JPS62119122A - Production of vitreous body having refractive index distribution - Google Patents

Production of vitreous body having refractive index distribution

Info

Publication number
JPS62119122A
JPS62119122A JP25830985A JP25830985A JPS62119122A JP S62119122 A JPS62119122 A JP S62119122A JP 25830985 A JP25830985 A JP 25830985A JP 25830985 A JP25830985 A JP 25830985A JP S62119122 A JPS62119122 A JP S62119122A
Authority
JP
Japan
Prior art keywords
refractive index
component
index distribution
silica gel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25830985A
Other languages
Japanese (ja)
Inventor
Kazuo Shingyouchi
新行内 和夫
Shiro Konishi
小西 史郎
Kenzo Susa
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP25830985A priority Critical patent/JPS62119122A/en
Publication of JPS62119122A publication Critical patent/JPS62119122A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To easily obtain the titled vitreous body having a refractive index distribution in a thickness direction by dipping silica gel added with a Ta component and a B component in a hydrofluoric acid soln. to elute a part of the Ta and B. CONSTITUTION:The silica gel contg. a Ta component and a B component is prepared, for example, by hydrolyzing Si(OCH3)4 contg. Ta(OC2H5) and B(OC2H5)3. The silica gel is dipped in a hydrofluoric acid soln. at a temp. not exceeding the b.p. to elute a part of the Ta component and the B component. Then the silica gel is dried and sintered.

Description

【発明の詳細な説明】 [発明の前日と目的] 本発明は厚み方向に屈折率分布を有するガラス体の製造
方法に係り、特に光フ?イバ母材、ロッドレンズ、その
他の光学部品などに適用されるガラス体の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Previous days and objects of the invention] The present invention relates to a method for manufacturing a glass body having a refractive index distribution in the thickness direction, and particularly relates to a method for manufacturing a glass body having a refractive index distribution in the thickness direction. The present invention relates to a method for manufacturing glass bodies that are applied to glass base materials, rod lenses, and other optical components.

従来、ガラス体に、その厚み方向に屈折率分布を設ける
方法として、イオン交換法、CVD法などが知られてい
る。イオン交換法では、例えば、[ADpied   
Physics:Vol、19゜Nα17.1113 
(1980)1に見られるように、イオン交換可能なT
f!+やNa+を含有するホウ硅酸ガラスロッドを53
0〜550℃のKNO3溶融塩中で50〜100時間処
理し、さらに、切断、研磨加工する。この方法では、ガ
ラス0ツドを溶融塩中に長時間保持するという極めて作
業環境の悪い工程が必要である。また、用いる材料がア
ルカリを含有しているものなので、耐候性の点からみて
も信頼性に乏しいものであった。
Conventionally, ion exchange methods, CVD methods, and the like are known as methods for providing a refractive index distribution in the thickness direction of a glass body. In the ion exchange method, for example, [ADpied
Physics: Vol, 19°Nα17.1113
(1980) 1, the ion-exchangeable T
f! 53 borosilicate glass rods containing + and Na+
It is treated in KNO3 molten salt at 0 to 550°C for 50 to 100 hours, and then cut and polished. This method requires a step in which the glass tube is held in a molten salt for a long time, which is an extremely harsh process. Furthermore, since the material used contains alkali, it is unreliable in terms of weather resistance.

一方、CVD法では、高シリカ系の材料が使われるので
、信頼性が高くなるが、添加できる金属元素がGeなの
で、大きな屈折率分布を付与するには多機に添加する必
要がある。しかしQeを多伍に添加すると熱膨張係数の
差により、焼結時にクラックが発生する。従って、小さ
な屈折率を付与するには適するが、大きな屈折率を付与
することは困難であった。また、製造速度が遅く高価に
なるという難点もあった。
On the other hand, in the CVD method, high reliability is achieved because a high-silica material is used, but since the metal element that can be added is Ge, it is necessary to add multiple elements in order to provide a large refractive index distribution. However, if Qe is added in large quantities, cracks will occur during sintering due to the difference in thermal expansion coefficients. Therefore, although it is suitable for imparting a small refractive index, it is difficult to impart a large refractive index. Another disadvantage was that the manufacturing speed was slow and the cost was high.

本発明の目的は、上記難点を解決し、比較的緩やかな条
件 で安価に生産することができる、屈折率部分を有す
るガラス体の製造方法を提供するにある。
An object of the present invention is to provide a method for manufacturing a glass body having a refractive index portion, which solves the above-mentioned difficulties and can be produced at low cost under relatively mild conditions.

[発明の概要1 本発明は、シリコン以外の金属として少なくともTa成
分とB成分を添加したシリカゲルを、沸点以下の温度の
弗化水素酸溶液中に少なくとも1回浸漬し、前記添加し
たTa成分と8成分の一部分を溶出した後、乾燥、焼結
処理を行なうことを特徴とするものである。
[Summary of the Invention 1] The present invention involves immersing silica gel to which at least a Ta component and a B component as metals other than silicon are added at least once in a hydrofluoric acid solution at a temperature below the boiling point, and then immersing the silica gel to which at least a Ta component and a B component as metals other than silicon are added. This method is characterized by performing drying and sintering treatment after eluating a portion of the eight components.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

10モル%のTa (OCZ H& )と5モル%B(
OCZ H5)3を含有するS!(OCH3)+1モル
に、8モルのアルコールおよび2モルの1/100規定
のNHaOH水溶液を加えて加水分解し、第1図に示す
ように内径8Mのガラス容器1内でシリカゲル化し、ウ
ェットゲル2を作成した。このシリカゲルの一部分を2
0ccの0.1重量%弗化水素酸水溶液に室温で約4時
間浸漬し、次いで水に室温で約3時間浸漬し、さらにメ
タノールと水との1対1の混合液に室温で約1時間浸漬
し、最優にメタノール中に約1時間浸漬して洗浄した。
10 mol% Ta (OCZ H&) and 5 mol% B (
S! containing OCZ H5)3! (OCH3)+1 mole was hydrolyzed by adding 8 moles of alcohol and 2 moles of a 1/100N NHaOH aqueous solution, and as shown in Figure 1, it was turned into a silica gel in a glass container 1 with an inner diameter of 8M, and wet gel 2 It was created. 2 parts of this silica gel
Immersed in 0cc of 0.1% by weight hydrofluoric acid aqueous solution at room temperature for about 4 hours, then in water for about 3 hours at room temperature, and then in a 1:1 mixture of methanol and water for about 1 hour at room temperature. It was then washed by immersing it in methanol for about 1 hour.

この後、V温から洗浄液の沸点を越えない120℃の温
度まで、1時間に1℃の速度で昇温して徐々に乾燥し、
電気−4を用いて1200℃で焼結処理を行ないガラス
化して直径2.6am。
After this, the temperature is increased from V temperature to 120 °C, which does not exceed the boiling point of the cleaning liquid, at a rate of 1 °C per hour, and the temperature is gradually dried.
It was sintered at 1200°C using Denki-4 and vitrified to a diameter of 2.6 am.

長さ約10mのがラスロッドを得た。このガラス0ツド
を、その軸に直角に切断して直径方向の屈折率分布を測
定したところ、第2図の曲線5に示すように、中心部分
で高く、周辺部分で低い屈折率分布を有することがわか
った。
A lath rod with a length of about 10 m was obtained. When this glass tube was cut at right angles to its axis and the refractive index distribution in the diametrical direction was measured, it was found that the refractive index distribution was high in the center and low in the periphery, as shown by curve 5 in Figure 2. I understand.

さらに、この屈折率分布を詳細に調べたところ、中心の
屈折率をno、半径rの位置における屈折率をn (r
)とし、aを定数としたときn (r)=no  (1
−ar2 )に近い屈折率分布を有することがわかった
。すなわち、中心の屈折率no =1.553.外周の
屈折率nl =1.457となり大ぎな屈折率分布を有
するものであった。
Furthermore, when we investigated this refractive index distribution in detail, we found that the refractive index at the center is no, and the refractive index at the position of radius r is n (r
), and when a is a constant, n (r)=no (1
-ar2). That is, the refractive index of the center no = 1.553. The refractive index nl of the outer periphery was 1.457, indicating a large refractive index distribution.

本発明者らの実験によれば、Ta成分とB成分の添加m
および溶出液の濃度が決まれば、シリカゲルの直径(ま
たは厚み)、シリカゲルの密度。
According to the experiments conducted by the present inventors, the addition of Ta component and B component m
and once the concentration of the eluate is determined, the diameter (or thickness) of the silica gel, and the density of the silica gel.

溶出液間、溶出時間、溶出温度の昇温および降温速度の
制御などの条件を変えることにより、屈折率分布形状を
制約することができる。
The shape of the refractive index distribution can be restricted by changing conditions such as the eluate interval, elution time, and control of elution temperature increase and decrease rate.

なお、組成として、5iOzの屈折率を高めるTa成分
と、逆に屈折率を低めるB成分を併用することで、その
屈折率の変化の差により、屈折率分布の微調整が可能で
ある。
Note that by using the Ta component, which increases the refractive index of 5iOz, and the B component, which conversely decreases the refractive index, in the composition, the refractive index distribution can be finely adjusted based on the difference in the change in the refractive index.

溶出液の弗化水素M濃度は、0.01%重量以下ではT
a成分が溶出されない。一方、10%重量以上では3i
成分の溶出も署しくシリカゲルの溶解がおこる。
The hydrogen fluoride M concentration of the eluate is 0.01% by weight or less, T
Component a is not eluted. On the other hand, if the weight is 10% or more, 3i
The elution of the components is also significant and the silica gel is dissolved.

溶出時間は、溶出液濃度だけでなく、シリカゲルの@度
すなわち多孔質ゲルの細孔径およびシリカゲルのサイズ
によって決まるものである。たとえば、細孔径が2倍に
なれば、溶出時間は約半分に、また、サイズが2倍にな
れば、溶出時間は約半分に、また、サイズが2侶になれ
ば、逆に4倍になる。シリガルの密度とサイズが同一の
ものに対しては、時間が長いほど全体の溶出量は多くな
るが、中心部分と周辺部分の屈折率ざが小さくなる。
The elution time is determined not only by the concentration of the eluate but also by the degree of silica gel, that is, the pore diameter of the porous gel and the size of the silica gel. For example, if the pore diameter doubles, the elution time will be approximately halved, if the pore size is doubled, the elution time will be approximately halved, and if the pore size becomes two pores, the elution time will be quadrupled. Become. For siligals with the same density and size, the longer the time, the greater the total amount of elution, but the smaller the difference in refractive index between the center and peripheral portions.

たとえば、上記実施例では、溶出時間を20時時間風長
した場合はほとんど屈折率差が見られなくなった。した
がって、いたずらに、長時間溶出を続けることは好まし
くなく、シリカゲルのサイズなどによっておのずから溶
出時間の上限が決まる。
For example, in the above example, when the elution time was increased to 20 hours, almost no difference in refractive index was observed. Therefore, it is undesirable to continue the elution for a long time, and the upper limit of the elution time is naturally determined by the size of the silica gel.

溶出温度は、室温でも十分可能であるが、溶出時間の短
縮のため必要に応じて溶出液の沸点近くまで上げたり、
また、屈折率分布形状を変化させるために、昇温および
降温操作を行なうことができる。
The elution temperature can be set at room temperature, but if necessary, it may be raised to near the boiling point of the eluate to shorten the elution time.
Further, in order to change the shape of the refractive index distribution, temperature raising and lowering operations can be performed.

上記実施例においては、溶出液による溶出処理後、水、
次いで水とメタノールの混合液、さらにメタノール中に
浸漬してシリカゲルを洗浄したが、この工程は必ずしも
必要とはしない。しかしながら、溶出量が多い場合、あ
るいは溶出液の濃度が高い場合に、溶出成分や溶出液の
成分が、多孔質のシリカゲルの表面に付着し、焼結時に
結晶化や割れを生じさせたりする。これを防止するため
にシリカゲルを洗浄りるわけであるが、洗浄液としては
、水のほかに、特に、溶出成分を洗浄するのには、メタ
ノール、エタノール、プロパツールなどが好ましい。
In the above examples, after the elution treatment with the eluent, water,
The silica gel was then washed by immersion in a mixture of water and methanol and then in methanol, but this step is not necessarily necessary. However, when the amount of elution is large or the concentration of the eluate is high, the eluate components and the components of the eluate adhere to the surface of the porous silica gel, causing crystallization and cracking during sintering. In order to prevent this, the silica gel is washed, and in addition to water, methanol, ethanol, propatool, etc. are preferable as the washing liquid, especially for washing the eluted components.

なお、場合によって、急激に水の浸漬からアルコールの
浸漬に変えると、シリカゲル内部へのアルコールの浸透
圧による応力が生じるためか、シリカゲル中にクラック
が発生し易くなる。これを緩和するには、−磨水とアル
コールとの混合液に浸漬するのが有効である。また、必
要に応じて洗浄操作をくり返して行なうことが好ましい
。洗浄時間および温度は、溶出時間、温度条件と同様に
シリカゲルの密度およびサイズによって下限条件が決ま
る。
Note that, in some cases, if the immersion is suddenly changed from water immersion to alcohol immersion, cracks are likely to occur in the silica gel, probably because stress is generated inside the silica gel due to the osmotic pressure of the alcohol. To alleviate this problem, it is effective to immerse it in a mixture of polishing water and alcohol. Further, it is preferable to repeat the washing operation as necessary. The lower limit of the washing time and temperature is determined by the density and size of the silica gel as well as the elution time and temperature conditions.

上記実施例ではアルコキシドの加水分解により得られた
シリカゲルを用いたが、本発明の実施にあたっては、少
なくともTa成分と8成分の添加された多孔質のシリカ
ゲルであればいかなるものも使用できる。
In the above examples, silica gel obtained by hydrolyzing alkoxide was used, but in carrying out the present invention, any porous silica gel to which at least a Ta component and 8 components are added can be used.

また、添加される金属としては、Ta成分とB成分とこ
れら以外の成分とが同時に添加されたものでも同様の効
果を得ることができる。
Moreover, the same effect can be obtained by adding a Ta component, a B component, and other components at the same time as the metals added.

また、以上の実施例は、ロンド状ガラス体に関するもの
であるが、板状のシリカゲルを用いれば板の厚み方向に
屈折率分布を有する板ガラス体が作成できる。
Furthermore, although the above embodiments relate to a rond glass body, if plate-shaped silica gel is used, a plate glass body having a refractive index distribution in the thickness direction of the plate can be created.

[発明の効果] 以上説明したように、本発明によれば、溶出液によるシ
リカゲルの処理温度は比較的低温で良く、かつ短時間の
処理操作で所望の屈折率部分を有するガラス体を作成す
ることができる。また、Ta成分と8成分は少量の添加
で済むことから烏シリカガラス体が得られ、耐候性並び
に耐熱性が優れ、高温環境での使用に適するものである
[Effects of the Invention] As explained above, according to the present invention, the treatment temperature of silica gel with an eluate may be relatively low, and a glass body having a desired refractive index portion can be created with a short treatment operation. be able to. Further, since a small amount of the Ta component and the 8 components are added, a Karasusilica glass body can be obtained, which has excellent weather resistance and heat resistance, and is suitable for use in high-temperature environments.

さらに本発明によれば、済度化が容易なために低価格で
生産できるなどの工業的効果を奏することができる。
Furthermore, according to the present invention, it is possible to produce industrial effects such as low cost production because it is easy to save.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による作業工程の例を示す説明図、第2
図は本発明の一実施例により得られたガラスロンドの屈
折率分布を示すグラフである。 1・・・ガラス容器。 2・・・ウェットゲル。 3・・・溶  出  液。 4・・・電   気   炉。 5・・・屈折率分布屈曲。
FIG. 1 is an explanatory diagram showing an example of the work process according to the present invention, and FIG.
The figure is a graph showing the refractive index distribution of a glass rond obtained according to an example of the present invention. 1...Glass container. 2...Wet gel. 3...Eluate. 4...Electric furnace. 5...Refractive index distribution bending.

Claims (6)

【特許請求の範囲】[Claims] (1)シリコン以外の金属として少なくともTa成分と
B成分を添加したシリカゲルを、沸点以下の温度の弗化
水素酸溶液中に少なくとも1回浸漬し、前記添加したT
a成分とB成分の一部分を溶出した後、乾燥、焼結処理
を行なうことを特徴とする屈折率分布を有するガラス体
の製造方法。
(1) Silica gel to which at least Ta component and B component are added as metals other than silicon is immersed at least once in a hydrofluoric acid solution at a temperature below the boiling point, and the added T
A method for manufacturing a glass body having a refractive index distribution, which comprises performing drying and sintering treatment after eluting a part of the a component and the B component.
(2)前記弗化水素酸溶液が、0.01〜10重量%の
弗化水素酸水溶液から成る特許請求の範囲第1項記載の
屈折率分布を有するガラス体の製造方法。
(2) A method for manufacturing a glass body having a refractive index distribution according to claim 1, wherein the hydrofluoric acid solution is a 0.01 to 10% by weight aqueous hydrofluoric acid solution.
(3)前記溶出後、乾燥、焼結処理を行なう前に、シリ
カゲルを少なくとも1回洗浄液で洗浄する特許請求の範
囲第1項または第2項記載の屈折率分布を有するガラス
体の製造方法。
(3) The method for producing a glass body having a refractive index distribution according to claim 1 or 2, wherein the silica gel is washed at least once with a washing liquid after the elution and before drying and sintering.
(4)前記洗浄液が、水、メタノール、エタノール、プ
ロパノールから選ばれた少なくとも1種からなる特許請
求の範囲第3項記載の屈折率分布を有するガラス体の製
造方法。
(4) The method for manufacturing a glass body having a refractive index distribution according to claim 3, wherein the cleaning liquid comprises at least one selected from water, methanol, ethanol, and propanol.
(5)前記溶出液への浸漬が、室温から溶出液の沸点近
傍までの間の温度を制御しながら、昇温、降温操作する
ものである特許請求の範囲第1項乃至第4項のいずれか
の項記載の屈折率分布を有するガラス体の製造方法。
(5) Any one of claims 1 to 4, wherein the immersion in the eluate involves raising and lowering the temperature while controlling the temperature from room temperature to near the boiling point of the eluate. A method for manufacturing a glass body having a refractive index distribution as described in any of the above items.
(6)前記乾燥が、室温から洗浄液の沸点までの温度を
制御しながら昇温、降温操作するものである特許請求の
範囲第1項乃至第5項のいずれかの項記載の屈折率分布
を有するガラス体の製造方法。
(6) The refractive index distribution according to any one of claims 1 to 5, wherein the drying is performed by increasing and decreasing the temperature while controlling the temperature from room temperature to the boiling point of the cleaning liquid. A method for manufacturing a glass body comprising:
JP25830985A 1985-11-18 1985-11-18 Production of vitreous body having refractive index distribution Pending JPS62119122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25830985A JPS62119122A (en) 1985-11-18 1985-11-18 Production of vitreous body having refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25830985A JPS62119122A (en) 1985-11-18 1985-11-18 Production of vitreous body having refractive index distribution

Publications (1)

Publication Number Publication Date
JPS62119122A true JPS62119122A (en) 1987-05-30

Family

ID=17318458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25830985A Pending JPS62119122A (en) 1985-11-18 1985-11-18 Production of vitreous body having refractive index distribution

Country Status (1)

Country Link
JP (1) JPS62119122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042627A1 (en) * 1997-03-20 1998-10-01 Pilkington Plc Sol-gel synthesis of alkali-free borosilicate glass
WO2006112003A1 (en) * 2005-04-12 2006-10-26 Toyo Glass Co., Ltd. Process for producing grin lens and grin lens

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042239A (en) * 1983-08-12 1985-03-06 Hitachi Ltd Manufacture of glass body having refractive index distribution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042239A (en) * 1983-08-12 1985-03-06 Hitachi Ltd Manufacture of glass body having refractive index distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042627A1 (en) * 1997-03-20 1998-10-01 Pilkington Plc Sol-gel synthesis of alkali-free borosilicate glass
WO2006112003A1 (en) * 2005-04-12 2006-10-26 Toyo Glass Co., Ltd. Process for producing grin lens and grin lens
JPWO2006112003A1 (en) * 2005-04-12 2008-11-20 東洋ガラス株式会社 GRIN lens manufacturing method and GRIN lens
US7921672B2 (en) 2005-04-12 2011-04-12 Toyo Glass Co., Ltd. Method for manufacturing GRIN lens
JP4855933B2 (en) * 2005-04-12 2012-01-18 東洋ガラス株式会社 GRIN lens manufacturing method and GRIN lens

Similar Documents

Publication Publication Date Title
US3485687A (en) Porous high silica glass
GB1431352A (en) Method of making a glass body
JPS6140841A (en) Porous moulded product of glass and its preparation
JP4700340B2 (en) Devitrified controlled fused silica articles
CN100503493C (en) Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same
JPS62119122A (en) Production of vitreous body having refractive index distribution
JP2515713B2 (en) Method for producing glass body having refractive index distribution
JPS6252136A (en) Manufacture of glass product
JPS62119121A (en) Production of vitreous body having refractive index distribution
JPS6364928A (en) Production of glass material having refractive index distribution
JPS62119120A (en) Production of vitreous body having refractive index distribution
JPS6364927A (en) Production of glass material having refractive index distribution
JPS61183137A (en) Production of glass body having refractive index distribution
JPS61183136A (en) Production of glass body having refractive index distribution
CN111377608B (en) Deep sea glass floating ball and preparation method thereof
JPH03208823A (en) Production of glass body having refractive index distribution
US5244844A (en) Method of manufacturing gradient index optical elements
JPH0243720B2 (en) HANDOTAISHORYOSEKIEIGARASUSEIROSHINKAN
US5238880A (en) Method of manufacturing gradient index optical elements
JPS6395124A (en) Production of glass material having refractive index distribution
JP3670682B2 (en) Manufacturing method of gradient index optical element
JPS6395125A (en) Production of glass material having refractive index distribution
JPH0421526A (en) Production of quartz-based glass body having refractive index distribution
JPH02120249A (en) Production of glass body having refractive index distribution
JPH05306126A (en) Distributed index optical element and its production