JPS62119195A - Molecular beam source - Google Patents

Molecular beam source

Info

Publication number
JPS62119195A
JPS62119195A JP60259992A JP25999285A JPS62119195A JP S62119195 A JPS62119195 A JP S62119195A JP 60259992 A JP60259992 A JP 60259992A JP 25999285 A JP25999285 A JP 25999285A JP S62119195 A JPS62119195 A JP S62119195A
Authority
JP
Japan
Prior art keywords
molecules
cracker
molecular beam
raw material
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60259992A
Other languages
Japanese (ja)
Inventor
Takashi Mizutani
隆 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60259992A priority Critical patent/JPS62119195A/en
Publication of JPS62119195A publication Critical patent/JPS62119195A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/30Reducing waste in manufacturing processes; Calculations of released waste quantities

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain the titled molecular beam source simultaneously realizing efficient consumption of a raw material and decomposition reaction by specifically providing a baffle plate in a cracker part for decomposing a group-V tetratomic molecule, the raw material of a III-V compd. semiconductor, into a diatomic molecule. CONSTITUTION:Solid As 2 is packed in a crucible 1 made of PBN and the first baffle plate 5 is placed in the cracker part 3 made of PBN at the position >=2 times the diameter of an opening part 4 apart from the opening part. Since baffle plates, for example, are further placed at regular intervals. The leading end part of the cracker part 3 is heated by a heater 6 and the crucible 1 is heated by a heater 7. Since the baffle plates for promoting the collision of the molecules with the wall are thus provided, the group-V tetratomic molecule, the raw material, such as As is effectively decomposed into a diatomic molecule, the waste of the raw material is reduced, and the molecules can be effectively supplied to a substrate crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分子線源に関し、特にV族の2原子分子を発生
する分子線源の改良に関するものであり、より詳しくは
2原子分子の発生効率の向上と分子線の強度分布向上に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molecular beam source, and in particular to an improvement in a molecular beam source that generates diatomic molecules of group V. This is related to improving efficiency and improving the intensity distribution of molecular beams.

〔従来の技術〕[Conventional technology]

従来、G、A、等のI[I−V族fヒ合物半導木を分子
線結晶成長法によって成長させる場合に、金属G、と固
体のヒ素をそれぞれ別のるつぼに入れ、これを真空中で
加熱して分子線とし、基板結晶に供給して成長層を得て
いた。この時、ヒ素は4原子分子として供給されるので
あるが、これを更に熱分解して2原子分子にすれば結晶
の品質が良くなる筈であるとの報告がなされるようにな
った。
Conventionally, when growing I-V group f arsenic semiconductor trees such as G, A, etc. by molecular beam crystal growth, metal G and solid arsenic were placed in separate crucibles, and then The molecular beam was heated in a vacuum and supplied to the substrate crystal to obtain a growth layer. At this time, arsenic is supplied as a 4-atom molecule, but it has been reported that the quality of crystals should be improved if this is further thermally decomposed into diatomic molecules.

例えばマックス・ブランク研究所のキンツェル氏らは論
文アプライド・フィジックス(Applied  Ph
ysics)のA28巻(1982年)167ページか
ら173ページの中で、4原子分子から2原子分子に変
えることによって深い準位が減少したと報告した。フィ
リップス研究所の二−ブ氏らも論文アプライド・フィジ
ックス・レターズ(Applied  Physics
  Letters)の第36巻(1980年)311
ぺ一ジの中で同様の報告を行なった。
For example, Mr. Kinzel of the Max Blank Institute et al.
ysics), Volume A28 (1982), pages 167 to 173, reported that the deep levels were reduced by changing from a tetraatomic molecule to a diatomic molecule. Mr. Nieve and his colleagues at the Phillips Institute also published a paper in Applied Physics Letters.
Letters) Volume 36 (1980) 311
A similar report was made on the same page.

クラッカー部の内部はキンツェル氏のように分子の飛行
を妨げるような物を置かない場合とユニット氏等の論文
ジャーナル・オブ・バキューム・サイエンス・アンド・
テクノロジー(Jurnal  of  Vacuum
  5cience  and  Technolog
y)第83巻(1985年)823ページから829ペ
ージの第1図のように何枚もの邪魔板を挿入する場合が
ある。
The inside of the cracker part is different from the case where nothing is placed that would impede the flight of molecules like Mr. Kinzel, and the paper published by Mr. Unit et al. in the Journal of Vacuum Science and
Technology (Journal of Vacuum)
5science and technology
y) As shown in Figure 1 on pages 823 to 829 of Volume 83 (1985), multiple baffle plates may be inserted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

邪魔板を置かない場合には2原子分子への分解効率が減
るとともに、分子線の指向性が強くなり、基板結晶全体
に充分な量の■族の2原子分子を供給できないという欠
点があった。また、邪魔板をクラッカー部全体に置いた
場合には分子線の指向性がなくなり、基板結晶以外の方
向にも多量の分子を飛ばすので基板結晶への原料供給効
率が悪くなり、短期間で原料を消費し尽してしまうとい
う欠点があった。
When a baffle plate is not provided, the decomposition efficiency into diatomic molecules decreases, the directionality of the molecular beam becomes strong, and there is a drawback that a sufficient amount of group II diatomic molecules cannot be supplied to the entire substrate crystal. . In addition, if a baffle plate is placed over the entire cracker part, the directionality of the molecular beam will be lost and a large amount of molecules will be ejected in directions other than the substrate crystal, which will reduce the efficiency of supplying raw materials to the substrate crystal, resulting in a short period of time. The disadvantage was that it used up all of the energy.

本発明の目的は以上の不具合を解決し、効率的に4原子
分子を2原子分子に分解するとともに、基板結晶に高い
効率で分子線を供給できる分子線源を提供することにあ
る。
An object of the present invention is to solve the above problems and provide a molecular beam source that can efficiently decompose a four-atom molecule into two-atom molecules and supply a molecular beam to a substrate crystal with high efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の分子線源は、クラッカー部の内部に邪魔板を
置いて分子と壁との衝突確率を増大させるとともに、邪
魔板をクラッカー部の開口部から開口部の直径の2倍以
上の距離をおいて置くことにより構成される。
In the molecular beam source of the present invention, a baffle plate is placed inside the cracker part to increase the probability of collision between molecules and the wall, and the baffle plate is placed at a distance of at least twice the diameter of the opening from the opening of the cracker part. It is composed by setting it aside.

〔作用〕[Effect]

本発明の基礎を理解するために、まず円筒内部の分子の
運動を考える。分子線結晶成長は通常分子と分子の衝突
が無視し得る高い真空度の真空槽内において行なわれる
。この時、分子線源においてもほぼその条件が満足され
るので以下、分子流領域の分子の運動を考える。
To understand the basis of the present invention, first consider the motion of molecules inside a cylinder. Molecular beam crystal growth is usually carried out in a vacuum chamber at a high degree of vacuum where collisions between molecules can be ignored. At this time, since this condition is almost satisfied in the molecular beam source as well, the motion of molecules in the molecular flow region will be considered below.

分子は壁と衝突すると、壁に吸着し、壁と熱的に平衡と
なった後、余弦則に従った確率密度で空間に飛び出す。
When a molecule collides with a wall, it adsorbs to the wall, reaches thermal equilibrium with the wall, and then flies out into space with a probability density according to the cosine law.

従って、モンテ・カルロ法等の手法を使えば分子の飛行
をシミュレーションすることができる。
Therefore, the flight of molecules can be simulated using techniques such as the Monte Carlo method.

第4図は出口につばの1寸いた円筒である。20開の内
径で100龍の長さがある。この中の分子の飛行をシミ
ュレーションすると、第5図と第6図が得られる。第5
図は円筒の出口から12cm離れた場所で分子線がどの
ような強度分布するか調べたものである。この位置はま
た基板結晶が置かれる位置でもある。中央的2 cm付
近が高い強度であることがわかる。この理由は第6図か
ら明らかになる。第6図は円筒の出口で分子の飛行方向
の密度分布をシミュレ−1−したちのであるが、極めて
指向性の強い分子線を形成することがわかる。
Figure 4 shows a cylinder with a 1-inch brim at the outlet. It has an inner diameter of 20 mm and a length of 100 mm. When the flight of the molecules in this is simulated, Figures 5 and 6 are obtained. Fifth
The figure shows the intensity distribution of the molecular beam at a location 12 cm away from the exit of the cylinder. This location is also the location where the substrate crystal is placed. It can be seen that the intensity is high near the central 2 cm. The reason for this becomes clear from FIG. Figure 6 shows a simulation of the density distribution in the flight direction of molecules at the exit of the cylinder, and it can be seen that extremely directional molecular beams are formed.

つまり、円筒の出口からほぼ垂直に出てくる分子が圧倒
的に多いので、12cm離れた基板結晶に円筒の出口の
形そのままで分子が当ることになる。
In other words, since the overwhelming majority of molecules come out almost perpendicularly from the exit of the cylinder, the molecules hit the substrate crystal 12 cm away from the cylinder in the same shape as the exit of the cylinder.

このため、このような分子線ではこの領域からはみ出す
ような大きな基板結晶上の成長は行なえないことになる
。また、分子線の指向性が強いことは、壁との衝突の確
率も減少することを意味するので、4原子分子から2原
子分子への分解効率も悪くなる。
For this reason, such molecular beams cannot grow on large substrate crystals that protrude from this region. Moreover, the strong directivity of the molecular beam means that the probability of collision with a wall is also reduced, so the decomposition efficiency from tetraatomic molecules to diatomic molecules also becomes poor.

指向性を弱くするには、適当な邪魔板を置けば良いこと
は明らかである。
It is clear that in order to weaken the directivity, it is sufficient to place an appropriate baffle plate.

第7図はその例であって、上記円筒の中に8板の邪魔板
をl cmの間隔で並べたものである。12cm離れた
所での分子密度と、円筒出口における飛行方向の密度分
布を第8図と第9図に示す。予想通り、指向性は無くな
ったが、基板結晶の位置で2インチ(半径2.5 cm
 )あるいは3インチ(半径3.8 cm )径以上に
分子をばらまいていることになる。これは原料が無駄に
消費されることを意味する。
FIG. 7 shows an example of this, in which eight baffle plates are arranged in the cylinder at intervals of 1 cm. The molecular density at a distance of 12 cm and the density distribution in the flight direction at the cylinder exit are shown in Figures 8 and 9. As expected, the directivity disappeared, but the 2 inch (radius 2.5 cm)
), or the molecules are scattered over a diameter of 3 inches (3.8 cm radius). This means that raw materials are wasted.

本発明の目的は上記した従来の欠点を排除したもので、
効率的な原料の消費と、効率的な分解反応を合わせて実
現する分子線源を提供することにある。
The object of the present invention is to eliminate the above-mentioned conventional drawbacks,
The objective is to provide a molecular beam source that achieves both efficient raw material consumption and efficient decomposition reactions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の分子線源は、基板上に成長すべきm−■化合物
半導体の原料であるV族分子線材料が充填されたるつぼ
と、該るつぼを加熱することによって発生するV族の4
原子分子をさらに高温に加熱することによって分解し2
原子分子にするクラッカー部とからなり、前記クラッカ
ー部の内部に於いて分子と壁との衝突を促進するための
邪魔板をクラッカー部の開口部の直径の2倍以上の距離
だけクラッカー部の開口部から離して構成されている。
The molecular beam source of the present invention includes a crucible filled with a group V molecular beam material, which is a raw material for an m-■ compound semiconductor to be grown on a substrate, and a group V molecular beam material generated by heating the crucible.
By heating the atomic molecules to a higher temperature, they are decomposed 2
a cracker section that converts atoms into molecules, and a baffle plate for promoting collision between the molecules and the wall inside the cracker section. It is configured separately from the section.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の分子線源の概念図である。FIG. 1 is a conceptual diagram of a molecular beam source according to an embodiment of the present invention.

本実施例の電子線源は第1図に示すように、内径が20
mm、長さ90龍のPBN製るつぼ1に80グラムの固
体ヒ素2を充填し、内径が20ml11長さが12cm
のPBN製のクラッカー部3の内部にクラッカー部の開
口部4から開口部の直径の2倍の40叩離して第1の邪
魔板5を置き、その後に10龍間隔で邪魔板6枚を置い
た。るつぼとクラッカー部はすり合わせ部8によってす
き間なく連結した。クラッカー用ヒータ6によってクラ
ッカー部の先端8 cmを800°Cに加熱し、るつぼ
用ヒータ7によってるつぼを300°Cに加熱した。
As shown in Fig. 1, the electron beam source of this example has an inner diameter of 20 mm.
Fill a PBN crucible 1 with a length of 90 mm and a length of 80 grams of solid arsenic 2, with an inner diameter of 20 ml and a length of 12 cm.
A first baffle plate 5 was placed inside the cracker part 3 made of PBN at a distance of 40 mm, twice the diameter of the opening, from the opening 4 of the cracker part, and then six baffle plates were placed at intervals of 10 mm. Ta. The crucible and the cracker part were connected without any gap by a fitting part 8. The cracker heater 6 heated the tip 8 cm of the cracker portion to 800°C, and the crucible heater 7 heated the crucible to 300°C.

この分子線源から得られた分子線強度はシミュレーショ
ン結果と良く一致し、第2図のようであった。すなわち
、第5図と第8図の中間の分子線強度分布を持ち、基板
結晶に効果的にヒ素分子線を供給することができた。シ
ミュレーションによれば、クラッカー部の出口でのヒ素
分子の方向密度分布は第3図のようにまだ指向性を残し
ている4これはクラッカー部の出口f寸近の邪魔板のな
い円筒部によって形成された指向性であり、いわば設計
された指向性である。
The molecular beam intensity obtained from this molecular beam source was in good agreement with the simulation results, as shown in Figure 2. That is, it had a molecular beam intensity distribution intermediate between those in FIG. 5 and FIG. 8, and was able to effectively supply arsenic molecular beams to the substrate crystal. According to the simulation, the directional density distribution of arsenic molecules at the exit of the cracker section still remains directional as shown in Figure 3.4 This is formed by the cylindrical section without a baffle near the exit f of the cracker section. This is a designed directivity, so to speak.

本発明の構造は4分子原子の2原子分子への分解におい
ても効率的であり、質量分析計による測定では本発明の
分子線源を上記条件にて使用したところ、分解効率は9
2%であった。これは、邪魔板を奥に押し込んだ構造に
したことから、クラッカー部の最も温度の高くなる中央
部から直接に飛び出す分子の確立が増大したためである
と考えられる。
The structure of the present invention is also efficient in decomposing four molecular atoms into diatomic molecules, and when the molecular beam source of the present invention was used under the above conditions in measurements using a mass spectrometer, the decomposition efficiency was 9.
It was 2%. This is thought to be because the structure in which the baffle plate was pushed deep increased the probability of molecules jumping out directly from the center of the cracker, where the temperature was highest.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による分子線源はヒ素など
のV族原料の4原子分子を効果的に2原子分子に分解し
、かつそれを原料の無駄を小さくして効果的に基板結晶
に供給できることがわかる。
As explained above, the molecular beam source according to the present invention effectively decomposes four-atom molecules of group V raw materials such as arsenic into diatomic molecules, and effectively transfers them to substrate crystals with less waste of raw materials. We know that we can supply it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概念図、第2図は第1図の
クラッカー部の出口より12cm離れた位置における分
子線強度分布図、第3図は第1図のクラッカー部出口に
おける分子線の方向密度分布図、第4図は邪魔板のない
クラッカー部の断面図、第5図は第4図のクラッカー部
出口より12cm離れた場所での分子線強度分布図、第
6図は第4図のクラッカー部出口における分子線の方向
密度分布図、第7図は出口付近まで邪魔板のあるクラ・
ンカ一部の断面図、第8図は第7図のクラッカー部出口
より12cmMれな場所での分子線強度分布図、第9図
はクラッカー部出口における分子線の方向密度分布図で
ある。 1・・・るつぼ、2・・・原料ヒ素、3・・・クラッカ
ー部、4・・・クラッカー部出口、5・・・邪魔板、6
・・・クラッカー用ヒータ、7・・・るつぼ用ヒータ。 茅 f 凹 $  2 1!1 第3 図 第4[!I 茅 5 国 〕イ;  乙   頂]
Fig. 1 is a conceptual diagram of an embodiment of the present invention, Fig. 2 is a molecular beam intensity distribution diagram at a position 12 cm away from the exit of the cracker section in Fig. 1, and Fig. 3 is a diagram at the exit of the cracker section in Fig. 1. Figure 4 is a cross-sectional view of the cracker section without a baffle plate. Figure 5 is a molecular beam intensity distribution diagram at a location 12 cm away from the exit of the cracker section in Figure 4. Figure 6 is the directional density distribution diagram of molecular beams. Figure 4 shows the directional density distribution of molecular beams at the exit of the cracker, and Figure 7 shows the cracker with a baffle near the exit.
FIG. 8 is a cross-sectional view of a part of the cracker, FIG. 8 is a molecular beam intensity distribution diagram at a location 12 cm away from the exit of the cracker section in FIG. 7, and FIG. 9 is a directional density distribution diagram of molecular beams at the exit of the cracker section. 1... Crucible, 2... Raw material arsenic, 3... Cracker section, 4... Cracker section outlet, 5... Baffle plate, 6
... Heater for crackers, 7... Heater for crucibles. Kaya f concave $ 2 1!1 Figure 3 Figure 4 [! I Kaya 5 country] A; Otsu top]

Claims (1)

【特許請求の範囲】[Claims] 基板上に成長すべきIII−V化合物半導体の原料である
V族分子線材料が充填されたるつぼと、該るつぼを加熱
することによって発生するV族の4原子分子をさらに高
温に加熱することによって分解し2原子分子にするクラ
ッカー部とからなり、前記クラッカー部の内部に於いて
分子と壁との衝突を促進するための邪魔板をクラッカー
部の開口部の直径の2倍以上の距離だけクラッカー部の
開口部から離したことを特徴とする分子線源。
By further heating the crucible filled with Group V molecular beam material, which is the raw material for the III-V compound semiconductor to be grown on the substrate, and the Group V four-atom molecules generated by heating the crucible, to a higher temperature. a cracker part that decomposes into diatomic molecules, and a baffle plate for promoting collision between the molecules and the wall inside the cracker part by a distance of at least twice the diameter of the opening of the cracker part. A molecular beam source characterized by being separated from the opening of the
JP60259992A 1985-11-19 1985-11-19 Molecular beam source Pending JPS62119195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259992A JPS62119195A (en) 1985-11-19 1985-11-19 Molecular beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259992A JPS62119195A (en) 1985-11-19 1985-11-19 Molecular beam source

Publications (1)

Publication Number Publication Date
JPS62119195A true JPS62119195A (en) 1987-05-30

Family

ID=17341782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259992A Pending JPS62119195A (en) 1985-11-19 1985-11-19 Molecular beam source

Country Status (1)

Country Link
JP (1) JPS62119195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729097B1 (en) 2005-12-28 2007-06-14 삼성에스디아이 주식회사 Evaporation source and method for thin film evaporation using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729097B1 (en) 2005-12-28 2007-06-14 삼성에스디아이 주식회사 Evaporation source and method for thin film evaporation using the same

Similar Documents

Publication Publication Date Title
Cai et al. Three‐dimensional magnesia‐based nanocrystal assemblies via low‐temperature magnesiothermic reaction of diatom microshells
CA2344342A1 (en) Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride:silicon carbide alloy
Wakabayashi et al. Towards the selective formation of specific isomers of fullerenes: T-and p-dependence in the yield of various isomers of fullerenes C 60–C 84
WO2009066663A1 (en) Polygonal columnar material of aluminum nitride single crystal, and process for producing plate-like aluminum nitride single crystal using the polygonal columnar material
ATE237703T1 (en) METHOD AND REACTOR FOR GROWING SILICON CARBIDE CRYSTALS BY CHEMICAL VAPOR DEPOSITION
JPS62119195A (en) Molecular beam source
ES2307499T3 (en) PROCEDURE FOR THE CONTROL OF THE CRYSTAL SIZE DURING CONTINUOUS MASS CRYSTALIZATION.
IL147163A (en) Dinucleotide crystals
Adolph et al. Polyoma virion and capsid crystal structures
Ji et al. Simultaneous catalyst-free growth of highly oriented ZnO nanowires and microtubes
Ishizaki et al. Atomic layer epitaxy of AlAs and (AlAs) n (GaAs) s
DE3567846D1 (en) Process for preparing cyanamide
PL350827A1 (en) Method of preparing granular n-alkyl-ammonium acetonitrile salts
EP0319122B1 (en) Apparatus and its use for producing semiconductors
JPS6472990A (en) Crystal growing device by molecular beam of gaseous source
Orlovskii et al. Synthesis of monocrystals of LuPO sub 4
Abduev et al. Growth of hollow annular zinc oxide structures
JPS6452069A (en) Method for synthesizing aluminum nitride film at high speed
Bhat et al. Characterization of gel-grown neodymium heptamolybdate crystals
Bokros et al. Effect of the Cooling Rate on the Grain-Size of the Alumina Hydrate at the Stirring Decomposition of Aluminate Lyes
Deryagin et al. Diamond synthesis at ultra-low pressures
RU2000107909A (en) METHOD FOR PRODUCING THREADY CRYSTALS
Parvez et al. DL-Pheniramine hydrogen maleate
JPS58125690A (en) Synthesis of diamond
JPH0136977B2 (en)