JPS62107845A - Treatment of cooling water for continuous casting equipment - Google Patents

Treatment of cooling water for continuous casting equipment

Info

Publication number
JPS62107845A
JPS62107845A JP24800685A JP24800685A JPS62107845A JP S62107845 A JPS62107845 A JP S62107845A JP 24800685 A JP24800685 A JP 24800685A JP 24800685 A JP24800685 A JP 24800685A JP S62107845 A JPS62107845 A JP S62107845A
Authority
JP
Japan
Prior art keywords
water
acid
cooling
cooling water
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24800685A
Other languages
Japanese (ja)
Inventor
Tadatsugu Hamada
浜田 忠嗣
Osamu Nishimura
西村 統
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24800685A priority Critical patent/JPS62107845A/en
Publication of JPS62107845A publication Critical patent/JPS62107845A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To treat cooling water for a continuous casting equipment to remove completely scales generated by carbonic ion and bicarbonic ion by adding an acid in the cooling water and evaporating carbonic acid gas generated thereby directly from the cooling system. CONSTITUTION:An acid 10 such as sulfuric acid, etc., is added to a supplying water flown in 5 by an acid pouring pump P4 through an acid pouring line 11 and a mixing vessel 12, and adjusted 13 to be 7.0 pH of the water in a cooling vessel 3. By this operation, the supplying water with 6.9 pH and 20.0 ppm of M alkalinity becomes to 6.3 pH and 3.6 ppm M alkalinity at a sampling position SM1 and a corresponding part for 16.4 ppm of M alkalinity changes to the carbonic acid gas. Next, the supplying water is flowed into the vessel 2 and mixed together with the returned circulating water from the mold, and then it is cooled and removed as the carbonic acid at a cooling tower 4 and flowed P3 into the mold 1. As result of this treatment, the scales attached in the mold are decreased to about half of them in case of adding the conventional dispersion agent into the cooling water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造設備(以下CCと略称する。)用冷
却水の処理方法に係シ、詳細には、CCのモールド(鋳
型)側壁を冷却する冷却水のスケール防止のだめの処理
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating cooling water for continuous casting equipment (hereinafter abbreviated as CC), and in particular, the present invention relates to a method for treating cooling water for continuous casting equipment (hereinafter abbreviated as CC). This invention relates to a method for treating a sump to prevent scaling of cooling water.

〔従来の技術〕[Conventional technology]

CCとは溶融した鋼をモールドに注入し、表面を凝固さ
せつつ連続的に送り出し、さらに水のスプレーによって
中心部まで凝固させて長尺の鋼片を造る装置である。モ
ールドは水によって間接冷却されるが、この冷却水の処
理系の従来の一例は第2図に示しだ通りで、冷却水は冷
却塔を含む水処理装置とモールドの間を循環している。
CC is a device that injects molten steel into a mold, solidifies the surface while feeding it out continuously, and then sprays water to solidify it to the center to make a long piece of steel. The mold is indirectly cooled by water, and an example of a conventional cooling water treatment system is shown in FIG. 2, in which the cooling water is circulated between a water treatment device including a cooling tower and the mold.

すなわち、モールド1の冷却によって27〜35℃に上
昇した冷却水はまず循環ライン6を経て温水槽2に流入
する。ここから冷却塔人ロボンブpzKよって汲み上げ
られた冷却水は冷却塔4で20〜25℃に冷却され、冷
水槽5に蓄えられ、それと同時に一部は蒸発・飛散によ
り減量する。冷水槽3の冷却水は循環ポンプP、によっ
て汲み上げられ、モールド1のジャケットに流入し、こ
こで27〜35℃に温度上昇する。
That is, the cooling water, which has risen to 27 to 35° C. by cooling the mold 1, first flows into the hot water tank 2 via the circulation line 6. The cooling water pumped up from here by the cooling tower pzK is cooled to 20 to 25°C in the cooling tower 4 and stored in the cold water tank 5, and at the same time, a portion of the water is reduced by evaporation and scattering. The cooling water in the cold water tank 3 is pumped up by a circulation pump P and flows into the jacket of the mold 1, where the temperature rises to 27 to 35°C.

一方、温水槽2には補給水ライン5が、冷水槽3にはブ
ローライン7とスケール防止用分散剤を注入する薬注ポ
ンプP4を配設しだ薬注ライン8がそれぞれ接続してい
る。冷却水のブローによって循環水の濃縮度は一定に保
たれ、そして補給水ポンプP1を配設した補給水ライン
5からは冷却塔によって失なわれた蒸発量、飛散損失値
及びブロー量の合量が補給され、全保有水量を一定に保
つ。まだスケール防止用分散剤は伝熱面に付着すれば、
モールドの冷却効果を阻害する冷却水中のスケール成分
を水中に分散させ−〔おくために添加する。分散剤とし
ては重合リン酸系、アクリル酸系、マレイン酸系、ホス
ホン酸系等の有機高分子薬剤がある。
On the other hand, the hot water tank 2 is connected to a make-up water line 5, and the cold water tank 3 is connected to a blow line 7 and a chemical injection line 8 equipped with a chemical injection pump P4 for injecting a scale-preventing dispersant. The concentration of circulating water is kept constant by blowing the cooling water, and from the make-up water line 5 where the make-up water pump P1 is installed, the total amount of evaporation lost by the cooling tower, scattering loss value, and blow amount is released. is replenished, keeping the total amount of water held constant. If the scale prevention dispersant still adheres to the heat transfer surface,
Added to disperse scale components in cooling water that inhibit the cooling effect of the mold. Examples of dispersants include organic polymeric agents such as polymerized phosphoric acid, acrylic acid, maleic acid, and phosphonic acid.

なお、第2図において、9は溶鋼入口であり、壕だ、8
M2 Vi補給水のサンプリング個所・SR2は循環水
のサンプリング個所を示す。
In addition, in Figure 2, 9 is the molten steel inlet, which is a trench.
M2 Vi makeup water sampling location/SR2 indicates the sampling location of circulating water.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、モールド伝熱面表面の温度は、製造された鋼
片の品質を向上させようとすれば、高くする必要があり
、冷却水のバルク温度は、27〜35℃でも表面温度は
100℃以上、好ましくは130℃程度にする。この場
合、たとえば系内圧力が1 atmの時は、当然表面で
沸騰現象が発生、スケール成分の析出が急増し分散剤の
効果が減少することによシ、モールド構成材料が溶解・
損傷するという事故が多発してくる。
By the way, the temperature of the mold heat transfer surface needs to be high in order to improve the quality of the manufactured steel billet, and even if the bulk temperature of the cooling water is 27 to 35 degrees Celsius, the surface temperature is 100 degrees Celsius or higher. , preferably about 130°C. In this case, for example, when the system pressure is 1 atm, a boiling phenomenon will naturally occur on the surface, and the precipitation of scale components will rapidly occur, reducing the effectiveness of the dispersant and causing the mold constituent materials to dissolve and melt.
Accidents that result in damage occur frequently.

また、従来はリン酸重合体、マレイン酸重合体、アクリ
ル酸重合体、ホスホン酸等を含む有機高分子から成る薬
剤(分散剤)を冷却水中に5〜20 ppm添加するこ
とによってスケール成分の伝熱面への付着を抑制し、あ
たかも液中にスケール成分を過飽和状態に保つが如き特
性を示すいわゆる薬剤添加法が採用されてきた。しかし
、この方法には次の問題点がある。
Additionally, in the past, 5 to 20 ppm of chemicals (dispersants) made of organic polymers including phosphoric acid polymers, maleic acid polymers, acrylic acid polymers, phosphonic acids, etc. were added to the cooling water to reduce the transmission of scale components. A so-called chemical addition method has been adopted that suppresses adhesion to hot surfaces and exhibits properties similar to keeping scale components in the liquid in a supersaturated state. However, this method has the following problems.

(1)有機物であるためおのずと熱分解温度が低く、そ
の温度以上では効果は無くなる。
(1) Since it is an organic substance, its thermal decomposition temperature is naturally low, and the effect disappears above that temperature.

(2)伝熱面で沸騰が起ると、スケール成分の濃縮と伝
熱面への付着力防止のだめのスケール粒子の結晶学的変
形の阻止により、スケール成分の水中への分散力が阻害
され伝熱面への付着力が増大する。
(2) When boiling occurs on the heat transfer surface, the dispersion of the scale components into water is inhibited by concentrating the scale components and preventing the crystallographic deformation of scale particles that prevents adhesion to the heat transfer surface. Increases adhesion to heat transfer surfaces.

以上のことから、はとんどの上記薬剤(分散剤)は20
0℃以下に適用され系内の圧力も伝熱面の最高@度に対
応する飽和圧力以上に保つ必要がある。因みに200℃
で沸騰させないようにするには16 atm以上の水圧
が要求される。
From the above, most of the above drugs (dispersants) are 20
It is applied at temperatures below 0°C, and the pressure within the system must also be maintained above the saturation pressure corresponding to the maximum temperature of the heat transfer surface. By the way, 200℃
Water pressure of 16 atm or more is required to prevent boiling.

しかしモールドの性格上、又冷却面の構造上、このよう
な高圧でモールド内を所定流量に保つことは困難である
However, due to the nature of the mold and the structure of the cooling surface, it is difficult to maintain a predetermined flow rate inside the mold at such high pressure.

〔目 的〕〔the purpose〕

本発明は、上記従来手段の欠点を解消する連続鋳造設備
用冷却水の処理方法を提供することを特徴とする特に本
発明は、前記した従来手段によるモールド構成材料の溶
解・損傷による事故を防止することを意図し、このため
前記従来の薬剤(分散剤)添加法に代る新しいスケール
防止手段を採用した連続鋳造設備用冷却水の処理方法を
提供することを目的とする。
The present invention is characterized by providing a method for treating cooling water for continuous casting equipment that eliminates the drawbacks of the above-mentioned conventional means.In particular, the present invention is characterized by preventing accidents caused by melting and damage to mold constituent materials caused by the above-mentioned conventional means. Therefore, it is an object of the present invention to provide a method for treating cooling water for continuous casting equipment that employs a new scale prevention means in place of the conventional chemical (dispersant) addition method.

〔構 成〕〔composition〕

そして、本発明は、上記目的を達成する手段として、冷
却水中に酸を添加し、これによって発生する炭酸ガスを
直接冷却装置より放散させる点にある。すなわち、本発
明は、スケール成分として炭酸塩を主成分とする連続鋳
造設備用冷却水に対するスケール防止のだめの処理方法
において、補給水又は循環水中に酸をある定められたp
Hになるように添加し、これによって発生する炭酸ガス
を上記設備の付属水処理装置に具備した直接冷却装置よ
り放散させることを特徴とする連続鋳造設備用冷却水の
処理方法である。
The present invention, as a means to achieve the above object, consists in adding an acid to the cooling water and directly dissipating the carbon dioxide gas generated by the acid from the cooling device. That is, the present invention provides a method for treating cooling water for continuous casting equipment containing carbonate as a main component for scale prevention, in which an acid is added to a certain p level in make-up water or circulating water.
This is a method for treating cooling water for continuous casting equipment, characterized in that the carbon dioxide gas generated thereby is radiated from a direct cooling device provided in a water treatment device attached to the equipment.

ところで、前記した従来の薬剤添加法における使用条件
を越えた広範囲の環境条件を1つの手法でカバーさせる
にはスケール成分それ自体を除去すればよい。そのスケ
ール成分は冷却水に工場廃水、生活廃水等の2次、3次
処理水を使用しなければ、CCの表面温度150℃の場
合CaC01と、配管に亜鉛被覆鋼管を使用する時のZ
nCO3という炭酸塩を主体としだものである。
By the way, in order to use one method to cover a wide range of environmental conditions that exceed the conditions of use in the conventional chemical addition method described above, it is sufficient to remove the scale components themselves. Unless secondary or tertiary treated water such as factory wastewater or domestic wastewater is used as cooling water, the scale components are CaC01 when the CC surface temperature is 150°C, and Z when zinc-coated steel pipes are used for piping.
It is mainly composed of carbonate called nCO3.

この炭酸塩を系外に除去するにはカチオンあるいはアニ
オンのいずれか一方の除去でよい。本発明はこのうちア
ニオンであるCO,(炭酸イオン)を酸の添加によって
Cotにガス化して、これをCCの水処理装置に必ず具
備されている直接冷却装置で放散せしめようとするもの
である。
To remove this carbonate from the system, either the cation or the anion may be removed. The present invention aims to gasify CO, which is an anion (carbonate ion), into Cot by adding an acid, and dissipate this using a direct cooling device that is always included in CC water treatment equipment. .

まずスケールの生成機構について述べる。冷却水中に含
まれているHCO,−が伝熱面上で、加熱されると(1
)式によってCO3に変化し、とのCOs  がその温
度に対応するCaCO3あるいけZnCO3の溶解度に
相当する濃度以上に達すると(2)式に従ってCaCO
5,ZnCO3が析出、伝熱面上K (を着する。
First, we will discuss the scale generation mechanism. When HCO,- contained in the cooling water is heated on the heat transfer surface, (1
), and when COs reaches a concentration equal to or higher than the solubility of CaCO3 or ZnCO3 corresponding to that temperature, CaCO changes according to equation (2).
5. ZnCO3 precipitates and deposits K on the heat transfer surface.

2HCO,″  →COx + COs  +I(x 
O(1)Ca  +COs  →Ca CO@    
  121したがってこれらスケール成分の析出を防止
しようとすればCo、  が生成されないようにHCO
,−を除去すればよい。
2HCO,″ →COx + COs +I(x
O(1)Ca +COs →Ca CO@
121 Therefore, in order to prevent the precipitation of these scale components, Co, HCO
, - can be removed.

すなわち、Mアルカリ度(M−Atk=HCOm″″+
2 CO,”−+0H−−H” )を減少させればよい
。そのためには、冷却水に硫酸、塩酸等の酸を添加して
(3)式によってHCO3”−をCOlに変化させ、こ
れを系外に除去すればよい。
That is, M alkalinity (M-Atk=HCOm″″+
2 CO, "-+0H--H"). For this purpose, an acid such as sulfuric acid or hydrochloric acid may be added to the cooling water to convert HCO3''- into COl according to equation (3), and this may be removed from the system.

↑ HCO3−+ H+→CO意十HzOf3)この場合、
Hの濃度をHCO,−の当喰以上添加すると、Cotを
除去してもpHけ回復しないが、添加■をHCOs−の
当量以下にすると、HCO3−が残存しているため除去
後の残存するCO,とHCO,−との割合に対応する値
までpHが上昇する。
↑ HCO3−+ H+ → CO 10HzOf3) In this case,
If the concentration of H is added more than the equivalent of HCO,-, the pH will not be recovered even if Cot is removed, but if the addition () is less than the equivalent of HCOs-, HCO3- will remain and will remain after removal. The pH increases to a value corresponding to the ratio of CO, to HCO, -.

さて、この酸の添加によって)(CO,−をCOlに分
解し、アルカリ度を低減させる技術は十分既知であシ、
これまで海水淡水化装Ff、 (以下MSFという)に
広範囲に活用されているが、本発明がM8Fの場合と異
なるのはCO,を系外に除去する方式に関する。すなわ
ち、上記MSFではラシヒリング等を充填した充填塔を
用い、ここでストリッピング用空気と向流で冷却水から
cQ、を放散、すなわち脱炭酸している。
Now, the technique of decomposing (CO,-) into COl and reducing alkalinity by adding this acid is well known;
Until now, it has been widely used in seawater desalination plants Ff (hereinafter referred to as MSF), but the present invention is different from the M8F in terms of the method for removing CO from the system. That is, in the above MSF, a packed tower filled with a Raschig ring or the like is used, and cQ is dissipated, that is, decarboxylated, from the cooling water in countercurrent to the stripping air.

本発明はこのような充填塔を用いなく、CC用水処理装
置では必ず具備している直接冷却装置(冷却塔)で冷却
と同時に脱炭酸も行なわせるものである。こ\で直接冷
却装置(冷却塔)とは、温水をその温度より低い平衡操
作温度(近似的に湿球温度に等しい)の空気と接触させ
て水の冷却をその蒸発潜熱の放出によって行なわしめる
冷却装置のことである。
The present invention does not use such a packed tower, but uses a direct cooling device (cooling tower), which is always provided in a CC water treatment equipment, to perform cooling and decarbonation simultaneously. A direct cooling device (cooling tower) is one in which hot water is brought into contact with air at an equilibrium operating temperature (approximately equal to the wet bulb temperature) lower than that temperature, and the water is cooled by releasing its latent heat of vaporization. It refers to a cooling device.

〔実施例〕〔Example〕

第1図に本発明の水処理方式の具体例を示す。 FIG. 1 shows a specific example of the water treatment system of the present invention.

この循環系は従来方式第2図と同等であるが、補給水ラ
インに酸を添加するラインと、酸の注入量をコントロー
ルするコントロール系が追加される。このときの水質測
定結果の一例を従来法と併せて第1表に示す。
This circulation system is the same as the conventional system shown in Figure 2, but a line for adding acid to the make-up water line and a control system for controlling the amount of acid injected are added. An example of the water quality measurement results at this time is shown in Table 1 together with the conventional method.

すなわち、補給水フィy5から流入した補給水に1ず硫
酸タンク10に貯蔵されている硫酸が酸注入ポンプPI
lによって、酸注入ライン11及び混合槽12を通じて
16ppm(as  I 00%)(HCO4)添加さ
れた。この添加量はpH指示調節計15によって冷水槽
5のpHがzOになるように調節された。この操作によ
ってpH&9、Mアルカリ度−20,0ppm (as
 CaCO3)の補給水は補給水のサンプリング個所S
M1では、第1表に示すようにpH6,3、Mアルカリ
度16 ppm(as CaCOx )となり、1 &
 4 ppm (as Ca、CO3)のMアルカリ変
分が炭酸ガスに変化した。
That is, first of all, the sulfuric acid stored in the sulfuric acid tank 10 is added to the make-up water flowing in from the make-up water y5 to the acid injection pump PI.
16 ppm (as I 00%) (HCO4) was added through acid injection line 11 and mixing tank 12. The amount added was adjusted by the pH indicator controller 15 so that the pH of the cold water tank 5 was zO. By this operation, pH &9, M alkalinity -20,0ppm (as
Make-up water for CaCO3) is sampled at make-up water sampling point S.
In M1, as shown in Table 1, the pH is 6.3, the M alkalinity is 16 ppm (as CaCOx), and 1 &
The M alkali fraction of 4 ppm (as Ca, CO3) was converted to carbon dioxide gas.

これが、温水槽2に流入し、モールド1からの循環水の
戻り水と混合後冷却塔4で減温、脱炭酸され、循環ポン
プP、によってモールド1に流入された。とのときの水
質を循環水のサンプリング個所SR1から採取された循
環水について分析した結果を第1表に併記する。
This flowed into the hot water tank 2, mixed with the return water of the circulating water from the mold 1, was cooled and decarbonated in the cooling tower 4, and flowed into the mold 1 by the circulation pump P. Table 1 also shows the results of analyzing the water quality of the circulating water sampled from the circulating water sampling point SR1.

これKよって、従来方式で28 ppm (e、5Ca
COB )あったMアルカリ度は5 ppm (asc
acos )に減少した。この結果第1表に併記するよ
うに、モールドへのスケール付M量を分散剤Mを補給水
に対して10 ppm添加した場合のQ、87■/ f
fi ”が、本発明の方法を採用することによって14
T4//:rR2と約イに減少させることができた。
Therefore, in the conventional method, 28 ppm (e, 5Ca
COB) M alkalinity was 5 ppm (asc
acos). As a result, as shown in Table 1, the amount of scaled M on the mold is Q, 87 / f when 10 ppm of dispersant M is added to the make-up water.
fi” can be reduced to 14 by adopting the method of the present invention.
T4//: could be reduced to about 1 compared to rR2.

〔効 果〕〔effect〕

従来方式は、スケール成分の過飽和状態を保ち、固形物
の発生を少なくし、かつその伝熱面への付着を抑制し、
水中に分散させておく分散剤の添加のみで、分散剤の種
類、温度条件、水質条件によって、その効果も十分で々
かった。
The conventional method maintains a supersaturated state of scale components, reduces the generation of solids, and suppresses their adhesion to heat transfer surfaces.
The effect of simply adding a dispersant dispersed in water was sufficient depending on the type of dispersant, temperature conditions, and water quality conditions.

本発明の方法によりCaC01t M? (OH)1等
水中の重炭酸イオン、炭酸イオンに起因するスケールを
ほとんどゼロにすることができ、これによって全スケー
ルの付着を約%にすることができる効果が生ずるもので
ある。また、本発明では炭酸ガスを大気に放散させる装
置が必要であるが、これをCC冷却水処理装置に必ず付
属する直接冷却装置(冷却塔)で共用させることにより
新たに脱炭酸塔を設置する必要がないなど顕著な効果が
生ずるものである。
By the method of the present invention, CaC01t M? The scale caused by bicarbonate ions and carbonate ions in (OH) 1 grade water can be reduced to almost zero, thereby producing the effect that the total scale adhesion can be reduced to about %. Furthermore, although the present invention requires a device to diffuse carbon dioxide gas into the atmosphere, a new decarbonation tower can be installed by sharing this device with the direct cooling device (cooling tower) that is always attached to the CC cooling water treatment device. It produces remarkable effects such as no need for it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるCC冷却水処理フローの実施例を
示し、第2図は従来のCC冷却水処理フローの代表例を
示す図である。 第1区 (′13 第2図
FIG. 1 shows an embodiment of a CC cooling water treatment flow according to the present invention, and FIG. 2 is a diagram showing a typical example of a conventional CC cooling water treatment flow. District 1 ('13 Figure 2

Claims (1)

【特許請求の範囲】[Claims] スケール成分として炭酸塩を主成分とする連続鋳造設備
用冷却水に対するスケール防止のための処理方法におい
て、補給水又は循環水中に酸をある定められたpHにな
るように添加し、これによつて発生する炭酸ガスを上記
設備の付属水処理装置に具備した直接冷却装置より放散
させることを特徴とする連続鋳造設備用冷却水の処理方
法。
In a method for treating cooling water for continuous casting equipment that mainly contains carbonate as a scale component to prevent scaling, an acid is added to make-up water or circulating water to a certain pH, and thereby A method for treating cooling water for continuous casting equipment, characterized by dissipating generated carbon dioxide gas through a direct cooling device provided in a water treatment device attached to the equipment.
JP24800685A 1985-11-07 1985-11-07 Treatment of cooling water for continuous casting equipment Pending JPS62107845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24800685A JPS62107845A (en) 1985-11-07 1985-11-07 Treatment of cooling water for continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24800685A JPS62107845A (en) 1985-11-07 1985-11-07 Treatment of cooling water for continuous casting equipment

Publications (1)

Publication Number Publication Date
JPS62107845A true JPS62107845A (en) 1987-05-19

Family

ID=17171789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24800685A Pending JPS62107845A (en) 1985-11-07 1985-11-07 Treatment of cooling water for continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS62107845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311925A (en) * 1993-11-12 1994-05-17 Nalco Chemical Company Magnesium hydroxide to prevent corrosion caused by water spray in continuous casting
EP1256400A1 (en) * 2001-05-10 2002-11-13 SMS Demag Process for delaying the formation of deposits in the cooling channels of continuous casting moulds

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311925A (en) * 1993-11-12 1994-05-17 Nalco Chemical Company Magnesium hydroxide to prevent corrosion caused by water spray in continuous casting
EP1256400A1 (en) * 2001-05-10 2002-11-13 SMS Demag Process for delaying the formation of deposits in the cooling channels of continuous casting moulds

Similar Documents

Publication Publication Date Title
ES2115013T3 (en) IMPROVED SYSTEM FOR WATER TREATMENT.
US4547294A (en) Alkaline scale abatement in cooling towers
JPS62107845A (en) Treatment of cooling water for continuous casting equipment
FI810420L (en) SAETT ATT FOERHINDRA KORROSION I EN FOERBRAENNINGSANLAEGGNINGS KYLARE OCH SKORSTEN VID KYLNING AV ROEKGASER
JPS62110839A (en) Treatment of cooling water for continuous casting installation
JP2005181256A (en) Method for treating waste ion exchange resin
US3938975A (en) Treatment of blast furnace slag
AU2016267408A1 (en) Method for assisting thermally-induced changes
JPS6339696A (en) Penetrating water neutralizing method in seawater desalination by means of reverse osmosis
JP2009039667A (en) Scale preventing method of hot spring aqueous system
US1921137A (en) Composition for treating water used in air conditioning apparatus and the like
JPS5617684A (en) Filtering method for cooling circulation water system
JPS6235840B2 (en)
JPS528648A (en) Method for the removal of dissolved oxygen
Smith ON EQUILIBRIUM IN THE SYSTEM: ZINC CARBONATE, CARBON DIOXIDE AND WATER.
US2640808A (en) Method of and material for treating water
SU81698A1 (en) Method for stabilizing circulating water supply systems
JPS5540061A (en) Cooling method of high temperature casting sand
JPS63145788A (en) Anticorrosive
JPS5948675B2 (en) Treatment method for wet flue gas treatment liquid
Gildemeister Impact of Cooling Water Composition on Heat Transfer in Ingot Casting
JPS60161599A (en) Method of treating radioactive liquid waste
JPH0735307A (en) Water treatment
US4649258A (en) Water treatment for water injection plasma arc cutting apparatus
Sussman Reuse of Industrial Cooling Water