JPS61139026A - Production of semiconductor device - Google Patents

Production of semiconductor device

Info

Publication number
JPS61139026A
JPS61139026A JP26233584A JP26233584A JPS61139026A JP S61139026 A JPS61139026 A JP S61139026A JP 26233584 A JP26233584 A JP 26233584A JP 26233584 A JP26233584 A JP 26233584A JP S61139026 A JPS61139026 A JP S61139026A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon film
tungsten
conductive polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26233584A
Other languages
Japanese (ja)
Inventor
Yoshimi Shiotani
喜美 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26233584A priority Critical patent/JPS61139026A/en
Publication of JPS61139026A publication Critical patent/JPS61139026A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make it possible that tungsten is selectively grown on the poly crystalline silicon easily, by a method wherein the bottom surface of the elec trode window which is formed on the insulation film on a semiconductor base board is coated with a conductive polycrystalline silicon film, and then, the surface of the conductive polycrystalline silicon film undergoes the rough surface processing. CONSTITUTION:After only the n type polycrystalline silicon film 4 within the electrode window 8 is left by the dry-etching, the whole surface is coated with the resist film mask 10 to expose only the n type polycrystalline silicon film 4. Then, the film 4 is dipped in the etching liquid to make the surface of the film a rough surface through etching. The crystal defects and particle border sections on the surface of the polycrystalline silicon film 4' are made rough with the etching process to be given a unevenly notched, rough surface. Then, the resist mask 10 is removed to grow the tungsten film 5 on the polycrystalline silicon film 4' with selective growth method. By doing this, the many cores of the tungsten are rapidly produced, with accelerated growth speed. In turn, the adhesion of the tungsten on the PSG film 3 is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法にかかり、特に接続電換
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming a connection converter.

周知のように半導体集積回路(IC)などの半導体装置
においでは、半導体基板上に半導体素子や抵抗等の素子
が形成されて、これらの電極から導出する配線層、ある
いは電極間を接続する配線層が表面に多数設けられてい
る。
As is well known, in semiconductor devices such as semiconductor integrated circuits (ICs), elements such as semiconductor elements and resistors are formed on a semiconductor substrate, and wiring layers lead out from these electrodes or interconnect layers connecting between the electrodes. are provided in large numbers on the surface.

その配線層には、従前からアルミニウム(^1)膜また
はその合金膜が用いられており、これはアルミニウムが
半導体基板とのオーミックコンタクトが容易に得られ、
二酸化シリコン(Si02 ) tlQとの密着がよい
高電導度材料であるからである。
For the wiring layer, an aluminum (^1) film or an alloy film thereof has been used for a long time, and this is because aluminum can easily make ohmic contact with the semiconductor substrate.
This is because silicon dioxide (Si02) is a highly conductive material that has good adhesion to tlQ.

しかし、アルミニウムは熔融点の低いのが欠点で、その
ためにICを高密度化して、その上面に多層配線層を積
層する場合には絶縁膜の形成等に制約があった。
However, the disadvantage of aluminum is that it has a low melting point, which imposes restrictions on the formation of an insulating film, etc. when increasing the density of an IC and stacking a multilayer wiring layer on its top surface.

従って、それに代わる配線層として導電性多結晶シリコ
ン膜が使用されており、また、モリブデン(MO)やタ
ングステン(W)などの高融点金属や、そのシリサイド
膜も使用されている。
Therefore, a conductive polycrystalline silicon film is used as an alternative wiring layer, and high melting point metals such as molybdenum (MO) and tungsten (W) and their silicide films are also used.

このような導電性多結晶シリコン膜や高融点金属膜は、
絶縁膜を介した形成が容易で、且つ、表面が平坦化し易
く、多層配線の作成に好適なものであるが、その被着並
びにパターンニングは出来るだけ簡易に形成され、その
品質や信頼度の高いことが要望されている。
Such conductive polycrystalline silicon films and high melting point metal films are
It is easy to form via an insulating film, and the surface is easy to flatten, making it suitable for creating multilayer wiring. However, its deposition and patterning must be as simple as possible, and its quality and reliability cannot be improved. There is a high demand.

[従来の技術] 第3図は半導体装置における従来の一例の電極および配
線層部分の断面図を示しており、1はp型シリコン基板
、2はn型領域、3は燐珪酸ガラス(P S G)膜か
らなる絶縁膜、4.6はn型多結晶シリコン膜、5,7
はタングステン膜で、本例は電極窓8の内部をn型多結
晶シリコン膜4とタンゲステレ膜5とで充填し、その上
にn型多結晶シリコン膜6とタングステン膜7からなる
複合膜で配線層を形成した平坦化配線構造である。
[Prior Art] FIG. 3 shows a cross-sectional view of an electrode and wiring layer portion of a conventional example of a semiconductor device, in which 1 is a p-type silicon substrate, 2 is an n-type region, and 3 is a phosphosilicate glass (PS). G) An insulating film consisting of a film, 4.6 is an n-type polycrystalline silicon film, 5, 7
is a tungsten film, and in this example, the inside of the electrode window 8 is filled with an n-type polycrystalline silicon film 4 and a tungsten film 5, and on top of that, a composite film consisting of an n-type polycrystalline silicon film 6 and a tungsten film 7 is used for wiring. This is a planarized wiring structure in which layers are formed.

このような複合膜配線に形成すると、そのままでも十分
な高電導度を有し、且つ、絶縁膜との密着性も良いが、
熱処理すればタングステンシリサイド(WSi) 、あ
るいはタングステン主体の配線層に変成される利点があ
る。
When formed into such a composite film wiring, it has sufficient high conductivity as it is and also has good adhesion with the insulating film.
It has the advantage of being transformed into tungsten silicide (WSi) or a tungsten-based wiring layer by heat treatment.

更に、本構造は、その形成方法に大きな特徴を有してお
り、第4図(a)〜(e)にその工程順断面図を示して
いる。
Furthermore, this structure has a major feature in its formation method, and FIGS. 4(a) to 4(e) show cross-sectional views in the order of steps.

まず、第4図(a)はn型領域2が設けられたP型シリ
コン基板lに膜厚1μm程度のPSG膜3を被着し、そ
のPSG膜3に公知の方法で窓あけして電極窓8を形成
した工程断面図である。
First, in FIG. 4(a), a PSG film 3 with a thickness of about 1 μm is deposited on a P-type silicon substrate l provided with an n-type region 2, and a window is formed in the PSG film 3 by a known method to form an electrode. FIG. 8 is a cross-sectional view showing a process in which a window 8 is formed.

次いで、第4図山)に示すように上面にn型多結晶シリ
コンI!lI4を化学気相成長(CV D)法で被着す
る。このn型多結晶シリコン膜4の被着は、モノシラン
(SiH4)とホスフィン(PH3)とを620℃で分
解させて被着させる方法が採られる。
Next, as shown in Fig. 4, n-type polycrystalline silicon I! is deposited on the top surface. lI4 is deposited by chemical vapor deposition (CVD). The n-type polycrystalline silicon film 4 is deposited by a method of decomposing monosilane (SiH4) and phosphine (PH3) at 620°C.

次いで、第4図(C)に示すように、電極窓8をレジス
ト膜マスク(図示せず)で被覆し、PSGl*3の上面
に被着しているn型多結晶シリコン膜4を、フレオン(
CF4)ガスを用いたドライエツチングで除去す、る。
Next, as shown in FIG. 4(C), the electrode window 8 is covered with a resist film mask (not shown), and the n-type polycrystalline silicon film 4 deposited on the upper surface of the PSGl*3 is coated with Freon. (
Remove by dry etching using CF4) gas.

次いで、レジスト膜マスクを除去した後、第4図(dl
に示すように、CVD法によって電極窓8内のn型多結
晶シリコン膜4上にのみ、タングステン膜5を選択的に
被着する。このCVD法による多結晶シリコン膜上への
タングステン膜の選択形成は、既に公知となっており、
CVD装置の反応室の温度を325℃に保持し、窒素(
N2)ガス又はアルゴン(^r)ガスをキャリアガスと
した六弗化タングステン(WF6)ガスを流入して、分
解被着させる。そうすると、多結晶シリコン膜上にのみ
タングステン膜を選択的に成長することができる。それ
は  WF6 +5i=W+SiF4なる反応式によっ
てSi F 4が生成され、その触媒作用によって選択
的に成長するものと考えられている。従って、図示のよ
うに、やがて電極窓8は埋没されて、電極とPSG膜と
が同一平面になって平坦化される。
Next, after removing the resist film mask, the process shown in FIG.
As shown in FIG. 2, a tungsten film 5 is selectively deposited only on the n-type polycrystalline silicon film 4 within the electrode window 8 by the CVD method. The selective formation of a tungsten film on a polycrystalline silicon film by this CVD method is already well known.
The temperature of the reaction chamber of the CVD device was maintained at 325°C, and nitrogen (
Tungsten hexafluoride (WF6) gas using N2) gas or argon (^r) gas as a carrier gas is introduced to cause decomposition and deposition. Then, the tungsten film can be selectively grown only on the polycrystalline silicon film. It is believed that Si F 4 is produced by the reaction formula: WF6 + 5i = W + SiF 4, and selectively grows due to its catalytic action. Therefore, as shown in the figure, the electrode window 8 is eventually buried, and the electrode and the PSG film are flattened to be on the same plane.

次いで、第4図(e)に示すように、再び、CVD法を
用いて、平坦化したpscMti3とタングステン膜5
との上面に、n型多結晶シリコン膜6を被着させる。
Next, as shown in FIG. 4(e), the planarized pscMti3 and tungsten film 5 are deposited again using the CVD method.
An n-type polycrystalline silicon film 6 is deposited on the upper surface of the substrate.

次いで、そのn型多結晶シリコン膜6の上に、上記と同
様にしてタングステン膜7を選択的に成長し、更に、こ
れをパターンニングして、第3図に示す電極および配線
の構造に仕上げる。
Next, a tungsten film 7 is selectively grown on the n-type polycrystalline silicon film 6 in the same manner as described above, and this is further patterned to obtain the electrode and wiring structure shown in FIG. .

このように、本構造は多結晶シリコン膜へのタングステ
ン膜の選択成長法が通用できるため、その形成方法もフ
ォトプロセス工程が少なくなって簡素化される。
As described above, since the selective growth method of a tungsten film on a polycrystalline silicon film can be applied to this structure, the formation method is also simplified by reducing the number of photo process steps.

[発明が解決しようとする問題点] ところが、この多結晶シリコン膜へのタングステン膜の
選択成長は、必ずしも満足なものではなく、その成長速
度も数10人/分程度と大変遅く、且つ、PSG膜上べ
の成長も皆無にはならない欠点がある。
[Problems to be Solved by the Invention] However, this selective growth of a tungsten film on a polycrystalline silicon film is not necessarily satisfactory, and the growth rate is very slow at about several tens of people/minute, and the PSG There is also a drawback that growth on the film cannot be completely eliminated.

本発明はこのような問題点を減少させて、一層容易にタ
ングステンが多結晶シリコン上に選択成長される形成方
法を提案するものである。
The present invention reduces these problems and proposes a method of forming tungsten that can be selectively grown on polycrystalline silicon more easily.

[問題点を解決するための手段] その問題は、半導体基板上の絶縁膜に形成された電極窓
の底面に導電性多結晶シリコン膜を被着し、次いで該導
電性多結晶シリコン膜の表面を粗面処理した後、該導電
性多結晶シリコン膜上にタングステンを選択的に被着さ
せる工程が含まれる半導体装置の製造方法によって解決
される。
[Means for solving the problem] The problem is that a conductive polycrystalline silicon film is deposited on the bottom surface of an electrode window formed in an insulating film on a semiconductor substrate, and then the surface of the conductive polycrystalline silicon film is The problem is solved by a method of manufacturing a semiconductor device that includes a step of selectively depositing tungsten on the conductive polycrystalline silicon film after roughening the surface of the conductive polycrystalline silicon film.

その粗面処理には、例えば、露出させた導電性多結晶シ
リコン膜を、弗酸を含む溶液でウェットエツチングした
り、弗素ガスを含む反応ガスでプラズマエツチングした
り、あるいは、導電性多結晶シリコン膜に含まれるシリ
コンイオンや不純物イオンを注入したりする方法を用い
る。
To roughen the surface, for example, the exposed conductive polycrystalline silicon film may be wet etched with a solution containing hydrofluoric acid, plasma etched with a reactive gas containing fluorine gas, or the conductive polycrystalline silicon film A method such as implanting silicon ions or impurity ions contained in the film is used.

[作用] 卯ち、本発明は、選択成長させる多結晶シリコン膜の表
面を、粗い凹凸ある面にして、タングステン成長核が発
生し易くした後、選択成長させて、その選択成長を容易
にするものである。
[Function] First, in the present invention, the surface of the polycrystalline silicon film to be selectively grown is made rough and uneven so that tungsten growth nuclei are easily generated, and then selective growth is performed to facilitate the selective growth. It is something.

[実施例] 以下、実施例によって詳細に説明する。[Example] Examples will be described in detail below.

本発明にがかる粗面処理は、上記に説明した第4図の工
程順図において、同図fc)に示す工程後に行なわれる
ものである。
The surface roughening treatment according to the present invention is performed after the step shown in fc) in the process sequence diagram of FIG. 4 explained above.

今、第1図(al、 (b)にその粗面処理を行なった
工程断面図を示している。
Now, FIGS. 1A and 1B show cross-sectional views of the process in which the surface roughening treatment was performed.

上記した第4図(C)に示す工程断面図のように、ドラ
イエツチングして、電極窓8内のn型多結晶シリコンI
f91!4のみを残存させた後、第1図(alに示すよ
うに、レジスト膜マスク10を全面に被覆して、n型多
結晶シリコン膜4のみ露出させ、これをエツチング液に
浸漬して、その多結晶シリコン膜の表面をエツチングし
て粗面にする。
As shown in the cross-sectional view of the process shown in FIG.
After leaving only the f91!4 remaining, as shown in FIG. , the surface of the polycrystalline silicon film is etched to make it rough.

このウエノトエノチンダ液は、例えば HF : K2 Cr207 (0,15M0Iχ) 
= 100cc : 50ccあるいは、 HF :CrO3: H20=100cc  :50g
  : 100cc等を用いる。
This uenotoenochinda liquid is, for example, HF: K2 Cr207 (0,15M0Iχ)
= 100cc: 50cc or HF:CrO3:H20=100cc: 50g
: Use 100cc etc.

そうすれば、多結晶シリコン膜4“は、その表面の結晶
欠陥部分や粒子境界部分が、特にエツチングで荒らされ
、凹凸が激しくなって、ギザギザになった粗面がえられ
る。
Then, the crystal defect portions and grain boundary portions on the surface of the polycrystalline silicon film 4'' are roughened, especially by etching, and the unevenness becomes severe, resulting in a jagged rough surface.

次いで、第15図(blに示すように、レジスl−1’
Jマスク10を除去し、上記の選択成長法によって多結
晶シリコン膜4“の上にタングステン膜5を成長する。
Then, as shown in FIG. 15 (bl), register l-1'
J mask 10 is removed and tungsten film 5 is grown on polycrystalline silicon film 4'' by the selective growth method described above.

そうすると、タングステンの核が速く、しかも、多数発
生して、成長速度が速まる。その反面、PSG膜3上へ
のタングステンの被着も減少する。
As a result, tungsten nuclei are generated quickly and in large numbers, increasing the growth rate. On the other hand, the adhesion of tungsten onto the PSG film 3 is also reduced.

なお、ウェットエツチングの代わりに、プラズマエツチ
ングを行なっても良い。エツチングガスとしては、CF
4  (四弗化炭素)ガスやNF3 (三弗化窒素)が
適当である。
Note that plasma etching may be performed instead of wet etching. As an etching gas, CF
4 (carbon tetrafluoride) gas and NF3 (nitrogen trifluoride) gas are suitable.

更に、イオン注入法によって、多結晶シリコン膜4の表
面を叩いて粗くすることもできる。その場合、注入イオ
ンとしては、シリコンイオンや燐イオンなどの多結晶シ
リコン膜に含まれる元素が好ましい。
Furthermore, the surface of the polycrystalline silicon film 4 can be roughened by pounding it by ion implantation. In this case, the implanted ions are preferably elements contained in the polycrystalline silicon film, such as silicon ions or phosphorus ions.

同様に、このような粗面処理を、第4図(elに示す工
程後にも行なって、多結晶シリコン膜6°の上にタング
ステン膜7を選択成長し、第2図に示す配線構造に仕上
げる。かようにすれば、多結晶シリコン膜上へのタング
ステン膜の選択成長を、より完全に、且つ、より速く行
なうことができる。
Similarly, such surface roughening treatment is carried out after the step shown in FIG. In this way, the tungsten film can be selectively grown on the polycrystalline silicon film more completely and more quickly.

[発明の効果] 以上の実施例の説明から明らかなように、本発明によれ
ば、選択成長による配線構造の形成が一層容易になり、
ICの品質並びに信頼性の向上に好影響を与えるもので
ある。
[Effects of the Invention] As is clear from the description of the embodiments above, according to the present invention, it becomes easier to form a wiring structure by selective growth.
This has a positive effect on improving the quality and reliability of the IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (blは本発明にかかる工程順断面図
、第2図は本発明にかかる配線構造図、 第3図は従来の配線構造図、 第4図(al〜(e)ば従来の工程順断面図である。 図において、 ■はP型シリコン基板、2はn型領域、3はpsc膜、 4.6はn型多結晶シリコン膜、 4゛ 6゛は′■而面理し7た多結晶・2・リコン股5
.7はタ/ゲコテン膜、 8は1ii窓−、10はレジスl−1t’;l!下マス
クを示している。 第1図 第 2 ロ ア 第3図 、− 第4図 第4図
1(a), (bl is a cross-sectional view of the process according to the present invention, FIG. 2 is a wiring structure diagram according to the present invention, FIG. 3 is a conventional wiring structure diagram, and FIG. 4 (al to (e)) This is a cross-sectional view of a conventional process in the order of steps. Faceted 7 polycrystalline 2. Recon crotch 5
.. 7 is a T/Gecoten film, 8 is a 1ii window, and 10 is a resist l-1t'; l! Showing the bottom mask. Figure 1 Figure 2 Lower Figure 3, - Figure 4 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上の絶縁膜に形成された電極窓の底面
に導電性多結晶シリコン膜を被着し、次いで該導電性多
結晶シリコン膜の表面を粗面処理した後、該導電性多結
晶シリコン膜上にタングステンを選択的に被着させる工
程が含まれてなることを特徴とする半導体装置の製造方
法。
(1) A conductive polycrystalline silicon film is deposited on the bottom surface of an electrode window formed in an insulating film on a semiconductor substrate, and then the surface of the conductive polycrystalline silicon film is roughened, and then the conductive polycrystalline silicon film is roughened. A method for manufacturing a semiconductor device, comprising the step of selectively depositing tungsten on a crystalline silicon film.
(2)上記の粗面処理として、露出させた導電性多結晶
シリコン膜を、弗酸を含む溶液でウェットエッチングす
る工程が含まれてなることを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
(2) The surface roughening treatment includes a step of wet etching the exposed conductive polycrystalline silicon film with a solution containing hydrofluoric acid. A method for manufacturing a semiconductor device.
(3)上記の粗面処理として、露出させた導電性多結晶
シリコン膜を、弗素ガスを含む反応ガスでプラズマエッ
チングする工程が含まれてなることを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
(3) The surface roughening treatment includes a step of plasma etching the exposed conductive polycrystalline silicon film with a reactive gas containing fluorine gas. A method for manufacturing a semiconductor device.
(4)上記の粗面処理として、露出させた導電性多結晶
シリコン膜に、該導電性多結晶シリコン膜に含まれるシ
リコンイオン、または不純物イオンを注入する工程が含
まれてなることを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
(4) The surface roughening treatment is characterized by including a step of implanting silicon ions contained in the conductive polycrystalline silicon film or impurity ions into the exposed conductive polycrystalline silicon film. A method for manufacturing a semiconductor device according to claim 1.
JP26233584A 1984-12-11 1984-12-11 Production of semiconductor device Pending JPS61139026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26233584A JPS61139026A (en) 1984-12-11 1984-12-11 Production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26233584A JPS61139026A (en) 1984-12-11 1984-12-11 Production of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61139026A true JPS61139026A (en) 1986-06-26

Family

ID=17374329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26233584A Pending JPS61139026A (en) 1984-12-11 1984-12-11 Production of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61139026A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963511A (en) * 1987-11-30 1990-10-16 Texas Instruments Incorporated Method of reducing tungsten selectivity to a contact sidewall
US4983543A (en) * 1988-09-07 1991-01-08 Fujitsu Limited Method of manufacturing a semiconductor integrated circuit having an interconnection wire embedded in a protective layer covering the semiconductor integrated circuit
US5110762A (en) * 1988-07-07 1992-05-05 Kabushiki Kaisha Toshiba Manufacturing a wiring formed inside a semiconductor device
US5231054A (en) * 1989-12-20 1993-07-27 Fujitsu Limited Method of forming conductive material selectively
JPH08293550A (en) * 1995-04-24 1996-11-05 Nec Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248468A (en) * 1975-10-15 1977-04-18 Nec Home Electronics Ltd Process for production of semiconductor device
JPS5776833A (en) * 1980-09-04 1982-05-14 Applied Materials Inc Heat resistant metal depositing method and product thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248468A (en) * 1975-10-15 1977-04-18 Nec Home Electronics Ltd Process for production of semiconductor device
JPS5776833A (en) * 1980-09-04 1982-05-14 Applied Materials Inc Heat resistant metal depositing method and product thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963511A (en) * 1987-11-30 1990-10-16 Texas Instruments Incorporated Method of reducing tungsten selectivity to a contact sidewall
US5110762A (en) * 1988-07-07 1992-05-05 Kabushiki Kaisha Toshiba Manufacturing a wiring formed inside a semiconductor device
US4983543A (en) * 1988-09-07 1991-01-08 Fujitsu Limited Method of manufacturing a semiconductor integrated circuit having an interconnection wire embedded in a protective layer covering the semiconductor integrated circuit
US5231054A (en) * 1989-12-20 1993-07-27 Fujitsu Limited Method of forming conductive material selectively
JPH08293550A (en) * 1995-04-24 1996-11-05 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4617087A (en) Method for differential selective deposition of metal for fabricating metal contacts in integrated semiconductor circuits
US4804560A (en) Method of selectively depositing tungsten upon a semiconductor substrate
KR900008387B1 (en) Method of producing a contact for a semiconductor device
JPS61139026A (en) Production of semiconductor device
JP2573621B2 (en) Method of manufacturing electrical interconnect
JPS61248525A (en) Manufacture of semiconductor device
JPH08255770A (en) Method of manufacturing semiconductor device
JPH0467655A (en) Semiconductor device and manufacture thereof
JPS59167021A (en) Manufacture of semiconductor device
JPS6197825A (en) Manufacture of semiconductor device
JPS622654A (en) Semiconductor device and manufacture thereof
JPS6235539A (en) Manufacture of semiconductor device
JP3206008B2 (en) Method of forming multilayer wiring
JPS60157237A (en) Manufacture of semiconductor device
JP2611744B2 (en) Method for manufacturing semiconductor device
JPH01253241A (en) Manufacture of semiconductor device
JPS6155776B2 (en)
JPH06244187A (en) Manufacture of semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JPH03248464A (en) Contact-buried metal structure and manufacture thereof
JP2522373B2 (en) Semiconductor substrate manufacturing method
JPH02284423A (en) Manufacture of semiconductor device
JPH05308056A (en) Manufacture of semiconductor device
JPS60217645A (en) Manufacture of semiconductor device
JPS6120154B2 (en)