JPS58125690A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPS58125690A
JPS58125690A JP57004226A JP422682A JPS58125690A JP S58125690 A JPS58125690 A JP S58125690A JP 57004226 A JP57004226 A JP 57004226A JP 422682 A JP422682 A JP 422682A JP S58125690 A JPS58125690 A JP S58125690A
Authority
JP
Japan
Prior art keywords
carbon
metal
crystal
seed crystal
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57004226A
Other languages
Japanese (ja)
Inventor
Akihito Yoshida
晃人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57004226A priority Critical patent/JPS58125690A/en
Publication of JPS58125690A publication Critical patent/JPS58125690A/en
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/02Zone-melting with a solvent, e.g. travelling solvent process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To grow a high quality diamond, by using a different material at a part of cylindrical heater made of e.g. carbon from the material at the rest part of the heater, thereby making the temperature uniform in the crystal growth region, and keeping a temperature difference between the carbon source and the seed crystal. CONSTITUTION:A seed crystal 1, a solvent metal 2, and a carbon source 3 are placed in a cylindrical heater made of carbon or a metal. The cylindrical heater is composed of a part 7 having high resistance and a part 8 having low resistance, and the heat generation at the part 8 having low resistance is adjusted to lower than that of the part 7 having high resistance. The temperature distribution in the part (crystal growth region) below the solvent metal 2 is made uniform by this arrangement, and the temperature gradient of the carbon source 3 is increased. The whole reaction chamber can be utilized effectively by this process, and a large-sized single crystal can be synthesized in high efficiency.

Description

【発明の詳細な説明】 るものである。[Detailed description of the invention] It is something that

従来のダイヤモンド合成方法は第1図(イ)に示すよう
な反応室を用いて、ダイヤモンドを高温高1ト:下で種
結晶より合成する方法が知られている。第1図(イ)は
円板状反応室の軸方向中央断面図で、1は種結晶,2は
溶媒金属( FeI N ’ l co+ c r +
 Mn l ’I”aまたはこれらを含む合金)、ろは
炭素供給源,5は円筒状ヒーターである。一般にこのよ
うな反応室の構成では軸方向中央部と溶媒金属底部との
間に第1図(口)のような湿度差Atが生じ、これによ
る溶媒金属への炭素の溶解度差を利用して種結晶1上に
ダイヤモンドを成長させる。なお4および6はそれぞれ
Nail 、パイロフィライトなどの圧力媒体である。
A conventional diamond synthesis method is known in which diamond is synthesized from a seed crystal at a high temperature and under 100 mph using a reaction chamber as shown in FIG. 1(a). FIG. 1(a) is an axial center cross-sectional view of a disc-shaped reaction chamber, where 1 is a seed crystal, 2 is a solvent metal (FeI N'l co+ cr +
5 is a cylindrical heater.Generally, in such a reaction chamber configuration, a first A humidity difference At occurs as shown in the figure (mouth), and diamond is grown on the seed crystal 1 using the resulting difference in the solubility of carbon in the solvent metal. Note that 4 and 6 are Nail, pyrophyllite, etc., respectively. It is a pressure medium.

さらに説明を加えると、従来の方法ではダイヤモンド結
晶が成長するにつれてその先端部と溶媒との温度差が小
さくなる。従って大型の高品質製品を合成する場合、成
長初期には成長速度が早く結晶が成長するに従い成長速
度が遅くなるため、(1)  在来の構成の反応室では
溶媒等の不純物か含有され易く、特に種結晶に近い結晶
の底面付近で暑しい。このため不純物の極めて少ない高
品質の結晶を合成するには成長速度を遅くしなければな
らず経済的でない。
To explain further, in the conventional method, as the diamond crystal grows, the temperature difference between its tip and the solvent decreases. Therefore, when synthesizing large-scale, high-quality products, the growth rate is fast in the initial stage of growth, and as the crystal grows, the growth rate slows down. , especially near the bottom of the crystal near the seed crystal. Therefore, in order to synthesize high-quality crystals with extremely few impurities, the growth rate must be slowed down, which is not economical.

(2)  高圧容器の下半分しか使うことができない。(2) Only the lower half of the high-pressure vessel can be used.

(3)  合成できる結晶の大きさに制限かある。(3) There are limits to the size of crystals that can be synthesized.

等の欠点かある。There are some drawbacks such as.

本発明は上記の点に鑑みなされたダイヤモンド合成方法
を提供するものでその特徴は、炭素または金属からなる
円筒形ヒーターの一部の利質または形状を変えることに
より結晶成長領域の温度を均一にし、かつ炭素供給源と
種結晶の間に温度差を持たせ、これによる溶媒金属への
炭素の溶解度差を利用して種結晶からダイヤモンドを成
長させることにある。
The present invention provides a diamond synthesis method devised in view of the above points, and its feature is that the temperature in the crystal growth region is made uniform by changing the quality or shape of a part of the cylindrical heater made of carbon or metal. , and to create a temperature difference between the carbon supply source and the seed crystal, and to grow diamond from the seed crystal by utilizing the resulting difference in the solubility of carbon in the solvent metal.

以下本発明を図面を用いて説明する。The present invention will be explained below using the drawings.

第2図(イ)に示す円筒形ヒーターにおいて、抵抗大の
部分7と抵抗小の部分8を設け、8の発熱量を7に較べ
て小さくすることにより溶媒金属2の下の部分(結晶の
成長領域)の温度分布を第2図(ロ)のように均一にす
る。
In the cylindrical heater shown in FIG. 2(a), a portion 7 with high resistance and a portion 8 with low resistance are provided, and by making the calorific value of 8 smaller than that of 7, the portion under the solvent metal 2 (the part of the crystal) The temperature distribution in the growth region) is made uniform as shown in Figure 2 (b).

または、第3図(イ)のように溶媒金属2と炭素供給源
ろとの間にNaCl等の熱伝導の低い物質でできた開口
部を有する断熱層9を設ける。この断熱層9により開口
部内の溶媒金属2または炭素供給源6の温度勾配を大き
くし、相対的に溶媒金属2の下の部分の温度勾配を第3
図(ロ)のように小さくする。
Alternatively, as shown in FIG. 3(A), a heat insulating layer 9 having an opening made of a substance with low thermal conductivity such as NaCl is provided between the solvent metal 2 and the carbon supply source. This heat insulating layer 9 increases the temperature gradient of the solvent metal 2 or the carbon supply source 6 within the opening, and relatively reduces the temperature gradient of the portion below the solvent metal 2 to a third level.
Make it smaller as shown in figure (b).

本発明のダイヤモンド合成方法の利点は、(1)  従
来の方法では炭素供給源を位置させるべき最高温部が反
応室の軸方向中心にあり、合成に利用できる範囲は下半
分に限られ、上半分は対流等により良質の結晶合成には
適していないが、本発明の方法ならば反応室に任意の温
度分布を与えることができるので、反応室全体を翁効に
使うことが可能になる。
The advantages of the diamond synthesis method of the present invention are as follows: (1) In the conventional method, the highest temperature area where the carbon source should be located is in the axial center of the reaction chamber, and the area available for synthesis is limited to the lower half; Half of the reaction chamber is not suitable for synthesizing high-quality crystals due to convection, etc., but the method of the present invention makes it possible to provide an arbitrary temperature distribution to the reaction chamber, making it possible to use the entire reaction chamber efficiently.

(2)  反応室内の結晶成長領域の温度が均一である
ため成長の条件が一定に保たれ、溶媒等の不純物の混入
が少ないため、高品質の結晶を合成することかできる。
(2) Since the temperature of the crystal growth region in the reaction chamber is uniform, the growth conditions are kept constant and there is little contamination of impurities such as solvents, making it possible to synthesize high-quality crystals.

(31+11の理由に加えて、従来の方法では結晶は温
良差の小さくなる方向へ成長してゆき、次第に成長速度
か小さくなるか、本発明の方法ではそのようなことは起
らないので、直径数mm以上の大型単結晶でも効率よく
合成することができる。
(In addition to the reason for 31+11, in the conventional method, the crystal grows in the direction of decreasing temperature difference, and the growth rate gradually decreases, but in the method of the present invention, such a thing does not occur, so the diameter Even large single crystals of several mm or more can be efficiently synthesized.

等である。etc.

〔実施例/〕〔Example/〕

反応室は第4図に示すような構成とし、ヒーターとして
外径2’1mm l内径、:l、:1mmの黒鉛円筒を
用い、その一部をMOの円筒とした。その円筒における
配置は」二から黒鉛7’、 Mo g’、黒鉛7′の順
でその長さの比は3:2:3とした。その内側に外径/
gmmのpe−1,2Ni型の円柱を溶媒金属2として
配置し、その上に炭素供給源6として323/’100
メツシコーの合成ダイヤモンドと人造黒鉛粉末を重量比
で3:/に混合した粉末を配置した。この周囲には圧力
媒体4としてNaC1を配置し、溶媒金属2の底面にあ
たる部分に種結晶1として33/lloメツシユの合成
ダイヤモンドを埋め込んだ。
The reaction chamber was constructed as shown in FIG. 4, and a graphite cylinder with an outer diameter of 2'1 mm and an inner diameter of 1 mm was used as a heater, and part of the cylinder was made of MO. The arrangement in the cylinder was from graphite 7' to Mog' to graphite 7' in this order, with a length ratio of 3:2:3. Outside diameter/
A pe-1,2 Ni type cylinder of gmm is placed as the solvent metal 2, and a carbon source 6 of 323/'100 is placed on top of it as the solvent metal 2.
A powder made by mixing Metsushiko's synthetic diamond and artificial graphite powder at a weight ratio of 3:/ was placed. NaCl was placed around this as a pressure medium 4, and a 33/llo mesh synthetic diamond was embedded as a seed crystal 1 in the bottom of the solvent metal 2.

この構成体をガードル型超高圧装置を用いて加IE L
 jj k bの圧力を加え、次いでヒーターに通電し
炭素供給源乙の温度か7500°Cになるよう加熱した
This structure was subjected to IEL using a girdle-type ultra-high pressure device.
A pressure of jj k b was applied, and then electricity was applied to the heater to heat the carbon supply source B to 7500°C.

この条件をぶ0時間保持した後加熱を停止し、減圧後に
試別を取り出したところ/110 myの溶媒等の不純
物かほとんど混入していない単結晶か種結晶」二に成長
していた。
After maintaining these conditions for 0 hours, the heating was stopped and the sample was taken out after reducing the pressure. When the sample was taken out, it was found that a single crystal or seed crystal of 110 mm had grown with almost no impurities such as solvent mixed in.

比較のため、均一の黒鉛円筒ヒーターを用い、その他の
条件を同一にした実験では80=−1の単結晶か得られ
たが、その内部特に種結晶の近辺にかなりの不純物が含
まれていた。
For comparison, in an experiment using a homogeneous graphite cylindrical heater and keeping the other conditions the same, a single crystal of 80 = -1 was obtained, but it contained a considerable amount of impurities, especially in the vicinity of the seed crystal. .

〔実施例!〕〔Example! ]

第5図に示すような構成で、炭素供給#+3とpe −
17,2Ni溶媒金属2との間に直径3 mmの穴をあ
げたNaCl板4を断熱層として配置し、ヒーター5に
黒鉛円筒を用いて実施例/と同じ条件で実験を行ったと
ころ/70%lの溶媒等の不純物が極めて少ない良質の
単結晶が得られた。
With the configuration shown in FIG. 5, carbon supply #+3 and pe −
An experiment was conducted under the same conditions as in Example/70 by placing a NaCl plate 4 with a 3 mm diameter hole between it and the 17,2Ni solvent metal 2 as a heat insulating layer and using a graphite cylinder as the heater 5. A high-quality single crystal containing very few impurities such as solvent was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のダイヤモンド合成方法の説明図で(イ)
は反応室の軸方向中央断面図、(ロ)は(イ)の反応室
のすq11方向中央部と」ユ下端部との間のl晶度差状
況説明図、第2図および第3図はいずれも本発明の説明
図で(イ)は反応室の軸方向中央断面図、(ロ)は(イ
)の反II;室の軸方向中央部と−1−下゛端部との間
の洗1【度差状況説明図、第4 +fflおよび第5図
はいずれも本発明のそれぞれ異なる実施例の説明図であ
る。 1・・種結晶、2・・溶媒金属、6・・・炭素供給源、
4 ・−NaCl (圧力媒体)、4′・NaC1板、
5・・・円筒状ヒーター、6・・・パイロフィライト(
Eカ媒体)、7・・抵抗穴の部分、7′・黒鉛、8・・
・抵抗小の部分、8′・・・MO19・・・断熱層、4
t・・ヒーターの軸方向中央部と浴媒金属底部との温良
差。 芳1閏 汀4図      所5閏
Figure 1 is an explanatory diagram of the conventional diamond synthesis method (a)
1 is an axial center sectional view of the reaction chamber, (b) is an explanatory diagram of the difference in crystallinity between the central part in the square direction of the reaction chamber in (a) and the lower end of the reaction chamber, FIGS. 2 and 3. Both are explanatory views of the present invention, and (a) is a cross-sectional view of the reaction chamber in the axial direction, and (b) is the opposite view of (a); between the axial center of the chamber and the -1-lower end. FIG. 4 +ffl and FIG. 5 are explanatory diagrams of different embodiments of the present invention. 1... Seed crystal, 2... Solvent metal, 6... Carbon source,
4 ・-NaCl (pressure medium), 4′・NaCl1 plate,
5... Cylindrical heater, 6... Pyrophyllite (
E media), 7...Resistance hole part, 7', graphite, 8...
・Low resistance part, 8'...MO19...insulation layer, 4
t...Difference in temperature between the axial center of the heater and the bottom of the bath metal. Fang 1 Leap 4 Figure Toko 5 Lean

Claims (1)

【特許請求の範囲】 1、 炭素または金属からなる円筒形ヒーターの一部の
材質または形状を変えることにより結晶成長領域の流度
を均一にし、かつ炭素供給源と種結晶の間に温度差を持
たせ、これによる溶媒金属への炭素の溶解度差を利用し
て種結晶からダイヤモンドを成長させることを特徴とす
るダイヤモンド合成方法。 2、 円筒形ヒーターの一部の材質を元の材質に対し0
〜SO%の抵抗の材質に変えた特許請求の範囲第1項記
載のダイヤモンド合成方法。 6、 円筒形ヒーターの一部の厚さを他の部分に酸ベア
、5倍以上にした特許請求の範囲第1項または第2項記
載のダイヤモンド合成方法。 4、炭素供給源または金属溶媒の外径に対し、そのH〜
%の開口部を有する断熱層を設けた特許請求の範囲第1
項、第2項または第3項記載のダイヤモンド合成方法。
[Claims] 1. By changing the material or shape of a part of the cylindrical heater made of carbon or metal, the flow rate in the crystal growth region can be made uniform, and the temperature difference between the carbon source and the seed crystal can be reduced. A diamond synthesis method characterized by growing diamond from a seed crystal by using the difference in solubility of carbon in a solvent metal. 2. Change the material of some of the cylindrical heaters to 0 compared to the original material.
The diamond synthesis method according to claim 1, wherein the material has a resistance of ~SO%. 6. The diamond synthesis method according to claim 1 or 2, wherein the thickness of a part of the cylindrical heater is 5 times or more thicker than that of the other part. 4. With respect to the outer diameter of the carbon source or metal solvent, its H~
Claim 1, which is provided with a heat insulating layer having an opening of %
The diamond synthesis method according to item 2, item 3, or item 3.
JP57004226A 1982-01-14 1982-01-14 Synthesis of diamond Granted JPS58125690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004226A JPS58125690A (en) 1982-01-14 1982-01-14 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004226A JPS58125690A (en) 1982-01-14 1982-01-14 Synthesis of diamond

Publications (1)

Publication Number Publication Date
JPS58125690A true JPS58125690A (en) 1983-07-26

Family

ID=11578662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004226A Granted JPS58125690A (en) 1982-01-14 1982-01-14 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS58125690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203950A1 (en) * 2015-06-19 2016-12-22 住友電気工業株式会社 Diamond single crystal, tool, and method for manufacturing diamond single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203950A1 (en) * 2015-06-19 2016-12-22 住友電気工業株式会社 Diamond single crystal, tool, and method for manufacturing diamond single crystal
JP2017007887A (en) * 2015-06-19 2017-01-12 住友電気工業株式会社 Diamond single crystal, tool, and manufacturing method of diamond single crystal

Similar Documents

Publication Publication Date Title
TW552325B (en) Method and apparatus for growing silicon carbide crystals
US4632817A (en) Method of synthesizing diamond
JP4530542B2 (en) Production of bulk single crystals of aluminum nitride, silicon carbide, and aluminum nitride: silicon carbide alloys
US5772756A (en) Diamond synthesis
KR900003322B1 (en) Method for preparing diamond
EP1072693A1 (en) Chemical vapor deposition apparatus and method of synthesizing carbon nanotubes using the apparatus
JP2002527339A (en) Formation of bulk single crystal of silicon carbide
CN114990690B (en) Crucible device for preparing silicon carbide monocrystal by gas phase sublimation method
CN104704150B (en) Monocrystalline silicon carbide substrate and its preparation method
US3249404A (en) Continuous growth of crystalline materials
CN207478528U (en) A kind of double carbon source synthesis of artificial diamond preparation facilities
JPS58125690A (en) Synthesis of diamond
CN104487619B (en) For manufacturing device and the method for manufacturing SiC single crystal using crucible used in this manufacture device and this manufacture device of SiC single crystal by solution growth method
JPS61158898A (en) Production of ornamental diamond
CN107824128B (en) Preparation device and preparation method for double-carbon-source synthetic artificial diamond
JPS6348579B2 (en)
CN217077858U (en) Composite crystal bed for synthesizing large diamond single crystal by multi-crystal seed method
JPS6169931A (en) Method for making intermetallic compound amorphous by chemical reaction
JPH0753299A (en) Method for synthesizing diamond
JPS6329581B2 (en)
JP2584034B2 (en) Manufacturing method of zinc oxide whisker
JPS59152214A (en) Synthesis of diamond
JPS6317492B2 (en)
RU2254910C2 (en) Reaction cell of high-pressure multi-punch apparatus for growing low-nitrogen diamond monocrystals
JPS59164605A (en) Method for synthesizing diamond