JPS62115785A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62115785A
JPS62115785A JP60255681A JP25568185A JPS62115785A JP S62115785 A JPS62115785 A JP S62115785A JP 60255681 A JP60255681 A JP 60255681A JP 25568185 A JP25568185 A JP 25568185A JP S62115785 A JPS62115785 A JP S62115785A
Authority
JP
Japan
Prior art keywords
type
layer
dopant
type layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60255681A
Other languages
Japanese (ja)
Other versions
JP2545066B2 (en
Inventor
Masataka Kondo
正隆 近藤
Hideo Yamagishi
英雄 山岸
Akihiko Hiroe
広江 昭彦
Kazunaga Tsushimo
津下 和永
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60255681A priority Critical patent/JP2545066B2/en
Priority to CA000521602A priority patent/CA1321660C/en
Priority to AU64619/86A priority patent/AU600453B2/en
Priority to DE3650712T priority patent/DE3650712T2/en
Priority to DE3650012T priority patent/DE3650012T2/en
Priority to EP86115170A priority patent/EP0221523B1/en
Priority to EP19920104633 priority patent/EP0494090A3/en
Priority to EP92104628A priority patent/EP0494088B1/en
Priority to KR860009364A priority patent/KR870005477A/en
Priority to CN86106353A priority patent/CN1036817C/en
Publication of JPS62115785A publication Critical patent/JPS62115785A/en
Priority to US07/477,138 priority patent/US5032884A/en
Priority to AU65966/90A priority patent/AU636677B2/en
Application granted granted Critical
Publication of JP2545066B2 publication Critical patent/JP2545066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To enable a semiconductor device to have a high open-circuit voltage under illumination, particularly under illumination of a low illuminance, by providing at least one of P-type and N-type layers with a region in which the amount of a dopant is progressively increased from one interface to the junction interface with the P-type or N-type electrode. CONSTITUTION:A glass substrate 1 having a transparent electrode 2 is provided with a P-type semiconductor layer 3 such that it has a minimum amount of a dopant on the P-N junction interface. An I-type semiconductor layer 4 and subsequently an N-type semiconductor layer 5 are provided on the P-type layer 3. Further, a rear-face electrode 6 is provided thereon. Alternatively, the P-type semiconductor layer 3 may contain the dopant uniformly in its entire body while the N-type semiconductor layer may have a minimum amount of dopant on the N-I junction interface. Though incident light is applied from the side near the P-type layer according to this embodiment, it may be applied from the side near the N-type layer. Further, though one set of PIN layers is provided in this embodiment, two to five sets of PIN layers may be provided by superposing them. In this case, the sets from the second on may be constructed such that the junction interface with the I-type layer has a minimum amount of dopant or they may be constructed in an ordinary manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device.

〔従来の技術〕[Conventional technology]

非晶質半導体層を含む太陽電池などの半導体装置の材料
として、a−9t:II、 a−8iC:H。
a-9t:II and a-8iC:H as materials for semiconductor devices such as solar cells containing an amorphous semiconductor layer.

a−3IGe:it、 a−8IN:H、a−3l:P
:H,a−Ge:Hなどや、これらに微結晶相を含む半
導体が用いられている。
a-3IGe:it, a-8IN:H, a-3l:P
:H, a-Ge:H, etc., and semiconductors containing microcrystalline phases in these are used.

従来の太陽電池は、前記材料をpinあるいはn1pの
順に同種の非晶質半導体あるいはドープ層のみ広い禁止
帯幅を有する異種の非晶質半導体を順次堆積した構造で
あり、p型層あるいはn型層のドーパントの密度は素子
作製時および作製後の熱拡散による分布を除けば、層の
厚さ方向にわたって一様で、通常0.O1〜5ata+
%である。
Conventional solar cells have a structure in which amorphous semiconductors of the same type or different types of amorphous semiconductors in which only the doped layer has a wide bandgap are sequentially deposited in the order of pin or n1p, and the p-type layer or n-type The density of the dopant in the layer is uniform throughout the thickness of the layer, except for distribution due to thermal diffusion during and after device fabrication, and is usually 0. O1~5ata+
%.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この構造の半導体装置は素子内部の内蔵電界が
弱く、光照射時、とくに低照度光照射時の開放電圧Vo
cが充分に大きくないという問題がある。とくに上記半
導体装置を光起電力素子として乾電池の代替電源に用い
るばあい、直列接続の段数を多くとらなければならず、
素子構成上の問題となっている。
However, a semiconductor device with this structure has a weak built-in electric field inside the element, and the open circuit voltage Vo when irradiated with light, especially when irradiated with low-intensity light, is
There is a problem that c is not large enough. In particular, when the semiconductor device described above is used as a photovoltaic element as an alternative power source to dry batteries, a large number of series connections must be provided.
This is a problem in terms of element configuration.

本発明はこのような問題を解決するためになされたもの
である。
The present invention has been made to solve such problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はpin型またはnip型の非晶質を含む半導体
層と少なくとも2つの電極とを有する半導体装置におい
て、p型層またはn型層のドーパントのmがp/Iまた
はn/i接合界面でもっとも少なく、前記界面からp/
組電極たはn/電極接合界面に向かって段階的に増加し
ている部分をp型層またはn型層の少なくとも1つに設
けたことを特徴とする半導体装置に関する。
The present invention provides a semiconductor device having a pin-type or nip-type amorphous-containing semiconductor layer and at least two electrodes, in which m of the dopant in the p-type layer or n-type layer is at the p/I or n/i junction interface. The least p/
The present invention relates to a semiconductor device characterized in that at least one of a p-type layer or an n-type layer is provided with a portion that increases stepwise toward a group electrode or an n/electrode junction interface.

〔実施例〕〔Example〕

本発明に用いるpin型またはnip型の非晶質を含む
半導体層を構成するi型層としては、たとえばa−8t
:II、a−9IGe:ll5a−Ge:II、 a−
3i:F:It。
As the i-type layer constituting the pin-type or nip-type amorphous semiconductor layer used in the present invention, for example, a-8t
:II, a-9IGe:ll5a-Ge:II, a-
3i:F:It.

a−8IN:II 5a−8iSn:IIなどや、それ
らにホウ素やリンを微量ドープしたものなどから形成さ
れた厚さ2500〜9000人程度の層、p型層として
は・たとえばa−3jC:II 、 p c−8l:l
1%a−8t:IIなどにn型用ドーパントである周期
律表ma族の元素をドープしたものなどから形成された
厚さ80〜300人程度の層、n型層としては、たとえ
ばa−8i:If、 p c−3[:II、a−8iC
:IIなどにn型用ドーパントである周期律表Va族の
元素をドープしたものなどから形成された厚さ80〜3
00人程度の層があげられるが、これらに限定されるも
のではない。
A layer with a thickness of about 2,500 to 9,000 layers formed from a-8IN:II, 5a-8iSn:II, etc., or those doped with a small amount of boron or phosphorus.As a p-type layer, for example, a-3jC:II , p c-8l:l
A layer with a thickness of about 80 to 300 layers formed of 1% A-8T:II or the like doped with an element of the Ma group of the periodic table, which is an n-type dopant. 8i:If, p c-3[:II, a-8iC
:II doped with an element of group Va of the periodic table, which is an n-type dopant, and has a thickness of 80 to 3.
An example is a layer of about 00 people, but it is not limited to this.

前記p型層のうちでは、a−3IC:II 、a−8i
:Ifにma族の元素をドープした層が、活性化エネル
ギーが小さい、光吸収ロスが少ないなどの点から好まし
く、また前記n型層のうちでは、a−8iC:It %
 、czc−]:]IfXa−3t:IにVa族の元素
をドープした層が、活性化エネルギーが小さい、導電率
が高いなどの点から好ましい。
Among the p-type layers, a-3IC:II, a-8i
:If doped with a Ma group element is preferable from the viewpoints of low activation energy and low light absorption loss, and among the n-type layers, a-8iC:It%
, czc-]:]IfXa-3t:I is preferably doped with a Va group element in terms of low activation energy and high conductivity.

前記説明ににおいては、n型用ドーパントとして周期律
表ma族の元素、すなわちB、V。
In the above description, elements of the Ma group of the periodic table, ie, B and V, are used as n-type dopants.

Gas Inq TL n型用ドーパントとして周期律
表のVa族の元素、すなわちN1P 1AS% Sb、
Te。
Gas Inq TL As a dopant for n-type, an element of the Va group of the periodic table, that is, N1P 1AS% Sb,
Te.

Paをあげたが、ドーピングすることにより半導体をp
型あるいはn型の導電タイプを示すものにするものであ
れば、これらに限定されるものでない。
Although the Pa is raised, the semiconductor can be made p by doping.
It is not limited to these as long as it exhibits conductivity type of type or n type.

本明細書にいう非晶質を含む半導体層とは、非晶質半導
体、非晶質半導体に微結晶状半導体が微結晶粒状に分布
するもの、大きな結晶粒の結晶半導体の間を非晶質半導
体がうめるように分布するものなどがら形成された層状
の半導体のことである。
The semiconductor layer containing amorphous as used herein refers to an amorphous semiconductor, an amorphous semiconductor in which microcrystalline semiconductor is distributed in the form of microcrystalline grains, and a semiconductor layer containing an amorphous semiconductor between large crystal grains. It is a layered semiconductor that is formed by distributing the semiconductor in such a way that it fills the layer.

本発明におけるpin型またはnIp型半導体層におい
ては、p型層またはn型層のドーパントの量かp/iま
たはn/I接合界面で最も少なく、該界面からp/組電
極たはn/電極接合界面に向って段階的に増加している
部分がp!!層またはn型層の少なくとも1つに設けら
れている。
In the pin-type or nIp-type semiconductor layer of the present invention, the amount of dopant in the p-type layer or n-type layer is the smallest at the p/i or n/I junction interface, and from the interface the p/set electrode or the n/electrode. The part that gradually increases toward the bonding interface is p! ! or n-type layer.

第1図は本発明の半導体装置の一実施態様を示す説明図
であり、透明電極(2)を白゛するガラス基板(1)上
に、p/I接合界面でのドーパントの量が最も少なくな
るようにn型半導体層(3)が設けられ、その上にi型
半導体層(4)、ついでn型半導体層(5)が設けられ
、さらに裏面電極(6)が設けられていることを示す図
である。
FIG. 1 is an explanatory diagram showing one embodiment of the semiconductor device of the present invention, in which a transparent electrode (2) is formed on a glass substrate (1) with the least amount of dopant at the p/I junction interface. An n-type semiconductor layer (3) is provided on top of it, an i-type semiconductor layer (4), an n-type semiconductor layer (5), and a back electrode (6). FIG.

第1図の半導体装置では、p/i接合界面でのドーパン
トの量が最も少なくなるようにされているが、n型半導
体層中のドーパントがn型半導体層(8)全体に均一に
なるように含まれていて、n!8!半導体層がn/l接
合界面でのドーパントの量が最も少なくなるように形成
されていてもよく、n型半導体層およびn型半導体層の
両方のドーパントがそれぞれp/i 、 n/l接合界
面で最低になるようにされていてもよい。また、第1図
においてはp型層側から光(刀が入るようになっている
が、光がn型層側から入ってもよい。
In the semiconductor device shown in FIG. 1, the amount of dopant is minimized at the p/i junction interface, but the amount of dopant in the n-type semiconductor layer is made uniform throughout the n-type semiconductor layer (8). Contained in n! 8! The semiconductor layer may be formed such that the amount of dopant is minimized at the n/l junction interface, and the dopants in both the n-type semiconductor layer and the n-type semiconductor layer are at the p/i and n/l junction interfaces, respectively. may be set to the lowest value. Furthermore, in FIG. 1, the light (sword) enters from the p-type layer side, but the light may enter from the n-type layer side.

さらにはpin層は、1層である必要もなく、2〜5層
かさねて設けてもよい。この際、2層目以上の層も上記
のようにi層との接合界面のドーパント量を最も少なく
するようにしてもよく、第2図のような通常のpin層
を設けてもよい。
Furthermore, the pin layer does not need to be one layer, and may be provided in two to five layers. At this time, the second and higher layers may also have the lowest amount of dopant at the bonding interface with the i-layer as described above, or may be provided with a normal pin layer as shown in FIG.

なお第2図の(8)は通常のp型層である。Note that (8) in FIG. 2 is a normal p-type layer.

p型層あるいはn型層のドーパントの量としては、通常
0.O1〜5 atm%程度であるが、ドーパントの量
が最も少ないp/l接合界面あるいはnil接合界面付
近、好ましくは該界面から少なくとも20〜30人、さ
らに好ましくは少なくとも 100人までの部分のドー
パントの量は0.01at−%以下が好ましく、0.0
01atm%以下がさらに好ましい。これらのことは本
発明者らによる半導体装置試作の結果から明らかにされ
ている。
The amount of dopant in the p-type layer or n-type layer is usually 0. The amount of dopant is about 1 to 5 atm%, but the amount of dopant is near the p/l junction interface or nil junction interface where the amount of dopant is the smallest, preferably at least 20 to 30 atoms from the interface, more preferably at least 100 atoms. The amount is preferably 0.01 at-% or less, and 0.0
More preferably, it is 0.01 atm% or less. These matters have been made clear from the results of semiconductor device prototype production by the present inventors.

ドーパントの分布はpli接合界而あ面いは口/I接合
界面からp/電極あるいはn/電極接合界面に向って段
階的に増加している必要があり、このような構成にする
ことにより、i層へのドーパントの侵入が少なくなる、
iJIとドーパント層の間の界面が改善されるなどの理
由により、結果的に開放電圧が増加するという効果かえ
られる。
The distribution of the dopant must increase stepwise from the pli junction or the mouth/I junction interface to the p/electrode or n/electrode junction interface, and by adopting such a configuration, Intrusion of dopants into the i-layer is reduced.
Due to the improvement of the interface between the iJI and the dopant layer, the effect of increasing the open circuit voltage can be obtained.

本明細書にいう段階的に増加しているとは、通常のドー
ピング層から熱拡散によって生ずるしみだしにより自然
に生ずる増加ではなく、ドーパントの量を調整すること
によりえられる連続的な増加や階段状の増加などを意味
する。
The term "stepwise increase" as used herein refers to a continuous increase or step-like increase obtained by adjusting the amount of dopant, rather than an increase that naturally occurs due to seepage caused by thermal diffusion from a normal doped layer. It means an increase in the number of people.

第3図はp6層がa−8IC:II Si型層がa−3
t:II。
In Figure 3, the p6 layer is a-8IC:II and the Si type layer is a-3.
t: II.

n型層がa−9[:Ifである本発明の半導体装置のド
ーパントの分布の一実施態様に関する説明図である。第
3図において、(9)はn型半導体層中のp!!ドーパ
ントの分布を示すグラフ、(10)はn型半導体層中の
n型ドーパントの分布を示すグラフ、01)、(121
は従来の半導体装置のp型ドーパント、n型ドーパント
の分布を示すグラフである。
FIG. 4 is an explanatory diagram regarding one embodiment of the dopant distribution of the semiconductor device of the present invention in which the n-type layer is a-9[:If. In FIG. 3, (9) represents p! in the n-type semiconductor layer. ! Graph showing the distribution of dopants, (10) is a graph showing the distribution of n-type dopants in the n-type semiconductor layer, 01), (121)
is a graph showing the distribution of p-type dopants and n-type dopants in a conventional semiconductor device.

ドーパントの分布は、第3図に示すようにp型層内また
はn型層内に分布すればよいが、かならずしも図の形に
限定されるものではない。
The dopant may be distributed within the p-type layer or the n-type layer as shown in FIG. 3, but is not necessarily limited to the shape shown in the figure.

要するにp型層またはn型層中のドーパントの分布がp
/lまたはn/l接合界面で最も少なくなるようにすれ
ばよい。
In short, the dopant distribution in the p-type layer or n-type layer is p
It is sufficient that the amount is minimized at the /l or n/l junction interface.

a−8jC:IIをドープ層として用いて本発明の半導
体装置を製造しようとすると、ドープなしのa−8iC
:IIの絶縁層がp/iまたはn/l接合界面に存在す
ることになるが、このような構造でもよい。
When attempting to manufacture the semiconductor device of the present invention using a-8jC:II as a doped layer, undoped a-8iC
:II insulating layer is present at the p/i or n/l junction interface, but such a structure may be used.

本発明に用いる電極にはとくに制限はなく、通常太陽電
池の作製に用いられるような透明電極、金属電極、シリ
サイド電極あるいはこれらの材料を多層構造にした電極
のごとき電極であれば用いうる。
There are no particular limitations on the electrodes used in the present invention, and any electrodes such as transparent electrodes, metal electrodes, silicide electrodes, or electrodes with a multilayer structure of these materials that are normally used in the production of solar cells can be used.

本発明における半導体を作製する装置としては、平行平
板容量結合型プラズマCVD装置、誘導結合型プラズマ
CVD装置、熱CVD装置、ECRプラズマCVD装置
、光CVD装置、励起種C’VD装置などがあげられる
が、これらに限定されるものではない。またその製造方
法、原料などにもとくに限定はない。
Examples of the apparatus for manufacturing a semiconductor in the present invention include a parallel plate capacitively coupled plasma CVD apparatus, an inductively coupled plasma CVD apparatus, a thermal CVD apparatus, an ECR plasma CVD apparatus, an optical CVD apparatus, an excited species C'VD apparatus, etc. However, it is not limited to these. Furthermore, there are no particular limitations on the manufacturing method, raw materials, etc.

本発明におけるpin構造や、nip構造は非晶質半導
体系の光起電力素子やフォトダイオードなどで一般的に
用いられている構造である。
The pin structure and nip structure in the present invention are structures commonly used in amorphous semiconductor photovoltaic elements, photodiodes, and the like.

以下、本発明の半導体装置を実施例に基づき説明する。EMBODIMENT OF THE INVENTION Hereinafter, the semiconductor device of this invention is demonstrated based on an Example.

実施例1および比較例1 第1図に示す構造の太陽電池を試作した。Example 1 and Comparative Example 1 A solar cell with the structure shown in Figure 1 was prototyped.

基板としてはガラス上に透明電極としてSL 02をス
パッタ法にて800人の厚さに蒸着したものを用いた。
The substrate used was glass on which SL 02 was deposited as a transparent electrode to a thickness of 800 mm by sputtering.

この基板上にプラズマCVD法によりp型層−SLC:
H膜を150人堆積させた。p型層−SLC:IIの原
料ガスとして5LH4、CH4、B2)Is  (H2
で1000ppfilに希釈したもの)を用い、3つの
ガスの流量をそれぞれ1Osec+ms 30secm
、200scca+として一定のまま70人堆積し、グ
ロー放電を維持したまま、B2)1aの量のみを徐々に
減少させて、残りの80人を堆積するようにし、p層堆
積完了の時点では132Hsの流量が0scca+にな
るようにした。
A p-type layer-SLC is formed on this substrate by plasma CVD method:
150 people deposited H films. 5LH4, CH4, B2) Is (H2
diluted to 1000 ppfil), and the flow rates of the three gases were set to 1Osec+ms and 30sec, respectively.
, 70 layers were deposited at a constant value of 200scca+, and while maintaining the glow discharge, only the amount of B2) 1a was gradually decreased to deposit the remaining 80 layers, and at the time of completion of p layer deposition, 132Hs. The flow rate was set to 0scca+.

続いて5L)14をグロー放電分解してi型層−SL:
H層を約7000人、さらにSL 8420secm、
H2でH000ppに希釈したPI+3101005e
の混合ガスをグロー放電分解して300人堆積させたの
ち、裏面の金属電極としてNを1000人真空蒸着法に
て蒸着し、1 cJの素子を作製した。
Subsequently, 5L) 14 was decomposed by glow discharge to i-type layer-SL:
Approximately 7000 people in the H layer, and SL 8420sec,
PI+3101005e diluted to H000pp with H2
The mixed gas was decomposed by glow discharge to deposit 300 layers, and then N was deposited as a metal electrode on the back surface by a 1000 layer vacuum evaporation method to fabricate a 1 cJ element.

B2Hsを一定量流したときのp型層のドーパント量は
2ata+%であった。
When a constant amount of B2Hs was flowed, the amount of dopant in the p-type layer was 2ata+%.

p型層−SLC:Hを上記一定流量にて150人堆積し
た他は、上記と同様にして比較のために従来と同じ型の
太陽電池を作製した。
For comparison, a solar cell of the same type as the conventional one was fabricated in the same manner as described above, except that 150 p-type layers -SLC:H were deposited at the above-mentioned constant flow rate.

えられた2種の太陽電池の螢−光灯20Olux下での
V−1特性を/l−1定した結果を第4図に示す。
FIG. 4 shows the results of determining the V-1 characteristics of the two types of solar cells obtained under a firefly light lamp of 20 Olux at /l-1.

比較例1の太陽電池の開放電圧が0.6v程度であるの
に対し、実施例1の太陽電池の開放電圧は0.70Vで
あった。また電流、PI’にも若干の向上が見られた。
The open-circuit voltage of the solar cell of Comparative Example 1 was about 0.6V, whereas the open-circuit voltage of the solar cell of Example 1 was 0.70V. A slight improvement was also observed in the current and PI'.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体装置は従来の半導体装置に比較して、光
照射下、とくに低照度完工において高い開放電圧を示す
Compared to conventional semiconductor devices, the semiconductor device of the present invention exhibits a higher open circuit voltage under light irradiation, particularly when completed at low illuminance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装置の一実施態様に関する説明
図、第2図は従来の半導体装置の一実施態様に関する説
明図、第3図は本発明に用いるpin型半導体層中にお
けるドーパントの分布の一例と、従来のpin型半導体
層中におけるドーパントの分布の一例とに関する説明図
、第4図は実施例1および比較例1でえられた太陽電池
のV−I特性を示すグラフである。 (図面の主要符号) (2):透明電極 (3J=p型層 (4):i型層 (5) : n型層 (6):裏面電極
FIG. 1 is an explanatory diagram of one embodiment of the semiconductor device of the present invention, FIG. 2 is an explanatory diagram of one embodiment of the conventional semiconductor device, and FIG. 3 is the distribution of dopants in the pin type semiconductor layer used in the present invention. FIG. 4 is a graph showing the VI characteristics of the solar cells obtained in Example 1 and Comparative Example 1. (Main symbols in the drawing) (2): Transparent electrode (3J = p-type layer (4): i-type layer (5): n-type layer (6): back electrode

Claims (1)

【特許請求の範囲】 1 pin型またはnip型の非晶質を含む半導体層と
少なくとも2つの電極とを有する半導体装置において、
p型層またはn型層のドーパントの量がp/iまたはn
/i接合界面でもっとも少なく、その界面からp/電極
またはn/電極接合界面に向かって段階的に増加してい
る部分をp型層またはn型層の少なくとも1つに設けた
ことを特徴とする半導体装置。 2 前記p型層またはn型層がa−SiC:H層である
特許請求の範囲第1項記載の半導体装置。 3 前記p型層またはn型層がa−Si:H層である特
許請求の範囲第1項記載の半導体装置。 4 前記p型層またはn型層のp/iまたはn/i接合
界面から少なくとも20Åまでの厚さの部分において、
前記界面からp/電極またはn/電極接合界面に向けて
ドーパントの量が段階的に増加している特許請求の範囲
第1項記載の半導体装置。 5 前記p型層またはn型層のp/iまたはn/i接合
界面から少なくとも 100Åまでの厚さの部分におい
て、前記界面からp/電極またはn/電極接合界面に向
けてドーパントの量が段階的に増加している特許請求の
範囲第1項記載の半導体装置。 6 前記p型層のドーパントが周期律表IIIa族に属す
る元素(B、Al、Ga、In、Tl)である特許請求
の範囲第1項、第4項または第5項記載の半導体装置。 7 前記n型層のドーパントが周期律表Va族に属する
元素(N、P、As、Sb、Te、Po)である特許請
求の範囲第1項、第4項または第5項記載の半導体装置
[Claims] 1. A semiconductor device having a pin-type or nip-type amorphous semiconductor layer and at least two electrodes,
The amount of dopant in the p-type layer or n-type layer is p/i or n
A feature is that at least one of the p-type layer or the n-type layer is provided with a portion that is smallest at the /i junction interface and increases stepwise from that interface toward the p/electrode or n/electrode junction interface. semiconductor devices. 2. The semiconductor device according to claim 1, wherein the p-type layer or the n-type layer is an a-SiC:H layer. 3. The semiconductor device according to claim 1, wherein the p-type layer or the n-type layer is an a-Si:H layer. 4. In a portion of the p-type layer or n-type layer having a thickness of at least 20 Å from the p/i or n/i junction interface,
2. The semiconductor device according to claim 1, wherein the amount of dopant increases stepwise from the interface toward the p/electrode or n/electrode junction interface. 5. In a portion of the p-type layer or n-type layer up to a thickness of at least 100 Å from the p/i or n/i junction interface, the amount of dopant is graduated from the interface to the p/electrode or n/electrode junction interface. A semiconductor device according to claim 1, which is increasing in number. 6. The semiconductor device according to claim 1, 4, or 5, wherein the dopant of the p-type layer is an element (B, Al, Ga, In, Tl) belonging to group IIIa of the periodic table. 7. The semiconductor device according to claim 1, 4, or 5, wherein the dopant of the n-type layer is an element (N, P, As, Sb, Te, Po) belonging to group Va of the periodic table. .
JP60255681A 1985-11-05 1985-11-14 Semiconductor device Expired - Lifetime JP2545066B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP60255681A JP2545066B2 (en) 1985-11-14 1985-11-14 Semiconductor device
CA000521602A CA1321660C (en) 1985-11-05 1986-10-28 Amorphous-containing semiconductor device with high resistivity interlayer or with highly doped interlayer
AU64619/86A AU600453B2 (en) 1985-11-05 1986-10-31 Semiconductor device
EP19920104633 EP0494090A3 (en) 1985-11-05 1986-11-01 Photovoltaic device
DE3650012T DE3650012T2 (en) 1985-11-05 1986-11-01 Semiconductor device.
EP86115170A EP0221523B1 (en) 1985-11-05 1986-11-01 Semiconductor device
DE3650712T DE3650712T2 (en) 1985-11-05 1986-11-01 Photovoltaic device
EP92104628A EP0494088B1 (en) 1985-11-05 1986-11-01 Photovoltaic device
CN86106353A CN1036817C (en) 1985-11-05 1986-11-05 Semiconductor device
KR860009364A KR870005477A (en) 1985-11-05 1986-11-05 Semiconductor devices
US07/477,138 US5032884A (en) 1985-11-05 1990-02-07 Semiconductor pin device with interlayer or dopant gradient
AU65966/90A AU636677B2 (en) 1985-11-05 1990-11-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60255681A JP2545066B2 (en) 1985-11-14 1985-11-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS62115785A true JPS62115785A (en) 1987-05-27
JP2545066B2 JP2545066B2 (en) 1996-10-16

Family

ID=17282146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60255681A Expired - Lifetime JP2545066B2 (en) 1985-11-05 1985-11-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2545066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134541A (en) * 2009-02-17 2012-07-12 Korea Inst Of Industrial Technology Solar cell manufacturing method making use of inductive coupling plasma chemical vapor deposition method
JP2013125891A (en) * 2011-12-15 2013-06-24 Sharp Corp Photoelectric conversion element and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS5914679A (en) * 1982-07-16 1984-01-25 Toshiba Corp Photovoltaic device
JPS5996775A (en) * 1982-11-25 1984-06-04 Agency Of Ind Science & Technol Amorphous silicon photoelectric conversion device
JPS6050973A (en) * 1983-08-31 1985-03-22 Agency Of Ind Science & Technol Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150876A (en) * 1980-04-24 1981-11-21 Sanyo Electric Co Ltd Photovoltaic device
JPS5914679A (en) * 1982-07-16 1984-01-25 Toshiba Corp Photovoltaic device
JPS5996775A (en) * 1982-11-25 1984-06-04 Agency Of Ind Science & Technol Amorphous silicon photoelectric conversion device
JPS6050973A (en) * 1983-08-31 1985-03-22 Agency Of Ind Science & Technol Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134541A (en) * 2009-02-17 2012-07-12 Korea Inst Of Industrial Technology Solar cell manufacturing method making use of inductive coupling plasma chemical vapor deposition method
JP2013125891A (en) * 2011-12-15 2013-06-24 Sharp Corp Photoelectric conversion element and manufacturing method of the same

Also Published As

Publication number Publication date
JP2545066B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US7879644B2 (en) Hybrid window layer for photovoltaic cells
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
US5256887A (en) Photovoltaic device including a boron doping profile in an i-type layer
JP2951146B2 (en) Photovoltaic devices
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JPH0370183A (en) Photovoltaic element
JPS6249672A (en) Amorphous photovoltaic element
US4396793A (en) Compensated amorphous silicon solar cell
AU2011219223B8 (en) Thin-film photoelectric conversion device and method for production thereof
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
US7122736B2 (en) Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique
JPS62115785A (en) Semiconductor device
JP2757896B2 (en) Photovoltaic device
JPH0927632A (en) Photovoltaic element and manufacture thereof
Kuwano Photovoltaic Structures by Plasma Deposition
JPS6284571A (en) Multilayer structure type amorphous solar cell
JPH0927628A (en) Photovoltaic element and manufacture thereof
JP2000332268A (en) Thin-film polycrystalline silicon, solar battery using the same, and manufacture of thin-film polycrystalline silicon
KR20140121919A (en) Thin film solar cell
JPH09191119A (en) Manufacture of photovolataic element
WO2003017384A1 (en) Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term