JPS62116737A - Manufacture of long-size aluminum-carbon fiber-reinforced composite material - Google Patents

Manufacture of long-size aluminum-carbon fiber-reinforced composite material

Info

Publication number
JPS62116737A
JPS62116737A JP25477485A JP25477485A JPS62116737A JP S62116737 A JPS62116737 A JP S62116737A JP 25477485 A JP25477485 A JP 25477485A JP 25477485 A JP25477485 A JP 25477485A JP S62116737 A JPS62116737 A JP S62116737A
Authority
JP
Japan
Prior art keywords
long
fibers
composite material
carbon fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25477485A
Other languages
Japanese (ja)
Inventor
Hideo Arakawa
英夫 荒川
Shogo Morimoto
森本 庄吾
Yoshimichi Numata
義道 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25477485A priority Critical patent/JPS62116737A/en
Publication of JPS62116737A publication Critical patent/JPS62116737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a long-size aluminum-carbon fiber-reinforced composite material free from uncompounding and carbide evolution by controlling the conditions under which carbon fiber and aluminum are compounded. CONSTITUTION:The carbon fiber 1 is coated with Al by an ion plating method to undergo formation of an Al coating layer 2 to prepare an Al-coated carbon fiber. Then, plural pieces of said fibers are bundled, and the resulting bundle is put between rotating rolls, to which a fixed load is applied, at least twice or more, so that long-size Al-carbon fiber-reinforced composite material in which the carbon fibers 1 are dispersed in the Al matrix 2 uniformly as well as continuously in one direction can be manufactured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、長尺Al1−C繊維複合材の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a long Al1-C fiber composite material.

〔発明の背景〕[Background of the invention]

この複合材の製造法に関連し炭素繊維強化アルミニウム
複合材のプラズマスプレーロール接散接合法による製造
プ関する研究;日本金属学会誌旦11C1984)が知
られている。
Regarding the manufacturing method of this composite material, there is known a study on manufacturing a carbon fiber reinforced aluminum composite material by a plasma spray roll dispersion bonding method (Journal of the Japan Institute of Metals, 11C, 1984).

金属マトリックス繊維強化複合材料は、金属特有の導電
性、熱伝導性、耐熱性、などの特性と各種繊維、たとえ
ばC,SiC,AQzOs繊維などの高強度、高弾性、
低密度、耐熱性、低熱膨張などの特性を併せもつため、
その複合成分により、航空機、自動車、さらには、熱応
力緩衝板などの種々応用される。これら組合せのなかで
、特にAQマトリックスにcm維を埋込んだAQ−C繊
維複合材料は、軽量高強度の点で、優れ、また、単に軽
量高強度特性のみでなく、AQの良導電性。
Metal matrix fiber reinforced composite materials combine the characteristics of metals such as electrical conductivity, thermal conductivity, and heat resistance with the high strength, high elasticity, and various fibers such as C, SiC, and AQzOs fibers.
Because it has characteristics such as low density, heat resistance, and low thermal expansion,
Due to its composite components, it has various applications such as aircraft, automobiles, and even thermal stress buffer plates. Among these combinations, the AQ-C fiber composite material in which cm fibers are embedded in the AQ matrix is particularly excellent in terms of light weight and high strength.In addition to the light weight and high strength characteristics, AQ has good electrical conductivity.

熱伝導性のほか、C繊維の高弾性、低熱膨張、耐摩耗性
等の特性を併せもつため、種々の機器に応用される。
In addition to its thermal conductivity, it has the characteristics of C fiber, such as high elasticity, low thermal expansion, and abrasion resistance, so it is used in a variety of devices.

各種器機へのA Q−CFRHの応用に関して、最も重
要な点として、任意寸法の材料が提供されることが挙げ
られる。A Q −CFRMの代表的な従来の製造法は
、ホットプレス法であるが、この製造法によるA fl
−CFRM41提供される材料が短尺品であり、。
Regarding the application of AQ-CFRH to various devices, the most important point is that material of arbitrary size can be provided. A typical conventional manufacturing method for AQ-CFRM is the hot press method, but A fl
- The material provided in CFRM41 is a short product.

そのため寸法上で応用が制限される。すなねち、A Q
−CFRMtよ、材料本来の特性の維持した長尺化。
Therefore, its applications are limited due to its dimensions. Sunanechi, AQ
- CFRMt, longer length while maintaining the original properties of the material.

幅広化、製造技術が極めて重要な課題となる。Broadening the range and manufacturing technology will be extremely important issues.

A Q−CFRHの製造のさい、考慮すべき要因は、種
々あり、たとえば、AQマトリックス同志の結合状態A
Qとしての炭化物AΩa Csの生成有無繊維の真直性
9分散性及び連続性等が挙げられる。
When manufacturing AQ-CFRH, there are various factors to consider. For example, the bonding state of AQ matrices A
Examples of Q include the presence or absence of carbide AΩa Cs, including the straightness, dispersibility, and continuity of the fibers.

従って、長尺・幅広A Q −CFR旧よ上記要因を考
慮した製造技術の必要となる。
Therefore, it is necessary to develop a manufacturing technology that takes into consideration the above-mentioned factors compared to the old long and wide AQ-CFR.

従来より、A Q−CFRMの製造方法として、多くの
提案があり、特に長尺品を製造する方法としては予め、
C繊維に目的とするAQ合金あるいはAQをコーティン
グし、ロールを用いて、連続的に複合化すなわち長尺化
することが知られている。
Until now, there have been many proposals as a method for manufacturing AQ-CFRM, and in particular, as a method for manufacturing long products, there have been
It is known that C fibers are coated with a desired AQ alloy or AQ, and then continuously made into composites, that is, lengthened, using rolls.

ロールを用いた長尺品複合材の製造法のながで黒鉛、S
iC,あるいはWなどのロールに直接、通電し、ロール
接点間のマトリックスとなる金属と繊維をジュール熱で
加熱し、同時にロール自体で加圧し、長尺品の複合材を
製造する方法は、容易に任意の温度が得られるため、各
種、複合材の製造に適用でき長尺品複合材の製造に利用
される。
Long graphite manufacturing method using rolls, S
It is easy to manufacture long composite materials by applying electricity directly to rolls such as iC or W, heating the metal and fibers that form the matrix between the roll contacts with Joule heat, and at the same time applying pressure with the roll itself. Since any desired temperature can be obtained, it can be applied to the production of various composite materials and is used to produce long composite materials.

通常、前述したように上記製法によるマトリックスとな
る金属と繊維は、第1図に示すごとく複合化前に予め繊
維に金属がコーティングされ、複数本の束とした状態で
、たとえば第2図のごとく複合化される。しかし、第1
図の金属コーティングの束は部分的に繊維の乱れ、ある
いは金属コーティング厚さの不均一は実質的に避は得す
、それにより電気抵抗が部分的に異なる。その結果、ロ
ールを通して通電するさい、発熱が部分的に本来の複合
化温度と異なる。すなわち、AQ−C繊維複合材を、特
願昭59−55705で製造するさい複合化前のAfl
コーティングC繊維束の電気抵抗に起因し、複合化のさ
い、AQコーティングC繊維束が本来の複合化温度より
低いとAQココ−ィング同志の結合不良及び繊維の切断
が発生しやすく、また本来の複合化温度より高いと、C
とAQの反応により炭化物が生成し1強度が劣化する。
Normally, as mentioned above, the metal and fiber that become the matrix by the above manufacturing method are coated with metal in advance before being composited, as shown in Figure 1, and bundled into multiple fibers, for example, as shown in Figure 2. Compounded. However, the first
The bundle of metal coatings shown in the figure is substantially free from fiber disorder or non-uniformity of the metal coating thickness, which results in local differences in electrical resistance. As a result, when electricity is passed through the roll, the heat generation is partially different from the original compounding temperature. That is, when manufacturing AQ-C fiber composite material according to Japanese Patent Application No. 59-55705, Afl before being composited.
Due to the electrical resistance of the coated C fiber bundle, during compositing, if the AQ coated C fiber bundle is lower than the original composite temperature, poor bonding between AQ co-coatings and fiber breakage will easily occur, and the original Higher than the composite temperature, C
Due to the reaction between AQ and AQ, carbide is generated and the strength deteriorates.

昭59−55705は、その点の配慮がされておらずそ
のため長尺化の複合過程で、未複合化、あるいは炭化物
AQ4Csの生成による折損が発生することがあった。
In 1984-55705, this point was not taken into consideration, and as a result, during the compositing process of lengthening, non-composite formation or breakage due to the formation of carbide AQ4Cs sometimes occurred.

〔発明の目的〕[Purpose of the invention]

本発明は+ A fl−CFRMの製造に関し、C繊維
とAQの複合化条件を制御し、未複合化、炭化物発生の
ない長尺AQ−C繊維強化複合材の製造法を提供するに
ある。
The present invention relates to the production of +A fl-CFRM, and provides a method for producing a long AQ-C fiber-reinforced composite material that does not become uncomposited or generate carbides by controlling the conditions for compositing C fibers and AQ.

〔発明の概要〕[Summary of the invention]

A fl−CFRHの製造条件は、第2図に示すごとく
C繊維1がAflマトリックス2内に一方向に連続的し
て、かつ均一に分散することによって複合剤により高強
度特性となることが知られている。
The manufacturing conditions for Afl-CFRH are as shown in Fig. 2. It is known that the C fibers 1 are continuously and uniformly dispersed in one direction within the Afl matrix 2, resulting in high strength properties due to the composite agent. It is being

第3図は、特願昭59−5705に準する長尺AQ−C
wi維複合材の製造法を示したものでAfiコーティン
グC繊維1の張力は、AQココ−ィングC繊維と巻きつ
けボビン2の回転摩擦力と上ロール3と下ロール4の回
転力によりC繊維の真直性を与える目的でC繊維に張力
を発生させる。また、ボビンとロール間に張力をバネ5
によって通常、供給される繊維束の強度によって任意張
力が負荷される。
Figure 3 shows a long AQ-C according to Japanese Patent Application No. 59-5705.
The tension of the Afi-coated C fiber 1 is determined by the rotational friction force between the AQ coating C fiber and the winding bobbin 2 and the rotational force of the upper roll 3 and lower roll 4. Tension is generated in the C fibers for the purpose of giving them straightness. Also, the tension between the bobbin and the roll is maintained by the spring 5.
Typically, an arbitrary tension is applied depending on the strength of the supplied fiber bundle.

ロール間に介在するAQココ−ィングC繊維はロール及
びAQココ−ィングC繊維を電流端子5を介し流れる電
流によって、ロール接点の面積が小さいこと及び原料自
体の抵抗から、ジュール熱を発生させる。これによりA
QとC繊維の複合化温度450〜500”Cが瞬時に発
生し、ロールの回転によるAQココ−ィングC繊維の送
り速さに追従しながら1本来の複合化温度が与えられる
The AQ cocoing C fibers interposed between the rolls generate Joule heat due to the current flowing through the rolls and the AQ cocoing C fibers through the current terminal 5 due to the small area of the roll contact and the resistance of the raw material itself. This allows A
A composite temperature of 450 to 500''C of Q and C fibers is instantaneously generated, and the original composite temperature is given while following the feeding speed of AQ cocoing C fibers due to the rotation of the roll.

一方、AfiコーティングC繊維にががる圧力6は不可
欠で、加圧力がないと、繊維同志が離れ。
On the other hand, the pressure 6 that causes the Afi coating C fibers to separate is essential; if there is no pressure, the fibers will separate.

結合しない。その圧力は、供給される繊維束によって決
定されるが、基本的には、繊維束は、AQコーティング
厚さの実質的不均一性、あるいは、繊維の実質的交差に
よる厚さ不均一がら発生する圧力不均一を消失させるた
め、定荷重方式が採用される。
Not combined. The pressure is determined by the fiber bundle supplied, but basically the fiber bundle is generated due to substantial non-uniformity in the AQ coating thickness or due to substantial crossing of the fibers. A constant load method is adopted to eliminate pressure unevenness.

以上の方法により、長尺A Q −CFRM 7が製造
できる。しかしながら、AQココ−ィングC1,M維束
は、その束の状態が不均一であり、C繊維同志の接触状
態が異なりその結果、C1a維束の電気抵抗が部分的に
異なる。すなわち、ロール間のAQコーティングC繊維
束に発生するジュール熱が異なる。その結果、炭化物の
生成あるいは未複合化部分が生じ、連続複合化のさい、
第3図7のAQ−Cwi維複合材は、折損し、安定した
長尺品が製造が難しくなる。
By the above method, a long AQ-CFRM 7 can be manufactured. However, the states of the AQ cocoing C1 and M fiber bundles are non-uniform, and the contact states of the C fibers are different. As a result, the electrical resistance of the C1a fiber bundles is partially different. That is, the Joule heat generated in the AQ-coated C fiber bundle between the rolls is different. As a result, carbide formation or uncompounded parts occur, and during continuous compounding,
The AQ-Cwi fiber composite material shown in FIG. 37 is prone to breakage, making it difficult to manufacture stable long products.

すなわち、安定して長尺Aα−〇繊維複合材を製造する
には、AQコーティングC繊維束の電気抵抗を均一にす
ることが必要である。その方法として、予め、最大50
0℃、好ましくは450〜300℃の低温で、第3図の
方法により、複合化する。このような低湿においては、
炭化物の発生はなく、ロールの加圧によって、AQココ
−ィング同志の接触が、全体に渡り、均一となる。これ
は、へ〇コーティングC繊維自体の電気抵抗の均一化を
意味する。しかし、このような低温においては、まだ、
AQマトリックスに空洞をもつ。従って、再度所定の温
度500〜450℃で複合化を施すことにより、空洞を
消失させる。以上のごとく、通電したロールを用いての
長尺AQ−C繊維複合材の製造方法において、A2コー
ティングC繊維の電気抵抗を均一化するため、少なくと
も500℃以下の温度で2回以上、ロールを通過させる
ことにより安定して長尺AI2−CMl維複合材が製造
できる。
That is, in order to stably produce a long Aα-〇 fiber composite material, it is necessary to make the electrical resistance of the AQ coated C fiber bundle uniform. As a method, up to 50
Compositeization is performed at a low temperature of 0°C, preferably 450-300°C, by the method shown in FIG. In such low humidity,
There is no generation of carbides, and the contact between the AQ coatings is uniform over the entire surface due to the pressurization of the rolls. This means that the electrical resistance of the He〇-coated C fiber itself is made uniform. However, at such low temperatures,
There is a cavity in the AQ matrix. Therefore, by performing composite formation again at a predetermined temperature of 500 to 450°C, the cavities disappear. As described above, in the method for manufacturing a long AQ-C fiber composite material using energized rolls, in order to equalize the electrical resistance of the A2 coated C fibers, the rolls are rolled at least twice at a temperature of at least 500°C or less. By passing through the fibers, a long AI2-CMl fiber composite material can be stably produced.

本発明は、長尺AQ−C繊維複合材の幅広化にも適用さ
れる。この場合は、漸次、電気抵抗の均一化を図るため
第4図に示すごとく、溝付きのロールにより、通常、提
供されるC繊維本数500〜12000本の束を用い、
予め細線状のAQ−C繊維複合材を作製し、これを複数
本用いて、一方向に並べ所定幅で再度、複合化する。こ
れにより、安定した幅広AQ−C繊維複合材が製造でき
る。
The present invention is also applied to widening the length of a long AQ-C fiber composite material. In this case, in order to gradually equalize the electrical resistance, as shown in Fig. 4, a bundle of 500 to 12,000 C fibers, which is usually provided, is used with a grooved roll.
A fine line-shaped AQ-C fiber composite material is prepared in advance, and a plurality of these are arranged in one direction and composited again with a predetermined width. Thereby, a stable wide AQ-C fiber composite material can be manufactured.

AQ−C繊維複合材は、上述のととくC繊維を一方向と
して、軽量高強度特性を主とするほか、等方性の軽量低
熱膨張材料としても、有用な材料となり、本発明が適用
される。すなわち、AQをコーティングしたC繊維の束
を織布化(たとえば手織り)し、これを複数枚1重ねた
後、500℃以下で、電気抵抗の均一化の複合化を行い
、再度、500〜450℃で複合化することにより、網
状Afl−C繊維複合材が製造できる。
The AQ-C fiber composite material has the above-mentioned Totoku C fiber in one direction, and is mainly lightweight and high-strength, and is also a useful material as an isotropic, lightweight, low thermal expansion material, and the present invention is applied thereto. Ru. That is, a bundle of C fibers coated with AQ is made into a woven fabric (for example, by hand weaving), and after stacking a plurality of these, the electrical resistance is made uniform at a temperature of 500°C or less, and then the electrical resistance is made uniform again. A reticulated Afl-C fiber composite material can be produced by compositing at .degree.

なお、初回の電気抵抗の均一化の程度は、C繊維の配向
、含有量によって、適宜選ばれ、また、ロールの通過回
数も、同様に、C繊維の含有量、構造により、AQマト
リックスの空洞消失の程度によって、適宜、選ばれる。
The degree of uniformity of the initial electrical resistance is appropriately selected depending on the orientation and content of the C fibers, and the number of roll passes also depends on the content and structure of the C fibers. It is selected as appropriate depending on the degree of disappearance.

以下実施例にて詳述する。This will be explained in detail in Examples below.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例(1) 直径7μのC繊維に、第1図に示すごとくイオンブレー
ティング法により、AQをコーティングし、C繊維量が
30体積%、40体積%及び50体積%のAflコーテ
ィングC繊維を作製した。上記C繊維たとえば40体積
%のAQコーティングC繊維12,000本束ね、第4
図に示すごとく黒鉛製の直径200mmの上ローラ1と
幅4mmの溝をもつ下ローラ2にAQコーティングC繊
維3をはさみ。
Example (1) C fibers with a diameter of 7μ were coated with AQ by the ion blating method as shown in Figure 1, and Afl-coated C fibers with a C fiber content of 30 volume%, 40 volume%, and 50 volume% were obtained. Created. The above C fibers, for example, 12,000 C fibers coated with 40 volume% AQ, are bundled, the fourth
As shown in the figure, AQ coated C fibers 3 were sandwiched between an upper roller 1 made of graphite having a diameter of 200 mm and a lower roller 2 having a groove of 4 mm in width.

張力約0.5  kgの張力をかけた。次いでロールを
回転させ、C繊維の送り速さを5 cm/winにし、
ロール間を通過させた。その際、圧感フィルムを同時に
流し、ロール間にかかる圧力を調整し、上記条件で、ロ
ール間の平均圧力が500 kgf/Cm”になるよう
に荷重を!5III11シた。
A tension of approximately 0.5 kg was applied. Next, rotate the roll and set the C fiber feeding speed to 5 cm/win.
passed between the rolls. At that time, the pressure-sensitive film was flowed at the same time, the pressure applied between the rolls was adjusted, and a load was applied under the above conditions so that the average pressure between the rolls was 500 kgf/Cm''.

次に、黒鉛ロールに、最大600Aの電流を流し黒鉛ロ
ールの接点すなわち、AQコーティングC繊維部分を加
熱し、その部分の温度を赤外線温度計により検知し、ロ
ール間A2コーティングC繊維の400℃になるよう電
流を自動的に調整し、幅4m、長さ10mの長尺A Q
−CFRMの複合化し、電気抵抗の均一化を施した。
Next, a current of up to 600 A is applied to the graphite roll to heat the contacts of the graphite roll, that is, the AQ coated C fiber part, and the temperature of that part is detected by an infrared thermometer, and the temperature of the A2 coated C fiber between the rolls is 400 °C. The current is automatically adjusted to
-Composite of CFRM and uniform electrical resistance.

次に、上述のロール温度量温度470℃になるよう設定
し、その他圧力、張力を同一条件で、ロール間を通過さ
せ、これを2回以上繰返し、長尺A Q −40v o
 Q%CFRMを得た。第5図はロール回数による密度
変化を示したものでロール回数と共に密度が上昇する。
Next, the roll temperature was set to 470°C as described above, and other pressure and tension were kept under the same conditions, and the process was repeated two or more times.
Q%CFRM was obtained. FIG. 5 shows the change in density depending on the number of rolls, and the density increases with the number of rolls.

また、C繊維30体積%及び50体積%のAΩコーティ
ングC繊維を用い、上記40体積%の長尺A fl−C
FRMと同一条件でロール回数10回の長尺AQ−30
vo12%C9及び長尺−50vo Q%Cを作製した
。いずれの場合もAQ−C繊維複合材の折損なく、安定
して長尺品のAQ−C繊維複合材ができた。
Further, using 30% by volume of C fiber and 50% by volume of AΩ coated C fiber, the long A fl-C of 40% by volume was used.
Long AQ-30 rolled 10 times under the same conditions as FRM
A vo12%C9 and a long-50vo Q%C were produced. In either case, a long AQ-C fiber composite material was stably produced without breakage of the AQ-C fiber composite material.

第6図は、上記各種長尺A Q −CFRMの引張強さ
を測定した結果で、たとえば長尺Afi−40vofi
%CFRMの引張強さは、800 M P a、密度2
.2g/c113の軽量高強度を示した。
FIG. 6 shows the results of measuring the tensile strength of the various long AQ-CFRMs mentioned above, such as the long Afi-40vofi.
The tensile strength of %CFRM is 800 MPa, density 2
.. It exhibited light weight and high strength of 2g/c113.

以上の結果から、予め低温による複合化を与えることに
より安定に軽量高強度のA fl −CFRM長尺品製
造を得る効果がある。
From the above results, it is possible to stably produce lightweight and high-strength Afl-CFRM long products by pre-compositing at low temperatures.

実施例(2) 実施例(1)で作製した4mm幅AQ−40voQ%C
FRMの長尺品表面を機械的に研削し1次いでイオンブ
レーティングにより、上記長尺品に約0.5〜1μのA
Qをコーティングした。これを1mに切断後、8ケC繊
維の方向を揃え、幅30m+aの溝付黒鉛ロールにはさ
み、圧力500kgf/cm” 、送り速度5 cm/
min 、温度を470℃にし、ロール間を通過、これ
を2回繰返すことにより、幅30+amの長尺A Q 
−CFRMを作製した。
Example (2) 4mm width AQ-40voQ%C produced in Example (1)
The long product surface of FRM is mechanically ground and then ion blasting is applied to the long product to give an A of about 0.5 to 1μ.
Q was coated. After cutting this into 1m lengths, the 8 C fibers were aligned in the same direction and placed between grooved graphite rolls with a width of 30m+a at a pressure of 500kgf/cm" and a feed rate of 5cm/
By setting the temperature to 470°C, passing between the rolls, and repeating this twice, a long piece A Q with a width of 30+am is made.
-CFRM was produced.

次に上記Afl−40voQ%Cを引張試験を行った結
果、引張強さ780 M P aを示し、実施例(1)
とほぼ、同じ強さを示した。
Next, as a result of performing a tensile test on the above Afl-40voQ%C, it showed a tensile strength of 780 MPa, which was the same as that of Example (1).
showed almost the same strength.

以上の実施例によれば、予め長尺A Q −CFRMの
細線を製造することにより軽量高強度の幅広AQ−CF
RM長尺品を製造し得る効果がある。
According to the above embodiment, by manufacturing the long AQ-CFRM thin wire in advance, the lightweight and high-strength wide AQ-CF
There is an effect that RM long products can be manufactured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複合化のさいAQマトリックスC繊維
の温度を制御できるので安定した長尺AQ−C繊維複合
材が製造できる。
According to the present invention, since the temperature of the AQ matrix C fibers can be controlled during compositing, a stable long AQ-C fiber composite material can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の長尺AQ−C繊維強化複合材の製造方
法により製造された繊維材の斜視図、第2図は第1図の
長尺複゛合材の説明図、第3図は第1図の複合材を、ロ
ールに通電し、AI2コーティングC繊維束を長尺A 
Q −CFRMとする製法の説明図、第4図は第3図の
ロール断面図、第5図は第1図の複合材のロール回数に
よる長尺A Q −CFRMの密度変化を示す特性図、
第6図は第1図のC繊維量の変化による長尺A Q−C
FRMの引張強さを示す特性図である。 1・・・C繊維、2・・・AQコーティング層、7′・
・・AQコーティングC繊維束6
FIG. 1 is a perspective view of a fiber material produced by the method for producing a long AQ-C fiber reinforced composite material of the present invention, FIG. 2 is an explanatory diagram of the long composite material of FIG. 1, and FIG. 3 The composite material shown in Fig. 1 is energized through a roll, and the AI2 coated fiber bundle C is rolled into a long length A.
An explanatory diagram of the manufacturing method for producing Q-CFRM, FIG. 4 is a cross-sectional view of the roll in FIG. 3, and FIG. 5 is a characteristic diagram showing the density change of the long AQ-CFRM depending on the number of rolls of the composite material in FIG.
Figure 6 shows the long length A Q-C due to changes in the amount of C fibers in Figure 1.
It is a characteristic diagram showing the tensile strength of FRM. 1...C fiber, 2...AQ coating layer, 7'.
・・AQ coating C fiber bundle 6

Claims (1)

【特許請求の範囲】[Claims] 1、炭素繊維に予めマトリックスとなるアルミニウムま
たはアルミニウム合金をコーティングし、上記複数個の
炭素繊維を、定荷重が負荷された回転ロール間に介在さ
せ、通電加熱によつてマトリックスと繊維を連続的に複
合化するアルミニウム−炭素繊維強化複合材製造方法に
おいて、前記複数個のアルミニウム合金またはアルミニ
ウムコーティング炭素繊維を少なくとも2回以上、ロー
ルを通過させ、複合化することを特徴とする長尺アルミ
ニウム−炭素繊維強化複合材の製造方法。
1. Carbon fibers are coated with aluminum or aluminum alloy to serve as a matrix in advance, and the plurality of carbon fibers are interposed between rotating rolls loaded with a constant load, and the matrix and fibers are continuously coated by electrical heating. In the method for manufacturing an aluminum-carbon fiber reinforced composite material, the plurality of aluminum alloys or aluminum-coated carbon fibers are passed through a roll at least twice to form a composite long aluminum-carbon fiber. Method for manufacturing reinforced composites.
JP25477485A 1985-11-15 1985-11-15 Manufacture of long-size aluminum-carbon fiber-reinforced composite material Pending JPS62116737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25477485A JPS62116737A (en) 1985-11-15 1985-11-15 Manufacture of long-size aluminum-carbon fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25477485A JPS62116737A (en) 1985-11-15 1985-11-15 Manufacture of long-size aluminum-carbon fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JPS62116737A true JPS62116737A (en) 1987-05-28

Family

ID=17269694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25477485A Pending JPS62116737A (en) 1985-11-15 1985-11-15 Manufacture of long-size aluminum-carbon fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPS62116737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527313A (en) * 2010-04-01 2013-06-27 スネクマ Method for manufacturing elongated inserts made from metal matrix composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527313A (en) * 2010-04-01 2013-06-27 スネクマ Method for manufacturing elongated inserts made from metal matrix composites

Similar Documents

Publication Publication Date Title
US3606667A (en) Method of fabricating fiber-reinforced articles
US3427185A (en) Composite structural material incorporating metallic filaments in a matrix,and method of manufacture
CA2764202C (en) Process for manufacturing composite materials
JP7090688B2 (en) High-strength heat-resistant fiber material
TWI285188B (en) Tape-like substance containing carbon nanotube and method for producing carbon nanotube, and electric field emission type electrode containing tape-link substance, and method for producing the electrode
US10844523B2 (en) Twisted yarn, opened yarn, carbon fiber-covered twisted yarn, and method for manufacturing these
JP3607934B2 (en) Carbon nanotube reinforced aluminum composite
EP2679619B1 (en) Fiber reinforced composite material
EP2445713B1 (en) Improvements in composite materials
US20080196794A1 (en) Bulk metallic glass/metal composites produced by codeformation
JPS6257581B2 (en)
JP2009062648A (en) Method for producing chopped fiber bundle, molded material, and fiber reinforced plastic
US3443301A (en) Method of fabricating fiber-reinforced articles
US3596344A (en) Method of fabricating fiber-reinforced articles
US11761065B2 (en) Tungsten wire and tungsten product
US5446952A (en) Pneumatic induction fiber spreader with lateral venturi restrictors
JPS62116737A (en) Manufacture of long-size aluminum-carbon fiber-reinforced composite material
US6500370B1 (en) Process of making boron-fiber reinforced composite tape
JP2000016808A (en) Method and apparatus for producing graphite sheet having flexibility
US3410715A (en) Process for metal finishing boron and tungsten filaments
US11131870B2 (en) Thermochromic display with conductive structures
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
US3575783A (en) Unidirectional fiber reinforced metal matrix tape
Nixdorf Comparison between whiskers and filaments and their use in fibre-reinforced materials
KR101276898B1 (en) Carbon nanotube composite material and methods for making the same