JPS62116243A - Detector - Google Patents

Detector

Info

Publication number
JPS62116243A
JPS62116243A JP25481085A JP25481085A JPS62116243A JP S62116243 A JPS62116243 A JP S62116243A JP 25481085 A JP25481085 A JP 25481085A JP 25481085 A JP25481085 A JP 25481085A JP S62116243 A JPS62116243 A JP S62116243A
Authority
JP
Japan
Prior art keywords
ray
ingot
single crystal
rays
crystal ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25481085A
Other languages
Japanese (ja)
Other versions
JPH0743331B2 (en
Inventor
Takashi Shimura
俊 志村
Yushi Sugino
杉野 雄史
Hirobumi Shimizu
博文 清水
Makoto Usui
碓井 眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGAKU DENKI KK
Hitachi Ltd
Rigaku Denki Co Ltd
Original Assignee
RIGAKU DENKI KK
Hitachi Ltd
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGAKU DENKI KK, Hitachi Ltd, Rigaku Denki Co Ltd filed Critical RIGAKU DENKI KK
Priority to JP60254810A priority Critical patent/JPH0743331B2/en
Publication of JPS62116243A publication Critical patent/JPS62116243A/en
Publication of JPH0743331B2 publication Critical patent/JPH0743331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To make it possible to detect the crystal orientation of a semiconductive material with high accuracy, by supporting a specimen on a movable support in a horizontal direction in a movable manner. CONSTITUTION:A monocrystalline ingot 5 is placed on a pair of rollers 3 in a horizontal direction. When the rollers 3 are rotated, for example, to a clockwise direction by rotating a handle 4, the ingot 5 also similarly rotates to the clockwise direction. When X-rays from an X-ray projector 8 are allowed to irradiate the outer peripheral surface of the top part of the ingot 5 during rotation, reflected rays are received by an X-ray receiver 9. This X-ray receiving power is difference at every crystal azimuth of the ingot by X-ray diffraction and beam is emitted to a specific direction but an orientation flat (OF) is formed to the part of the crystal azimuth of the ingot 51 by cutting. Therefore, a worker advances his work while watching a power meter 11 and stops the rotation of the handle 4 at a part where X-ray receiving power became max. Because said part is the crystal orientation part where OF must be formed, marking way be applied to said part in an axial direction by a mark pen 13.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は検出技術、特に、単結晶半導体材料の結晶方位
またはその精度あるいは形成された面の角度等を検出す
るために適用して効果のある技術に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a detection technique, and in particular to a technique that is effective when applied to detect the crystal orientation of a single crystal semiconductor material, its accuracy, the angle of a formed surface, etc. It is something.

〔背景技術〕[Background technology]

半導体装置の製造過程で用いられるシリコンまたはGa
As等の化合物半導体の単結晶はいわゆるチ冒りラルス
キー法等を用い℃るつは中でシードを引上げ操作するこ
とにより棒状のインゴットとして形成される。
Silicon or Ga used in the manufacturing process of semiconductor devices
A single crystal of a compound semiconductor such as As is formed into a rod-shaped ingot by pulling up a seed in a C.C. crucible using the so-called Chibori-Ralski method or the like.

ところで、このような単結晶インゴットは回路形成の高
密度化や効率化、コストの低減等の理由で大口径化およ
び長大化する傾向にある。
Incidentally, such single crystal ingots tend to have larger diameters and longer lengths for reasons such as higher density and efficiency of circuit formation, and lower costs.

そのため、単結晶インゴットのオリエンテーションフラ
ット形成前の結晶方位の検出あるいはオリエンテーショ
ンフラットの切削もしくはその他の処理が困難となり、
作業の安全性や検出精度等の点で問題となりつつある。
Therefore, it becomes difficult to detect the crystal orientation of the single crystal ingot before forming the orientation flat, or to cut or otherwise process the orientation flat.
This is becoming a problem in terms of work safety and detection accuracy.

これについて、たとえば単結晶インゴットを縦置きにし
、固定治具でゴニオメータに取り付けて結晶方位の測定
やオリエンテーションフラット形成面の角度の測定を行
うことが考えられる。
Regarding this, it is conceivable to measure the crystal orientation and the angle of the orientation flat forming surface by placing the single crystal ingot vertically and attaching it to a goniometer using a fixing jig, for example.

しかしながら、前記のように単結晶インゴットの大口径
化、長大化により重量が大きくなっている結果、取扱い
および固定が不安定となり、安全性や測定精度の低下を
来たすことになる。また、それ以外にも、装置の構造が
大型化し、コストの上昇やスペース効率の悪化等の問題
も生じることを本発明者は見い出した。
However, as described above, the weight of the single crystal ingot increases due to its large diameter and length, making handling and fixing unstable, resulting in a decrease in safety and measurement accuracy. In addition, the present inventors have found that the structure of the device becomes larger, leading to problems such as increased cost and decreased space efficiency.

なお、単結晶引上げおよび結晶切断・研摩については、
昭和57年11月15日、株式会社工業調査会発行、「
電子材料J 1983年11月号別冊、P45〜P56
に説明されている。
Regarding single crystal pulling, crystal cutting and polishing,
Published by Industrial Research Association Co., Ltd. on November 15, 1981, “
Electronic Materials J November 1983 issue, P45-P56
is explained in.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体材料の結晶方位等の検出を容易
に高精度で行うことのできる技術を提供することにある
An object of the present invention is to provide a technique that allows easy and highly accurate detection of crystal orientation, etc. of a semiconductor material.

本発明の他の目的は、小形で、低コスト化を図ることの
できる半導体材料の検出技術を提供することにある。
Another object of the present invention is to provide a technique for detecting semiconductor materials that is compact and can be manufactured at low cost.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、次の通りである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体材料の試料を可動支持体上に運動可能
に水平方向に支持し、この試料を可動支持体上で運動さ
せなからX@を照射してその反射光を受光することによ
り、Xll1iの回折で結晶方位や角度等の検出を行う
ことによって、検出操作を容易に高精度で行うことがで
き、また装置の小形化、低コスト化を図ることができる
ものである。
That is, a sample of a semiconductor material is horizontally supported on a movable support so that it can move, and the sample is irradiated with X@ and the reflected light is received while the sample is not moved on the movable support. By detecting the crystal orientation, angle, etc. by diffraction, the detection operation can be easily performed with high precision, and the device can be made smaller and lower in cost.

〔実施例1〕 第1図は本発明による一実施例である検出装置の斜視図
である。
[Embodiment 1] FIG. 1 is a perspective view of a detection device that is an embodiment of the present invention.

本実施例1の検出装置はシリコン単結晶のオリエンテー
ションフラットを形成するために結晶方位をX線回折に
より検出するものである。
The detection device of Example 1 detects the crystal orientation by X-ray diffraction in order to form an orientation flat of a silicon single crystal.

すなわち、この検出装置は、枠体1の上にテーブル2を
設け、このテーブル2の上面側の軸方向に形成した凹部
内に一対の回転可能なローラ(可動支持体)3をハンド
ル4で手動回転可能に水平方向に配設置/、この一対の
ローラ3上にたとえばシリコンの単結晶インゴット5を
回転可能に水平方向に載置した構造を有している。
That is, in this detection device, a table 2 is provided on a frame 1, and a pair of rotatable rollers (movable support body) 3 are manually inserted into a recess formed in the axial direction on the top surface of the table 2 using a handle 4. It has a structure in which, for example, a silicon single crystal ingot 5 is rotatably placed horizontally on the pair of rollers 3.

前記テーブル2の一端側には、X線駆動部6が設置され
、このX線駆動部6の上部の一側面には略三ケ月状の溝
付きの弧状台座7の溝に沿って可動なX線投光器8が前
記単結晶インゴット5の頂部外周面にX線を投光するよ
う設置されると共に、同じくX線受光器9がこのX線の
単結晶インゴット5からの反射光を受光するような角度
関係で設置されている。X線受光器9は増幅器10を介
してパワーメータ11にX線の受光パワー′?:表示す
るよう構成されている。
An X-ray drive section 6 is installed on one end side of the table 2, and an X-ray drive section 6 that is movable along the groove of an arcuate pedestal 7 having an approximately crescent-shaped groove is installed on one side of the upper part of the X-ray drive section 6. The projector 8 is installed so as to project X-rays onto the top outer circumferential surface of the single-crystal ingot 5, and the angle is such that the X-ray receiver 9 receives the X-rays reflected from the single-crystal ingot 5. It is set up in relation to The X-ray receiver 9 transmits the received X-ray power '? to the power meter 11 via the amplifier 10. : Configured to display.

一方、単結晶インゴット5の上方には、該単結晶インゴ
ツト50所定軸方向部分にマークを書き込むよう該単結
晶インゴット5と平行なスライド軸12に沿って軸方向
に移動可能なマークベン13が設けられている。
On the other hand, a mark ben 13 is provided above the single crystal ingot 5 and is movable in the axial direction along a slide shaft 12 parallel to the single crystal ingot 5 so as to write a mark on a predetermined axial portion of the single crystal ingot 50. ing.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

まず、シリコンの単結晶インゴットの軸方向にオリエン
テーションフラットを形成するために所定の結晶方位の
部分を検出する場合について考えると、単結晶インゴッ
ト5を一対のローラ3上に水平方向に載置する。そして
、ハンドル4を回してローラ3をたとえば時計方向に回
転させると、単結晶インゴット5も同様に時計方向に回
転する。
First, considering the case of detecting a portion with a predetermined crystal orientation in order to form an orientation flat in the axial direction of a silicon single crystal ingot, a single crystal ingot 5 is placed on a pair of rollers 3 in a horizontal direction. When the handle 4 is turned to rotate the roller 3, for example, clockwise, the single crystal ingot 5 is also rotated clockwise.

この回転中の単結晶インゴット5に対してXll1I投
光器8からのX線をその頂部外周面に照射すると、その
反射光はX線受光器9で受光される。この受光パワーは
X線の回折により単結晶5の結晶方位によって異なるも
のであり、特定の方向にのみ発光するが、この結晶方位
部分にオリエンテーションフラットを切削することが行
われる。
When the top outer peripheral surface of the rotating single crystal ingot 5 is irradiated with X-rays from the Xll1I projector 8, the reflected light is received by the X-ray receiver 9. This received light power differs depending on the crystal orientation of the single crystal 5 due to X-ray diffraction, and light is emitted only in a specific direction, but an orientation flat is cut in this crystal orientation area.

したがって、作業者はX線受光ノくワーを示すノくワー
メータ11を目視しながら作業を進め、受光パワーが最
大となったところでノ・ンドル40回転を止めると、そ
の部分がオリエンテーションフラットを形成すべき結晶
方位部分であるので、その部分にマークペン13で軸方
向にマーキングすればよい。
Therefore, the operator proceeds with the work while visually checking the power meter 11 that indicates the power of the X-ray receiving power, and when the received light power reaches the maximum and stops rotating the needle 40 times, that part forms an orientation flat. Since this is a part with a power crystal orientation, it is sufficient to mark that part in the axial direction with the marking pen 13.

なお、本実施例1の検出装置はオリエンテーションフラ
ットの加工後にその結晶方位精度を検出するためにも利
用することができる。
Note that the detection device of the first embodiment can also be used to detect the crystal orientation accuracy of an orientation flat after it is processed.

〔実施例2〕 第2図は本発明の他の実施例を示す概略断面図である。[Example 2] FIG. 2 is a schematic sectional view showing another embodiment of the present invention.

本実施例2の検出装置は、単結晶インゴットにオリエン
テーションフラット14を加工した後にその結晶方位精
度を検出するために適用されたものである。
The detection device of the second embodiment is applied to detect the crystal orientation accuracy of a single crystal ingot after processing an orientation flat 14 therein.

この実施例におけるX線投光器8とX線受光器9は三ケ
月状の台座7aに取り付けられて、テーブル2の下方の
枠体lの中に内蔵され℃いる。台座7aは図示しない駆
動手段により所定角度範囲で揺動するよう構成されてい
る。
The X-ray emitter 8 and the X-ray receiver 9 in this embodiment are mounted on a crescent-shaped pedestal 7a and housed in a frame l below the table 2. The pedestal 7a is configured to swing within a predetermined angular range by a drive means (not shown).

したがって、本実施例では、オリエンテーションフラツ
)14を形成した単結晶インゴット5をローラ3上で回
転させながら、また台座7aを揺動させながら、X線投
光器8からX線を単結晶インゴット5の下部外周面に照
射する。そして、オリエンテーションフラット14の位
置が図示の如く下向きになるところでロー23の回転を
止め。
Therefore, in this embodiment, while rotating the single crystal ingot 5 on which the orientation flats 14 are formed, and while swinging the pedestal 7a, X-rays are emitted from the X-ray projector 8 to the lower part of the single crystal ingot 5. Irradiates the outer peripheral surface. Then, the rotation of the row 23 is stopped when the position of the orientation flat 14 becomes downward as shown in the figure.

台座7aを揺動させながらX線を照射すると、X線投光
器8とX線受光器9hのX線照射・反射角皮表は一定で
あるので、オリエンテーションフラット140円周方向
の各部分における結晶方位精度をX線受光器9の受光パ
ワーから検出することができる。
When irradiating X-rays while swinging the pedestal 7a, since the X-ray irradiation/reflection angle surface of the X-ray emitter 8 and the X-ray receiver 9h is constant, the crystal orientation in each part of the orientation flat 140 in the circumferential direction is The accuracy can be detected from the received light power of the X-ray receiver 9.

勿論、本実施例2の検出装置は単結晶インゴット5への
オリエンテーションフラット形成ノための結晶方位検出
用に利用することもできる。
Of course, the detection device of the second embodiment can also be used to detect the crystal orientation for forming an orientation flat on the single crystal ingot 5.

〔効 果〕〔effect〕

111  半導体材料の試料を可動支持体上慣運動可能
に水平方向に支持し、その運動中の試料にX1lIを照
射し、かつその反射光を受光し、X線の回折により所望
の検出を行うことによって、大口径化、長尺化された試
料でもそのオリエンテーションフラット形成位置の検出
や、オリエンテーションフラット面の角度精度の検出等
を容易に高精度で行うことができる。
111 Supporting a sample of a semiconductor material horizontally on a movable support so that it can move freely, irradiating the moving sample with X1I, receiving the reflected light, and performing desired detection by diffraction of X-rays. Accordingly, it is possible to easily detect the orientation flat formation position and the angular accuracy of the orientation flat surface with high precision even for a large diameter and long sample.

(21前記(11により、結晶製造の歩留向上が図られ
、また結晶製品の品質が向上する。
(21) (11) improves the yield of crystal production and improves the quality of crystal products.

+31  前記(1)により、装置の小形化、低コスト
化を実現できる。
+31 According to (1) above, it is possible to realize miniaturization and cost reduction of the device.

(4)試料としての単結晶インゴットを一対の回転ロー
ラ上に水平方向に配置し、回転ローラ上で回転可能に支
持することにより小形の装置で所望の検出を容易に行う
ことができる。
(4) By placing a single crystal ingot as a sample horizontally on a pair of rotating rollers and rotatably supporting it on the rotating rollers, desired detection can be easily performed with a small device.

(5)X線投光器およびX線受光器を試料の下方の枠体
に内蔵することにより、装置なさらに小形化することが
できる。
(5) By incorporating the X-ray emitter and the X-ray receiver into the frame below the sample, the apparatus can be further downsized.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲−t’種々変更
可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained based on Examples above, the present invention is not limited to the above Examples, and it is understood that various changes can be made without departing from the gist of the invention. Needless to say.

たとえば、X線投光器や受光器の配置を他の配置とした
り、ローラの回転を自動で行うこと等も可能である。
For example, it is possible to arrange the X-ray emitter and receiver in other ways, or to rotate the rollers automatically.

〔利用分野〕[Application field]

以上の説明では主とじ℃本発明者によってなされた発明
をその背景となった利用分野であるシリコンの単結晶イ
ンゴットにおけるオリエンテーションフラット形成位置
の検出等に適用した場合について説明したが、それに限
定されるものではなく、たとえばGaAs等の化合物半
導体についても適用でき、さらにウェハの結晶方位測定
に適用すること等も可能ヤある。
In the above explanation, the invention made by the inventor of the present invention was applied to the field of application in which the invention was made by the present inventor, such as detecting the position where an orientation flat is formed in a silicon single crystal ingot, but the invention is limited thereto. For example, it can be applied to compound semiconductors such as GaAs, and it is also possible to apply it to the measurement of crystal orientation of wafers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例頃ある検出装置の斜視図、 第2図は本発明の他の実施例を示す概略断面図である。 l・・・枠体、2・・・テーブル、3・・・回転可能な
ローラ、4・・・ハンドル、5・・・単結晶インゴット
(試料)1、 6・・・X@駆動部、7,7a・・・台
座、8・・・X線投光部、9・・・X線受光部、lO・
・・増幅器、11・・・パワーメータ、12・・・スラ
イド軸、13・・・マークペン、14・・・オリエンテ
ーションンラット。 第  1  図
FIG. 1 is a perspective view of a detection device according to one embodiment of the present invention, and FIG. 2 is a schematic sectional view showing another embodiment of the present invention. l...Frame body, 2...Table, 3...Rotatable roller, 4...Handle, 5...Single crystal ingot (sample) 1, 6...X @ drive unit, 7 , 7a...Pedestal, 8...X-ray emitter, 9...X-ray receiver, lO・
...Amplifier, 11...Power meter, 12...Slide axis, 13...Mark pen, 14...Orientation rat. Figure 1

Claims (1)

【特許請求の範囲】 1、X線の回折を利用して半導体材料の結晶方位、角度
等を検出する装置であって、試料を可動支持体上に運動
可能に水平方向に支持し、該可動支持体上で運動される
試料にX線を照射しかつ試料から反射されて来たX線を
受光し、そのX線の回折により所望の検出を行うことを
特徴とする検出装置。 2、試料が半導体材料の単結晶インゴットであり、この
単結晶インゴットを一対の回転ローラ上に水平方向に配
置し、前記回転ローラ上で回転している単結晶インゴッ
トの周面にX線投光器からのX線を照射しかつそのX線
の反射光をX線受光器で受光することを特徴とする特許
請求の範囲第1項記載の検出装置。 3、X線投光器およびX線受光器が単結晶インゴットの
下方における枠体内で揺動可能な台座に相互間で投受光
可能に取り付けられ、前記台座を揺動させながら前記X
線投光器から単結晶インゴットの下部外周面に照射され
かつ反射されたX線を前記X線受光器で受光することを
特徴とする特許請求の範囲第2項記載の検出装置。
[Claims] 1. An apparatus for detecting the crystal orientation, angle, etc. of a semiconductor material using X-ray diffraction, in which a sample is movably supported horizontally on a movable support, and the movable A detection device characterized by irradiating a sample moving on a support with X-rays, receiving the X-rays reflected from the sample, and performing desired detection by diffraction of the X-rays. 2. The sample is a single crystal ingot of a semiconductor material, this single crystal ingot is placed horizontally on a pair of rotating rollers, and an X-ray projector is applied to the circumferential surface of the single crystal ingot rotating on the rotating rollers. 2. The detection device according to claim 1, wherein the detection device emits X-rays and receives reflected light of the X-rays with an X-ray receiver. 3. An X-ray emitter and an X-ray receiver are attached to a pedestal that can swing within a frame below the single crystal ingot so that they can emit and receive light from each other, and while swinging the pedestal, the
3. The detection device according to claim 2, wherein the X-ray receiver receives the X-rays irradiated onto the lower outer circumferential surface of the single crystal ingot from the ray projector and reflected.
JP60254810A 1985-11-15 1985-11-15 Detector Expired - Lifetime JPH0743331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60254810A JPH0743331B2 (en) 1985-11-15 1985-11-15 Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60254810A JPH0743331B2 (en) 1985-11-15 1985-11-15 Detector

Publications (2)

Publication Number Publication Date
JPS62116243A true JPS62116243A (en) 1987-05-27
JPH0743331B2 JPH0743331B2 (en) 1995-05-15

Family

ID=17270199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60254810A Expired - Lifetime JPH0743331B2 (en) 1985-11-15 1985-11-15 Detector

Country Status (1)

Country Link
JP (1) JPH0743331B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500339A2 (en) * 1991-02-19 1992-08-26 Shin-Etsu Handotai Company Limited Method and apparatus for detecting a crystallographic axis of a single crystal ingot for "of" determination
EP0610563A3 (en) * 1992-11-30 1996-06-12 Shinetsu Handotai Kk Semiconductor ingot machining method.
US5532774A (en) * 1992-03-05 1996-07-02 Olympus Optical Co., Ltd. Film data recording/reproducing apparatus for a camera by writing/reading pits recorded on a film
US6072854A (en) * 1996-12-04 2000-06-06 Rigaku Corporation Method and apparatus for X-ray topography of single crystal ingot
KR101467691B1 (en) * 2013-07-24 2014-12-01 주식회사 엘지실트론 Apparatus for Measuring Ingot Orientation
CN104846441A (en) * 2015-05-28 2015-08-19 北京航空航天大学 Cutting preparation method of nickel-based single-crystal alloy seed crystal for casting
CN110065171A (en) * 2019-04-25 2019-07-30 西安奕斯伟硅片技术有限公司 A kind of cutting method of cutter device and crystal bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158063A (en) * 1974-06-11 1975-12-20
JPS5131255A (en) * 1974-09-10 1976-03-17 Rigaku Denki Co Ltd ATSUENHIZUMISOKUTEISOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158063A (en) * 1974-06-11 1975-12-20
JPS5131255A (en) * 1974-09-10 1976-03-17 Rigaku Denki Co Ltd ATSUENHIZUMISOKUTEISOCHI

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500339A2 (en) * 1991-02-19 1992-08-26 Shin-Etsu Handotai Company Limited Method and apparatus for detecting a crystallographic axis of a single crystal ingot for "of" determination
US5532774A (en) * 1992-03-05 1996-07-02 Olympus Optical Co., Ltd. Film data recording/reproducing apparatus for a camera by writing/reading pits recorded on a film
EP0610563A3 (en) * 1992-11-30 1996-06-12 Shinetsu Handotai Kk Semiconductor ingot machining method.
US6072854A (en) * 1996-12-04 2000-06-06 Rigaku Corporation Method and apparatus for X-ray topography of single crystal ingot
WO2004090522A1 (en) * 1996-12-04 2004-10-21 Tetsuo Kikuchi Method and apparatus for x-ray topography of single crystal ingot
KR101467691B1 (en) * 2013-07-24 2014-12-01 주식회사 엘지실트론 Apparatus for Measuring Ingot Orientation
CN104846441A (en) * 2015-05-28 2015-08-19 北京航空航天大学 Cutting preparation method of nickel-based single-crystal alloy seed crystal for casting
CN110065171A (en) * 2019-04-25 2019-07-30 西安奕斯伟硅片技术有限公司 A kind of cutting method of cutter device and crystal bar

Also Published As

Publication number Publication date
JPH0743331B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US9134260B2 (en) Intelligent machines and process for production of monocrystalline products with goniometer continual feedback
JP2683933B2 (en) Inspection device for front and back and orientation of semiconductor wafer
WO1985001349A1 (en) Setting the orientation of crystals
EP0500339B1 (en) Method and apparatus for detecting a crystallographic axis of a single crystal ingot for "of" determination
US6072854A (en) Method and apparatus for X-ray topography of single crystal ingot
JPS62116243A (en) Detector
CN210376192U (en) Directional detection device of crystal bar V type groove
JP2883667B2 (en) Single crystal ingot crystal orientation measurement system
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JP3127103B2 (en) Orientation measurement method for single crystal ingot
JP2001050912A (en) Support apparatus for single-crystal ingot and apparatus, and method for measurement of single-crystal ingot
JP2554408B2 (en) Automatic cylindrical grinding method and device
JPH07294400A (en) Sample retention device for x-ray diffraction device
US5550374A (en) Methods and apparatus for determining interstitial oxygen content of relatively large diameter silicon crystals by infrared spectroscopy
JPH0318747A (en) Method and device for measuring lattice constnat ratio
JPH0755731A (en) Method and equipment for measuring total reflection x-ray fluorescence
JP3412852B2 (en) Single crystal ingot marking device
JP2908498B2 (en) Single crystal ingot crystal orientation measurement system
JPH10119032A (en) Matching method for crystal orientation in cutting of single crystal ingot having cleavability
JP2001272359A (en) Monocrystal ingot processing device and its method
JPH10100142A (en) Method and apparatus for adjusting crystal axis orientation of ingot by utilizing x-ray
JP2567840B2 (en) Crystal orientation determination device
JPS62190453A (en) Lattice constant measuring instrument
JP2732311B2 (en) X-ray topography equipment
JPH0626787B2 (en) Tilt detection method for cutting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term