JPS6211227A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6211227A
JPS6211227A JP15046385A JP15046385A JPS6211227A JP S6211227 A JPS6211227 A JP S6211227A JP 15046385 A JP15046385 A JP 15046385A JP 15046385 A JP15046385 A JP 15046385A JP S6211227 A JPS6211227 A JP S6211227A
Authority
JP
Japan
Prior art keywords
substrate
contact hole
insulating layer
cvd
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15046385A
Other languages
Japanese (ja)
Inventor
Takayuki Oba
隆之 大場
Ikuro Kobayashi
小林 郁朗
Shinichi Inoue
井上 信市
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15046385A priority Critical patent/JPS6211227A/en
Publication of JPS6211227A publication Critical patent/JPS6211227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower the resistance of a contact hole and bury it by activating a substrate on the bottom of the contact hole through plasma etching and conducting CVD treatment by using a reaction gas mainly comprising a conductive-layer forming metal. CONSTITUTION:A thick SiO2 insulating layer 7 is formed onto a substrate 1 with a semiconductor region 2, and a contact hole 4 reacting the region 2 is shaped to the insulating layer 7. When the surface of the substrate 1 is brought into contact with air, a passive-state film consisting of SiO2 is formed. The substrate 1 is plasma-etched. The passive-state film on the bottom of the hole 4 is removed through the plasma etching, and an active surface 11 in the region 2 appears. Al{CH2CH(CH3)2}3 is used as a reaction gas, and the substrate 1 is heated, thus decomposing the reaction gas, then generating a CVD reaction on the substrate 1. Accordingly, CVD growth is performed preferentially from the active surface 11, the hole 4 is buried, and Al is grown on the layer 7.

Description

【発明の詳細な説明】 〔概要〕 半導体基板上の絶縁層に形成したコンタクトホールを該
基板と密着よく穴埋めする方法として、該基板をプラズ
マエツチングにより活性化した後、選択的に化学気相成
長を行う穴埋め方法。
[Detailed Description of the Invention] [Summary] As a method for filling contact holes formed in an insulating layer on a semiconductor substrate with good contact with the substrate, the substrate is activated by plasma etching, and then selective chemical vapor deposition is performed. How to fill in the blanks.

〔産業上の利用分野〕[Industrial application field]

本発明は基板と密着性よくコンタクトホールを穴埋めす
る半導体装置の製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device in which contact holes are filled with good adhesion to a substrate.

LSl、VLSIなどの半導体装置は半導体基板上に絶
縁層を形成した後、写真食刻技術(ホトリソグラフィ或
いは電子線リソグラフィ)を用いて必要位置の絶縁層を
窓開けし、この窓開は部を通して不純物を熱拡散させて
半導体領域を形成するか、或いはイオン注入法により窓
開は部を通して不純物イオンの注入を行うか又は直接に
イオン注入を行って半導体領域が形成される。
For semiconductor devices such as LSI and VLSI, after forming an insulating layer on a semiconductor substrate, windows are formed in the insulating layer at necessary positions using photolithography (photolithography or electron beam lithography). A semiconductor region is formed by thermally diffusing impurities, or by implanting impurity ions through the window opening by an ion implantation method, or by directly implanting ions.

次に窓開は部を絶縁被覆した後、必要位置を窓開けして
コンタクトホールを作り、このコンタクトホールを金属
材料で穴埋めして絶縁層の上に電極パターンや配線パタ
ーンを形成し、これにより半導体デバイスが形成されて
いる。
Next, after insulating the window opening, open the window at the required position to make a contact hole, fill this contact hole with a metal material, and form an electrode pattern or wiring pattern on the insulating layer. A semiconductor device is formed.

ここで半導体装置は大量の情報を高速処理するために高
集積化が進んでおり、これは基板上の半導体領域や配線
パターンなどを小形化すると共に三次元化することによ
り行われている。
Semiconductor devices are becoming highly integrated in order to process large amounts of information at high speed, and this is achieved by downsizing semiconductor regions and wiring patterns on substrates and making them three-dimensional.

例えば基板上に形成されている電極パターンの上に二酸
化硅素(Si02 )や窒化硅素(Si3 N 4)な
どの絶縁物で絶縁して絶縁層を作り、この上に配線パタ
ーンを形成して基板に形成されている半導体領域と配線
接続する場合がある。
For example, an insulating layer is created by insulating an electrode pattern formed on a substrate with an insulating material such as silicon dioxide (Si02) or silicon nitride (Si3N4), a wiring pattern is formed on this, and the wiring pattern is attached to the substrate. There is a case where wiring is connected to the formed semiconductor region.

このような場合、絶縁層を基板の半導体領域に達するま
で選択エツチングしてコンタクトホールを作り、これを
アルミニウム(AI)などの金属で穴埋めすることによ
り行われているが、穴が深い場合は穴の底面に沿って一
様に金属層を形成し、半導体領域と密着性の良い接触を
保つことは容易ではない。
In such cases, contact holes are created by selectively etching the insulating layer until it reaches the semiconductor region of the substrate, and the holes are filled with metal such as aluminum (AI). However, if the holes are deep, It is not easy to uniformly form a metal layer along the bottom surface of the substrate and maintain good contact with the semiconductor region.

〔従来の技術〕[Conventional technology]

コンタクトホールを穴埋めするには化学気相成長法(C
hemical Vapor Deposition法
略してCVD法)が使用されている。
Chemical vapor deposition (C) is used to fill contact holes.
A chemical vapor deposition method (abbreviated as CVD method) is used.

第3図はシリコン(Si)半導体基板(以下略して基板
)に形成されている半導体領域2に絶縁層3を選択エツ
チングしてコンタクトホール4を作り、これにCVD法
によりAI5を析出させて穴埋めを行った状態を示して
いる。
Figure 3 shows that a contact hole 4 is created by selectively etching an insulating layer 3 in a semiconductor region 2 formed on a silicon (Si) semiconductor substrate (hereinafter referred to as the substrate), and then AI5 is deposited in the hole by the CVD method to fill the hole. This shows the state in which the following steps have been performed.

すなわち、絶縁層3に形成されている直径が1μm程度
のコンタクトホール4を穴埋めするのに真空蒸着法やス
パッタ法などの方法を使用すると、蒸発源或いは陰極タ
ーゲットから金属粒子が直線状に飛散するため、コンタ
クトホール4の内部に均一に膜形成させることは不可能
であり、そのために基板上で反応ガスを熱分解させて析
出させるCVO法が用いられている。
That is, when a method such as a vacuum evaporation method or a sputtering method is used to fill a contact hole 4 having a diameter of about 1 μm formed in an insulating layer 3, metal particles are scattered in a straight line from an evaporation source or a cathode target. Therefore, it is impossible to uniformly form a film inside the contact hole 4, and for this reason, a CVO method is used in which reactive gas is thermally decomposed on the substrate to deposit it.

然しなから従来のように絶縁層3の厚さが1μm程度で
コンタクトホール4の直径が1μm以上ある場合には差
支えないが、先に記したように三次元の高密度化が行わ
れると、絶縁層3の厚さが2〜3μmにもなり、一方コ
ンタクトホール4の径が1μm程度と狭いので、CVD
法を用いても半導体領域2とコンタクトホールの底部で
充分に接触することは難しく、隙間6などを生じて低抵
抗な導通を得ることは困難となっている。
However, there is no problem when the thickness of the insulating layer 3 is about 1 μm and the diameter of the contact hole 4 is 1 μm or more as in the conventional case, but when three-dimensional densification is performed as described above, The thickness of the insulating layer 3 is 2 to 3 μm, and the diameter of the contact hole 4 is narrow, about 1 μm, so CVD
Even if a method is used, it is difficult to make sufficient contact with the semiconductor region 2 at the bottom of the contact hole, and a gap 6 is created, making it difficult to obtain low-resistance conduction.

そこでこのように段差が高く且つ微細なコンタクトホー
ルを穴埋めする技術を確立する必要がある。
Therefore, it is necessary to establish a technique for filling such a fine contact hole with a high level difference.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したように三次元デバイスにおいては高段差の
コンタクトホールを穴埋めし、基板の半導体領域と低抵
抗の導通路を作る必要があるが、コンタクトホールの底
部にCVD膜を如何にして密着して形成するかが問題で
ある。
As explained above, in three-dimensional devices, it is necessary to fill contact holes with high height differences and create a low-resistance conductive path with the semiconductor region of the substrate. The question is whether to form one.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は半導体領域上の絶縁層に形成した高段差の
コンタクトホールにアルミニウムを選択成長せしめ、該
半導体領域と密着性よく穴埋めを行う方法として、被処
理半導体基板を塩化硼素ガス雰囲気中でプラズマエツチ
ングしてコンタクトホール底部の半導体領域を活性化せ
しめた後、アルミニウムを主構成分とする反応ガスを用
いて化学気相成長を行い、コンタクトホール底部の活性
化領域に選択的にアルミニウムを成長せしめて穴埋めを
行うことを特徴とする半導体装置の製造方法により解決
することができる。
The above problem can be solved by selectively growing aluminum into contact holes with high height differences formed in an insulating layer on a semiconductor region, and filling the hole with good adhesion to the semiconductor region. After etching to activate the semiconductor region at the bottom of the contact hole, chemical vapor deposition is performed using a reactive gas containing aluminum as a main component to selectively grow aluminum in the activated region at the bottom of the contact hole. This problem can be solved by a semiconductor device manufacturing method characterized in that the holes are filled by using the same method.

〔作用〕[Effect]

本発明はCVO法で金属などの導体層を形成する場合に
酸化物などの絶縁層上よりもSi基板上のほうが析出が
起こり易いのを利用し、プラズマエツチングによりコン
タクトホールの底の基板を活性化し、選択的にコンタク
トホールの底からCVD0層成長が起こるようにしたも
のである。
The present invention takes advantage of the fact that when a conductive layer of metal or the like is formed using the CVO method, precipitation occurs more easily on a Si substrate than on an insulating layer such as an oxide, and activates the substrate at the bottom of the contact hole by plasma etching. The CVD layer is grown selectively from the bottom of the contact hole.

このような前処理を行って後CVD処理を行えば基板と
の密着性のよい穴埋めが可能となる。
If such pretreatment is performed and then CVD treatment is performed, it becomes possible to fill holes with good adhesion to the substrate.

〔実施例〕 第2図は本発明を実施するのに使用したプラズマエツチ
ング兼CvD装置の断面図、また第1図(A)〜(C)
は本発明の詳細な説明する断面図である。
[Example] Figure 2 is a sectional view of a plasma etching/CvD apparatus used to carry out the present invention, and Figures 1 (A) to (C)
FIG. 2 is a cross-sectional view illustrating the present invention in detail.

本発明はプラズマエツチングによってコンタクトホール
底部の基板面を活性化し、この活性面にCVD成長が起
こり易い性質を利用するものであるからCVDの析出が
起こるまで活性状態を維持しておくことが必要であり、
そのため同一装置を切り換えてプラズマエツチングとC
VD成長とを引き続いて行う必要がある。
The present invention activates the substrate surface at the bottom of the contact hole by plasma etching and utilizes the property that CVD growth easily occurs on this active surface, so it is necessary to maintain the active state until CVD precipitation occurs. can be,
Therefore, we changed the same equipment to perform plasma etching and C.
It is necessary to continue with VD growth.

以下導体としてAlを用いる場合について本発明を説明
する。
The present invention will be described below with reference to the case where Al is used as the conductor.

第1図(A)は半導体領域2を備えた基板1の上に熱処
理或いはこれとCVDとの併用により厚さ4〜5μmと
厚いSiO2絶縁層7を形成し、これをリアクティブイ
オンエツチング(Reactive−ionEtchi
ng  略してRIE)などのドライエツチングを施し
て半導体領域2に達するコンタクトホール4を形成した
状態を示す断面図であって、コンタクトホール4の底に
はSi基板が現れているが、このSi基板面は空気に触
れると空気中の酸素(02)により容易に酸化され、S
iO2よりなる厚さ数10人の不動態被膜が表面に形成
されている。
In FIG. 1(A), a thick SiO2 insulating layer 7 with a thickness of 4 to 5 μm is formed on a substrate 1 having a semiconductor region 2 by heat treatment or a combination of this and CVD, and this is then etched by reactive ion etching (reactive ion etching). -ionEtchi
ng is a cross-sectional view showing a state in which a contact hole 4 reaching a semiconductor region 2 has been formed by dry etching such as RIE, and a Si substrate is exposed at the bottom of the contact hole 4. When the surface comes into contact with air, it is easily oxidized by oxygen (02) in the air, and S
A passive film made of iO2 and having a thickness of several tens of layers is formed on the surface.

本発明を実施するにはコンタクトホール4の形成が終わ
った基板lを第2図に示すプラズマエツチング兼CVD
装置のサセプタ8の上に載置し、排気系を動作して装置
内を排気した後、シャワー9から塩化硼素(BCI 3
 )ガスを供給し、装置内の気圧を0.3〜1.0 T
orrに保持した状態で高周波電源10よりシャワー9
とサセプタ8との間に高周波電界を加えて基板1を2〜
3分に互ってプラズマエツチングを行う。
To carry out the present invention, the substrate 1 on which the contact hole 4 has been formed is subjected to plasma etching/CVD as shown in FIG.
After placing the device on the susceptor 8 and operating the exhaust system to exhaust the inside of the device, boron chloride (BCI 3
) Supply gas and reduce the pressure inside the device to 0.3 to 1.0 T.
Shower 9 from high frequency power supply 10 while held at orr.
A high frequency electric field is applied between the substrate 1 and the susceptor 8 to
Plasma etching is performed for 3 minutes at a time.

このプラズマエツチングにより第1図(B)に示すよう
にコンタクトホール4の底の不動態被膜は除去され、半
導体領域2の活性面11が現れる。
By this plasma etching, the passive film at the bottom of the contact hole 4 is removed, and the active surface 11 of the semiconductor region 2 is exposed, as shown in FIG. 1(B).

プラズマエツチング終了の後は第2図の装置において供
給ガスを切り換え、反応ガスとしてトリイソブチルアル
ミニウム(Al (CII2 CI(CH3) 2)3
〕を用い、キャリアガスとしてアルゴン(Ar)を、ま
た分解促進ガスとして水素(H2)をシャワー9から供
給し、排気装置により装置内の真空度を0.3〜1.Q
 Torrに保ちながらヒータ12に通電   □し、
基板1の温度を約300℃に加熱することにより(Al
 (CH2CH(CH3) z ) 3 )を分解せし
め、基板1の上でCVD反応を起こさせる。
After the plasma etching is completed, the supply gas is switched in the apparatus shown in Fig. 2, and triisobutylaluminum (Al (CII2 CI(CH3) 2) 3 is used as the reaction gas.
], argon (Ar) is used as a carrier gas, and hydrogen (H2) is supplied as a decomposition accelerating gas from the shower 9, and the degree of vacuum in the apparatus is maintained at 0.3-1. Q
While maintaining the Torr, energize the heater 12 □,
By heating the substrate 1 to approximately 300°C (Al
(CH2CH(CH3) z ) 3 ) is decomposed and a CVD reaction is caused on the substrate 1.

ここで先に第1図(B)で説明したようにコンタクトホ
ール4の底部は活性化されているためにCVD成長は第
1図(C)に示すようにこの活性面11から優先的に成
長し、コンタクトホール4を埋めて後、Si02絶縁層
7の上にAIの成長が行われることになる。
Since the bottom of the contact hole 4 is activated as previously explained with reference to FIG. 1(B), the CVD growth preferentially grows from this active surface 11 as shown in FIG. 1(C). After filling the contact hole 4, AI will be grown on the Si02 insulating layer 7.

以下は従来と同様であって、約1μmの膜厚にまでA1
層5を形成し、これに写真食刻技術を適用して電極や配
線パターンなどの微細パターンを形成すればよい。
The following is the same as before, and A1 up to a film thickness of about 1 μm.
The layer 5 may be formed, and a fine pattern such as an electrode or a wiring pattern may be formed thereon by applying a photolithography technique.

このようにコンタクトホール4の底の活性面11から導
電層の成長が起こるようにすることより理想的なコンタ
クトホール4の穴埋めを行うことができる。
By allowing the conductive layer to grow from the active surface 11 at the bottom of the contact hole 4 in this manner, the contact hole 4 can be ideally filled.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の実施により、従来のような
隙間の発生はなく、コンタクトホールの低抵抗な穴埋め
が可能となる。
As explained above, by carrying out the present invention, there is no generation of gaps as in the conventional method, and contact holes can be filled with low resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)は本発明の詳細な説明する断面図
で、同図(A)はコンタクトホール形成後、同図(B)
はプラズマエツチング後、同図(C)は選択成長中の状
態図、 第2図はプラズマエツチング兼CVD装置の断面図、 第3図は従来のCVD成長後の断面図、である。 図において、 lは基板、       2は半導体領域、3は絶縁層
、      4はコンタクトホール、5はへ1層、 
      6は隙間、7はSiO2絶縁層、   9
はシャワー、11は活性面、
FIGS. 1(A) to 1(C) are cross-sectional views explaining the present invention in detail, and FIG. 1(A) shows the state after forming the contact hole.
2 is a state diagram after plasma etching, FIG. 2C is a state diagram during selective growth, FIG. 2 is a cross-sectional view of the plasma etching/CVD apparatus, and FIG. 3 is a cross-sectional view after conventional CVD growth. In the figure, l is the substrate, 2 is the semiconductor region, 3 is the insulating layer, 4 is the contact hole, 5 is the first layer,
6 is a gap, 7 is a SiO2 insulating layer, 9
is the shower, 11 is the active surface,

Claims (1)

【特許請求の範囲】[Claims] 半導体領域(2)上の絶縁層(7)に形成した高段差の
コンタクトホール(4)内に導電層形成金属を選択成長
せしめ、該半導体領域(2)と密着性よく穴埋めを行う
方法として、被処理半導体基板(1)を予めプラズマエ
ッチングしてコンタクトホール(4)底部の半導体領域
(2)を活性化せしめた後、前記導電層形成金属を主構
成分とする反応ガスを用いて化学気相成長を行い、コン
タクトホール(4)底部の活性化領域(2)上に選択的
に導電層を成長せしめる工程を含むことを特徴とする半
導体装置の製造方法。
As a method of selectively growing a conductive layer forming metal in a contact hole (4) with a high level difference formed in an insulating layer (7) on a semiconductor region (2), and filling the hole with good adhesion to the semiconductor region (2), After plasma etching the semiconductor substrate (1) to be processed in advance to activate the semiconductor region (2) at the bottom of the contact hole (4), chemical A method for manufacturing a semiconductor device, comprising the step of performing phase growth to selectively grow a conductive layer on an active region (2) at the bottom of a contact hole (4).
JP15046385A 1985-07-09 1985-07-09 Manufacture of semiconductor device Pending JPS6211227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15046385A JPS6211227A (en) 1985-07-09 1985-07-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15046385A JPS6211227A (en) 1985-07-09 1985-07-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6211227A true JPS6211227A (en) 1987-01-20

Family

ID=15497466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15046385A Pending JPS6211227A (en) 1985-07-09 1985-07-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6211227A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333569A (en) * 1986-07-25 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> Production of thin metallic film
US5180687A (en) * 1989-09-26 1993-01-19 Canon Kabushiki Kaisha Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride
US5316972A (en) * 1989-09-26 1994-05-31 Canon Kabushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device
US5637534A (en) * 1992-12-25 1997-06-10 Kawasaki Steel Corporation Method of manufacturing semiconductor device having multilevel interconnection structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154291A (en) * 1978-05-25 1979-12-05 Itt Method of forming aliminum conductor path

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154291A (en) * 1978-05-25 1979-12-05 Itt Method of forming aliminum conductor path

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333569A (en) * 1986-07-25 1988-02-13 Nippon Telegr & Teleph Corp <Ntt> Production of thin metallic film
US5180687A (en) * 1989-09-26 1993-01-19 Canon Kabushiki Kaisha Deposited film formation method utilizing selective deposition by use of alkyl aluminum hydride
US5316972A (en) * 1989-09-26 1994-05-31 Canon Kabushiki Kaisha Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device
US5637534A (en) * 1992-12-25 1997-06-10 Kawasaki Steel Corporation Method of manufacturing semiconductor device having multilevel interconnection structure
US5952723A (en) * 1992-12-25 1999-09-14 Kawasaki Steel Corporation Semiconductor device having a multilevel interconnection structure

Similar Documents

Publication Publication Date Title
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
JP2978748B2 (en) Method for manufacturing semiconductor device
JPS6211227A (en) Manufacture of semiconductor device
JPS62179113A (en) Manufacture of semiconductor device and equipment therefor
JPH0279446A (en) Method of filling through-hole with metal
JPS6235539A (en) Manufacture of semiconductor device
JPH06140358A (en) Manufacture of semiconductor device
JPS61139026A (en) Production of semiconductor device
JP3002494B2 (en) Method for manufacturing semiconductor device
JP2699611B2 (en) Thin film formation method
JPS61256626A (en) Selective growth method of thin film on surface of insulating film
JP2616062B2 (en) Contact hole filling method
JPH06120355A (en) Manufacture of semiconductor device
JP2954219B2 (en) Improved selective CVD applied to semiconductor device manufacturing process
JP2694950B2 (en) Method of forming high melting point metal film
JPH0758712B2 (en) Wiring formation method
JPH03291920A (en) Method for filling contact hole
KR0165372B1 (en) Contact plug forming method of semiconductor device
JPH0869994A (en) Production of semiconductor device
JP2841457B2 (en) Method of forming aluminum film
EP0345400A1 (en) Selective CVD for maufacturing semiconductor devices
JPH0682641B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH03248464A (en) Contact-buried metal structure and manufacture thereof
JPH06224309A (en) Filling-in method for connecting hole
JPH0266940A (en) Application method for metallic wiring film of semiconductor device