4000λ), and by indentation diffusion at 750°C for 5 to 7 hours, the diffusion front reaches the active layer 13 in the laser part, and the hole concentration is 5 x 10''Cl.
A pn junction of 117' is formed in the active layer 13. At this time, since the diffusion mask is as wide as 10 μm in the receiver section,
Diffusion progresses deeper, and the hole concentration in the active layer becomes close to 1xlOca.

次に、GaAsキャップ層のみをアンモニア系のエツチ
ング液で選択的に除去し、5iOz膜15をスパッタし
たあと、拡散パターン通りに穴あけをし、必要ならばオ
ーミック用のzn拡赦を行なう。
Next, only the GaAs cap layer is selectively removed using an ammonia-based etching solution, and after sputtering a 5iOz film 15, holes are formed according to the diffusion pattern, and if necessary, ohmic zn expansion is performed.

その後、p電極16を形成し、ドライエツチングにより
、ストライプに直角に幅10〜20μm;深さは基板1
1に達するよりな垂直な溝を形成する。この際、レーザ
側の側面は共振器面として用いるためなめらかな面にな
るようエツチング条件を設定する。なお、レーザ部の他
の共振器面もエツチド・ミラーであっても良いが2図で
は内部構造を明りよりに表わす友め、途中で伸開した様
子を示している。
Thereafter, a p-electrode 16 is formed, and by dry etching, the width is 10 to 20 μm perpendicular to the stripe;
Form a more vertical groove reaching 1. At this time, since the side surface on the laser side is used as a resonator surface, etching conditions are set so that it becomes a smooth surface. It should be noted that the other resonator surfaces of the laser section may also be etched mirrors, but Figure 2 shows a state in which they are expanded and opened in the middle to clearly show the internal structure.

最後にn電極17全形成して本発明の実施例は完成する
Finally, the n-electrode 17 is completely formed to complete the embodiment of the present invention.

(発明の効果) 以上説明したように5本発明によれば、レーザ部と受光
器部の拡散幅を変えるだけでレーザ光の受光器への結合
効率を高め、同時に受光器の量子効率の向上を図ること
ができる。また、エツチドで緩和できるといつ効果も得
られる。
(Effects of the Invention) As explained above, according to the present invention, the coupling efficiency of laser light to the light receiver is increased by simply changing the diffusion width of the laser section and the light receiver section, and at the same time, the quantum efficiency of the light receiver is improved. can be achieved. Also, if it can be relieved with etutide, it will always be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の一実施例の構造を表わす模式図、第
2図は従来例であるBTR,S型のレーザ+受光器を表
わす模式図である。 11・・・・・・n型GaAs基板、12.14・・・
・・・n聖人1 o、as Ga O,@I ASクラ
ッド層、  13−−−−・・n型GaAs活性層、1
5”==8i02スパッタ膜、16゜28・・・・・・
p電極、 17.27・・・・・・口電極、21・・・
・・・n型GaAs基板、22・・・・・・1型GaA
sプaツク層、23・・・・−・p型入JyGax−y
Asクラッド層、24・・・・・・klzGal−xA
s活性層、25・・・・・・n型AlyGat−yAs
クラッド層、 26 =−−−−n型G a A sキ
ャップ層。
FIG. 1 is a schematic diagram showing the structure of an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a conventional example of a BTR, S-type laser+light receiver. 11...n-type GaAs substrate, 12.14...
...n Saint 1 o, as Ga O, @I AS cladding layer, 13---...n-type GaAs active layer, 1
5”==8i02 sputtered film, 16°28...
p electrode, 17.27... mouth electrode, 21...
...n-type GaAs substrate, 22...1-type GaA
s a block layer, 23...--p type JyGax-y
As cladding layer, 24...klzGal-xA
s active layer, 25... n-type AlyGat-yAs
cladding layer, 26 =---n-type GaAs cap layer.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に少なくとも第1導電型のク
ラッド層、第1導電型の活性層、第1導電型のクラッド
層の順次積層された半導体レーザ結晶と、該半導体レー
ザ結晶の表面から該結晶の導電型を反転し得る第2導電
型不純物を前記活性層に達するまでストライプ状に選択
的に注入して形成された拡散層と、該ストライプ状の拡
散層と直角方向に深さが前記半導体基板に達し、前記ス
トライプ状の拡散層を分離するより形成された溝とを含
み前記溝によって隔てられた2つのストライプの形状は
異なる形状をなし、かつ前記溝の側面の少なくとも一方
はレーザ共振器面となされることを特徴とする複合光集
積素子。
A semiconductor laser crystal in which at least a cladding layer of a first conductivity type, an active layer of a first conductivity type, and a cladding layer of a first conductivity type are sequentially laminated on a semiconductor substrate of a first conductivity type; a diffusion layer formed by selectively implanting a second conductivity type impurity capable of inverting the conductivity type of the crystal in a stripe shape until it reaches the active layer; a groove formed in the semiconductor substrate and separating the striped diffusion layer; two stripes separated by the groove have different shapes; and at least one side surface of the groove is formed by a laser beam. A composite optical integrated device characterized by being formed with a resonator plane.
JP60259979A 1985-11-19 1985-11-19 Complex optical integrated device Pending JPS62119969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259979A JPS62119969A (en) 1985-11-19 1985-11-19 Complex optical integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259979A JPS62119969A (en) 1985-11-19 1985-11-19 Complex optical integrated device

Publications (1)

Publication Number Publication Date
JPS62119969A true JPS62119969A (en) 1987-06-01

Family

ID=17341588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259979A Pending JPS62119969A (en) 1985-11-19 1985-11-19 Complex optical integrated device

Country Status (1)

Country Link
JP (1) JPS62119969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293642A (en) * 1995-04-24 1996-11-05 Mitsubishi Electric Corp Manufacture and evaluation of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293642A (en) * 1995-04-24 1996-11-05 Mitsubishi Electric Corp Manufacture and evaluation of semiconductor laser

Similar Documents

Publication Publication Date Title
US4914670A (en) Distributed bragg reflector type semiconductor laser
US4719633A (en) Buried stripe-structure semiconductor laser
JPS62119969A (en) Complex optical integrated device
JPS61113293A (en) Semiconductor laser array device
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
JP2869995B2 (en) Method of manufacturing semiconductor laser with embedded high-resistance semiconductor layer
JPH05218585A (en) Semiconductor light emitting device
JPS6118189A (en) Semiconductor laser array device and manufacture thereof
KR100259004B1 (en) Semiconductor laser diode array device and its manufacturing method
JP2538258B2 (en) Semiconductor laser
JPS6358390B2 (en)
JPS63147379A (en) Manufacture of end-face light-emitting diode
JPS596588A (en) Semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH02119285A (en) Manufacture of semiconductor laser
JP2000101186A (en) Semiconductor optical element
JPS59154088A (en) Semiconductor laser
JPH01196894A (en) Semiconductor laser device
JPS58192394A (en) Semiconductor laser device
JPS6042885A (en) Semiconductor laser device
JPH0233988A (en) Semiconductor laser
JPS58220485A (en) Semiconductor light emitting device and manufacture thereof
JPS625354B2 (en)
JPH02156591A (en) Semiconductor laser
JPS5896791A (en) Manufacture of semiconductor light-emitting device