JPS63145788A - Anticorrosive - Google Patents

Anticorrosive

Info

Publication number
JPS63145788A
JPS63145788A JP29159686A JP29159686A JPS63145788A JP S63145788 A JPS63145788 A JP S63145788A JP 29159686 A JP29159686 A JP 29159686A JP 29159686 A JP29159686 A JP 29159686A JP S63145788 A JPS63145788 A JP S63145788A
Authority
JP
Japan
Prior art keywords
seawater
iron
copper alloy
ion
ferrous sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29159686A
Other languages
Japanese (ja)
Inventor
Akihiro Sakanishi
彰博 坂西
Kenji Ueda
健二 植田
Mitsuru Sakimura
充 崎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Original Assignee
CHIYOURIYOU ENG KK
Mitsubishi Heavy Industries Ltd
Choryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOURIYOU ENG KK, Mitsubishi Heavy Industries Ltd, Choryo Engineering Co Ltd filed Critical CHIYOURIYOU ENG KK
Priority to JP29159686A priority Critical patent/JPS63145788A/en
Publication of JPS63145788A publication Critical patent/JPS63145788A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To prepare the title anticorrosive capable of efficiently preventing the corrosion of a copper alloy pipe, etc., due to seawater, by incorporating a carboxylic ion into a ferrous sulfate soln. CONSTITUTION:A carboxylic ion is incorporated into the ferrous sulfate soln. to prepare the anticorrosive capable of preventing the corrosion of a copper alloy pipe, etc., due to seawater. Citric acid, acetic acid, formic acid, tartaric acid, etc., are used to incorporate the caboxylic ion. The amt. of the iron ion to be dissociated is changed by changing the amt. of the acids, and an ion suitable for the environmental conditions (temp. of seawater, length of the copper alloy pipe, etc.) can be injected. The anticorrosive is extremely effective for the heat exchangers such as the heat radiating part of a seawater desalting device having a long heat-transfer pipe and which must be treated in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防食剤、特に銅又は銅合金の防食剤に関し、更
に詳しくは、船舶、化学プラント、発電プラント等の海
水利用熱交換器、復水器などの銅合金管及び特に海水淡
水化装置の熱放出部銅合金製伝熱管内面の防食剤に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a corrosion inhibitor, particularly a corrosion inhibitor for copper or copper alloys. The present invention relates to an anticorrosive agent for copper alloy tubes such as water vessels, and especially for the inner surface of copper alloy heat exchanger tubes in the heat release section of seawater desalination equipment.

〔従来の技術〕[Conventional technology]

現在、各種プラントの海水利用熱交換器、復水器類の銅
合金管の防食対策としては、冷却海水中に微量の鉄イオ
ンを注入する方法が広く実用化されている。この鉄イオ
ン注入法は、鉄源として硫酸第一鉄を用いるものと、鉄
材を電解しその電解液を用いるものの二つに大別できる
Currently, a method of injecting a small amount of iron ions into cooling seawater is widely used as a corrosion prevention measure for copper alloy pipes in seawater heat exchangers and condensers in various plants. This iron ion implantation method can be roughly divided into two types: those that use ferrous sulfate as an iron source, and those that electrolyze an iron material and use the resulting electrolyte.

この他に鉄配管系の自然溶解によるものがあるが、はと
んど用いられていない。
Another method is the natural dissolution of iron piping systems, but this is rarely used.

鉄イオン注入による防食は海水中に注入された鉄イオン
が酸化物状態、コロイド状態となり管内面に鉄被膜を形
成することによる。注入条件として、 (υ 硫酸第一鉄溶液の場合 ■ 0.5〜1.0 PPM (Fa   として)×
1〜2Hr/日 (ロ)O,O3〜0.I  PPM (Fa   とし
て)連続注入(2)鉄電解の場合 (10,03〜0.I  PPM (Fa   として
)連続注入これらは、発電プラントの復水器等の海水供
給が一過式であり、伝熱管長が比較的短かい銅合金管の
腐食を防止する点に主眼t−おいたものであり鉄イオン
の注入は数ケ月行なわれる。
Corrosion prevention by iron ion implantation is achieved by the iron ions injected into seawater turning into oxides and colloids to form an iron coating on the inner surface of the tube. As injection conditions, (υ For ferrous sulfate solution■ 0.5-1.0 PPM (as Fa)×
1-2Hr/day (b) O, O3-0. Continuous injection of I PPM (as Fa) (2) In the case of iron electrolysis (10,03~0. Continuous injection of I PPM (as Fa) In these cases, the seawater supply to the condenser etc. of the power plant is a one-time type, The main focus is on preventing corrosion of copper alloy tubes with relatively short heat exchanger tube lengths, and iron ion implantation is carried out for several months.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

と九に対して、海水淡水化装置では熱放出部伝熱管に供
給された海水はその1ま放流されるのではなく、その一
部が熱回収部にて使用される。″1次熱放出部は3つの
ステージから構成されている。このため、次の問題があ
る。
In contrast, in a seawater desalination device, the seawater supplied to the heat transfer tube in the heat release section is not entirely discharged, but a portion of it is used in the heat recovery section. ``The primary heat dissipation section is composed of three stages.Therefore, there is the following problem.

(1)  鉄を含んだ海水が蒸発水として利用されると
、蒸発室にスケールの析出が起こる。このため、プラン
トを運転しながら数ケ月連続して鉄イオン注入を行なう
ことができない。短期間(2〜3日)で良好な鉄被膜を
形成する必要がある。(短期間なら熱回収部への海水の
供給をストップすることが可能)。
(1) When seawater containing iron is used as evaporation water, scale deposits occur in the evaporation chamber. For this reason, iron ion implantation cannot be performed continuously for several months while the plant is operating. It is necessary to form a good iron coating in a short period of time (2 to 3 days). (It is possible to stop the supply of seawater to the heat recovery section for a short period of time).

(2)  伝熱管長すなわち銅合金管長が復水器の場合
の数倍となる。このため遠距離部まで均一な鉄被膜全生
成させることが必要である。
(2) The length of the heat transfer tube, that is, the length of the copper alloy tube, is several times that of a condenser. For this reason, it is necessary to generate a uniform iron coating over the entire area, even over long distances.

このように、船舶、発電プラント等の復水器と海水淡水
化装置の熱放出部の構成・機能は本質的に異なっており
、復水器への従来の鉄イオン注入方法をそのままそのま
ま適用できない。
As described above, the configurations and functions of condensers in ships, power generation plants, etc. and the heat release parts of seawater desalination equipment are essentially different, and the conventional method of implanting iron ions into condensers cannot be applied as is. .

鉄イオン注入による鉄被膜の要件として、■ 鉄被膜の
付着状態(均一性、密着性)が良好なこと。
The requirements for iron coating by iron ion implantation are: ■ The adhesion state (uniformity, adhesion) of the iron coating must be good.

■ 鉄性itがFe、とじて0.2m9/crW2以上
あること。
■ Ferrous IT must be Fe, 0.2m9/crW2 or more.

■ 但し、付着過多は伝熱効率を低下させるためFeと
してa、smg/−以下が好ましい。
(2) However, since excessive adhesion lowers the heat transfer efficiency, it is preferable that Fe is less than a, smg/-.

が要求される。is required.

第3図に、復水器に適用されている硫酸第一鉄溶液注入
法を6(IIの銅合金管に適用した場合の管内面の鉄性
着量の分布を示す。
FIG. 3 shows the distribution of the amount of iron deposited on the inner surface of a pipe when the ferrous sulfate solution injection method applied to a condenser is applied to a 6(II) copper alloy pipe.

〔注入方法〕[Injection method]

■ 硫酸第一鉄溶液の調製 水(市水)にFe SOa・7H20i溶解して調製し
Fe  イオン濃度はFe  として20,000 P
PMとした。溶液の…は3.2であった。
■ Preparation of ferrous sulfate solution Prepared by dissolving FeSOa・7H20i in water (city water), and the Fe ion concentration was 20,000 P as Fe.
It was designated as PM. The... of the solution was 3.2.

■ 注入濃度及び注入日数 短期間で鉄被膜を形成する必要があるため、Fe  と
して1.0PPMとし、注入は3日間連続して行なった
(2) Injection Concentration and Injection Days Since it is necessary to form an iron film in a short period of time, the Fe concentration was set at 1.0 PPM, and the injection was carried out for three consecutive days.

■ 銅合金管径及び管内海水流速 管径;34φ、管内海水流速;2”/式■ 硫酸第一鉄
溶液の注入 銅合金管に海水を連続的に通水し、定量ポンプにより硫
酸第一鉄溶液を海水ラインに注入する。3日間連続注入
後、定量ポンプ及び海水の通水をストップし、銅合金管
内表面への鉄封着状況を調査した。
■ Copper alloy pipe diameter and seawater flow rate in the pipe Pipe diameter: 34φ, seawater flow rate in the pipe: 2”/formula ■ Injection of ferrous sulfate solution Seawater is continuously passed through the copper alloy pipe, and ferrous sulfate is added using a metering pump. The solution was injected into the seawater line. After continuous injection for 3 days, the metering pump and seawater flow were stopped, and the state of iron sealing on the inner surface of the copper alloy pipe was investigated.

第3図において、硫酸第一鉄溶液の注入点から10rr
L地点ではFeとして1.8rn9/crn2.55m
地点ではFeとして0.11n9/m2以下の鉄性着量
であり、注入点から30重付近までは付着過多、40m
以降は防食に必要な鉄性着量以下であり、かつ付着状態
もしわ状であり良くなかった。
In Figure 3, 10rr from the injection point of the ferrous sulfate solution.
At point L, 1.8rn9/crn2.55m as Fe
At the point, the amount of iron adhesion was less than 0.11n9/m2 as Fe, and there was excessive adhesion from the injection point to around 30m.
After that, the amount of iron deposited was less than the amount required for corrosion protection, and the state of the deposit was wrinkled, which was not good.

第3図の結果から明らかなように復水器に適用されてい
る方法では長管で短期処理が要求される海水淡水化装置
の熱放出部のような長大鋼合金管の防食には適さない。
As is clear from the results in Figure 3, the method applied to condensers is not suitable for corrosion protection of long steel alloy pipes, such as the heat release section of seawater desalination equipment, which requires short-term treatment. .

〔発明の目的〕[Purpose of the invention]

本発明は長大で短期処理が要求される銅合金管の防食可
能は防食剤を提供することを目的とする。
An object of the present invention is to provide an anticorrosive agent capable of preventing corrosion of long copper alloy pipes that require short-term treatment.

〔問題点を解決するtめの手段〕[The tth way to solve the problem]

本発明者らは、一定範囲の鉄封着11有し、均一で密着
性が良好な鉄被膜を形成できる防食剤について鋭意研究
を行なつ念結果、鉄被膜が形成されるのは鉄イ蒼ンが酸
化されて酸化物からコロイド状態となり、それから管内
面に付着する現象より、鉄イオンがコロイド状態になる
のを抑制し、鉄イオンが単独で存在しないようにすれば
よいことに着目し、それについて種々の物質について調
査検討した結果、カルボン酸イオン−aoo−6有する
物質を添加することにより、鉄イオンのコロイド化が抑
制でき、鉄被膜の付着量をコントロールできることを確
認した。
The present inventors conducted intensive research on anticorrosive agents that have a certain range of iron seals 11 and can form iron coatings that are uniform and have good adhesion. Based on the phenomenon in which iron ions are oxidized and change from oxide to colloidal state and then adhere to the inner surface of the tube, we focused on the fact that it is sufficient to suppress iron ions from becoming colloidal and prevent iron ions from existing alone. As a result of investigating various substances regarding this, it was confirmed that by adding a substance having carboxylic acid ion -aoo-6, colloidalization of iron ions can be suppressed and the amount of deposited iron coating can be controlled.

本発明はこの知見に基づいて完成されたものである。The present invention was completed based on this knowledge.

すなわち、本発明は硫酸第一鉄溶液中にカルボン酸イオ
ンを共存させてなることを特徴とする防食剤である。
That is, the present invention is an anticorrosive agent characterized by containing carboxylic acid ions in a ferrous sulfate solution.

〔作用〕[Effect]

鉄イオンを化合形態にしてしまうと、その化合物の平衡
濃度に応じた分だけしか鉄イオンが存在しなくなるため
一度に消費されることがなく、消費されたら化合物が解
離し鉄イオンを供給するようになる。この結果、注入点
から遠距部まで有効な鉄イオンを保持することが可能で
あり、遠くまで鉄被膜を形成させることができる。この
場合、カルボン酸イオン−〇〇〇″″を有する物質のt
’を変えることにより、鉄イオンの解離する量が変化す
るため、環境条件(海水温度、銅合金管の長さ等)に適
した鉄イオン注入が可能である。
When iron ions are made into a compound, there are only as many iron ions as the equilibrium concentration of the compound, so they are not consumed at once, and once they are consumed, the compound dissociates to supply iron ions. become. As a result, it is possible to retain effective iron ions from the injection point to a long distance, and it is possible to form an iron coating over a long distance. In this case, t of a substance having carboxylic acid ion −〇〇〇″″
By changing ', the amount of dissociated iron ions changes, so it is possible to implant iron ions that are suitable for environmental conditions (seawater temperature, length of copper alloy tube, etc.).

カルボン酸イオン−〇〇〇″″’t7にする物質の代表
例を次に示す。
Representative examples of substances that convert carboxylic acid ions to −〇〇〇″″t7 are shown below.

■クエン酸−0001(OH2C(OH)(111:0
OH)OH2000H■酢  酸・・・OH,0OOH ■ギ  酸・・・HCOOH ■酒石酸・・・C00HCH20CH20COOH〔実
施例〕 第1図は本発明実施例における試験装置の70−図であ
る。
■Citric acid-0001 (OH2C(OH) (111:0
OH)OH2000H ■Acetic acid...OH,0OOH ■Formic acid...HCOOH ■Tartaric acid...C00HCH20CH20COOH [Example] Fig. 1 is a 70-diagram of a test apparatus in an example of the present invention.

海水タンク1に汲み上げられた海水2t−海水2t−海
水ポンプ3で塩化ビニル管4を経て銅合金管5へ供給す
る。鉄イオンの注入は硫酸第一鉄溶液槽6内の硫酸第一
鉄溶液7を定量ポンプ8でビニールホース9を経て塩化
ビニル管4の末端に注入する。
2 tons of seawater pumped into a seawater tank 1, 2 tons of seawater, and a seawater pump 3 are supplied to a copper alloy pipe 5 through a vinyl chloride pipe 4. To inject iron ions, the ferrous sulfate solution 7 in the ferrous sulfate solution tank 6 is injected into the end of the vinyl chloride pipe 4 via the vinyl hose 9 using the metering pump 8.

〔試験条件〕〔Test conditions〕

(イ) 銅合金管内の海水流速・・・2 m / 5e
c(ロ)海水温度・・・・・・・・・20C(ハ)銅合
金管形状・・・・・・34鵡φ×60mに)注入濃度及
び時間・・・・・・Faとして1.OPPMX40Hr
以上の試験装置及び条件下で本発明を具体的に説明する
(a) Seawater flow velocity inside the copper alloy pipe...2 m/5e
c (b) Seawater temperature: 20C (c) Copper alloy tube shape: 34mmφ x 60m) Injection concentration and time: 1. OPPMX40Hr
The present invention will be specifically explained using the above test equipment and conditions.

カルボン酸イオンを有する物質としてクエン酸を用いた
場合について説明する。
A case will be described in which citric acid is used as a substance having carboxylic acid ions.

まず、市水を溶液槽6に182入れ、クエン酸全添加し
溶解した。クエン酸の添加量としては、300C1と6
0([1の2種類について実施した。
First, 182 ml of city water was put into the solution tank 6, and citric acid was completely added and dissolved. The amount of citric acid added is 300C1 and 6
0 ([Implemented for two types of 1.

これに、硫酸第一鉄(Fe3O3−7H20) ’i 
3000I加え溶解し、更に市水を加えて全2を502
とした。この溶液の鉄イオン濃度は201 asFe/
ぶである。
In addition, ferrous sulfate (Fe3O3-7H20) 'i
Add 3000I and dissolve, then add city water to make the total 2 to 502
And so. The iron ion concentration of this solution is 201 asFe/
It is.

このようにして調製したクエン酸を含む硫酸第一鉄溶液
を用いて鉄イオンの注入を行ない、銅合金管内表面の鉄
被膜の状態を調査した。
Iron ions were implanted using the thus prepared ferrous sulfate solution containing citric acid, and the state of the iron coating on the inner surface of the copper alloy tube was investigated.

第2図に鉄被膜付着量の硫酸第一鉄溶液の注入点からの
距離による分布を示した。
FIG. 2 shows the distribution of the amount of iron coating deposited depending on the distance from the injection point of the ferrous sulfate solution.

第2図において実線Aはクエン酸t−s o o 。In FIG. 2, solid line A represents citric acid t-soo.

I添加した場合、破線Bはクエン酸を600I岳加した
場合の結果である。
The broken line B shows the result when 600 I of citric acid was added.

クエン酸’6goooIi添加した場合には、注入点か
ら遠くなるほど鉄被膜付着量が多く、クエン酸t−60
011添加した場合には注入点近傍が鉄被膜付着量が多
くなる結果が得られ念。このことは、クエン酸の添加量
によって鉄被膜付着i1″f:コントロールできること
を示しており、銅合金管の長さあるいは管内流速等に応
じた鉄イオン注入が可能である。
When citric acid '6goooIi was added, the farther from the injection point the larger the amount of iron film attached.
When 011 was added, the amount of iron coating near the injection point increased. This shows that the iron film adhesion i1''f can be controlled by the amount of citric acid added, and iron ion implantation can be performed depending on the length of the copper alloy tube, the flow rate in the tube, etc.

第2図において、鉄イオン注入点からの距離により鉄被
膜の付itは異なっているが、60mの位置までA、B
とも防食有効範囲の付着量を有しており、密着性も非常
に良好であった。
In Figure 2, the attachment of the iron coating differs depending on the distance from the iron ion implantation point, but up to a position of 60 m, A, B
Both had coating amounts within the effective corrosion prevention range, and the adhesion was also very good.

第3図に示し友クエン酸等のカルボン酸イオンを有する
物質を添加しなかった場合の結果と比較して、本発明の
防食剤は鉄被膜を長管に短期間で均一に形成させること
ができ、極めて優れている。
Compared to the results shown in Figure 3 when a substance containing carboxylic acid ions such as citric acid was not added, the anticorrosive agent of the present invention was able to uniformly form an iron coating on a long pipe in a short period of time. Yes, it is very good.

又、クエン酸を添加した防食剤で鉄被膜を形成させた銅
合金管に約6ケ月間海水を通水後、管内面を調査し九と
ころ腐食の発生はなく防食効果は良好であった。
In addition, after passing seawater through a copper alloy tube on which an iron coating was formed using an anticorrosive agent containing citric acid for about 6 months, the inner surface of the tube was examined and no corrosion occurred and the anticorrosion effect was good.

なお、クエン酸以外のカルボン酸イオンを有する物質を
添加した場合も、添加t′(il−コントロールするこ
とにより、防食有効範囲内の鉄被膜付着量を得ることが
でき次。
Note that even when a substance containing carboxylic acid ions other than citric acid is added, by controlling the addition t'(il-), it is possible to obtain the amount of iron coating within the effective corrosion prevention range.

〔発明の効果〕〔Effect of the invention〕

海水淡水化装置の熱放出部のように伝熱管長が長く、且
つ短期処理が要求される熱交換器類の防食対策として極
めて有効である。さらに、伝熱管に何らかの原因で腐食
が発生した場合、早急な防食対策が必要であるが、本発
明防食剤によって短期間で良好な鉄被膜を生成させるこ
とができる。
It is extremely effective as a corrosion prevention measure for heat exchangers that have long heat exchanger tubes and require short-term treatment, such as the heat release section of seawater desalination equipment. Furthermore, if corrosion occurs in the heat exchanger tube for some reason, immediate anticorrosion measures are required, but the anticorrosive agent of the present invention can form a good iron coating in a short period of time.

以上のことがら、海水利用熱交換器類の信頼性が向上す
る。
As a result of the above, the reliability of seawater heat exchangers is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例における試験装置のフロー図。 第2図は本発明実施例としてのクエン酸を添加した場合
の鉄被膜付着量の分布を示す図第3図は従来の方法によ
る鉄被膜付着量の分布を示す図。 復代理人 内 1)  明 復代理人 萩 原 亮 − 復代理人 安 西 篤 夫 第1図 第2図 妖イスン5王入点力ゝらO武り准 (鶏)第3図
FIG. 1 is a flow diagram of a test apparatus in an embodiment of the present invention. FIG. 2 shows the distribution of the amount of iron film deposited when citric acid is added as an example of the present invention. FIG. 3 shows the distribution of the amount of iron film deposited according to the conventional method. Sub-agents 1) Meifuku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Fig. 1 Fig. 2 Yoisun 5-point power and others O Takeri Jun (Chicken) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 硫酸第一鉄溶液中にカルボン酸イオンを共存させてなる
ことを特徴とする防食剤。
An anticorrosive agent characterized by having carboxylic acid ions coexisting in a ferrous sulfate solution.
JP29159686A 1986-12-09 1986-12-09 Anticorrosive Pending JPS63145788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29159686A JPS63145788A (en) 1986-12-09 1986-12-09 Anticorrosive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29159686A JPS63145788A (en) 1986-12-09 1986-12-09 Anticorrosive

Publications (1)

Publication Number Publication Date
JPS63145788A true JPS63145788A (en) 1988-06-17

Family

ID=17770986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29159686A Pending JPS63145788A (en) 1986-12-09 1986-12-09 Anticorrosive

Country Status (1)

Country Link
JP (1) JPS63145788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034784A (en) * 1989-06-22 1991-07-23 Semiconductor Energy Laboratory Co., Ltd. Diamond electric device on silicon
JP2002371393A (en) * 2001-06-14 2002-12-26 Nakabohtec Corrosion Protecting Co Ltd Mobile device for supplying electrolytic iron ion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137984A (en) * 1984-07-27 1986-02-22 Katayama Chem Works Co Ltd Method for preventing corrosion os nonferrous metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137984A (en) * 1984-07-27 1986-02-22 Katayama Chem Works Co Ltd Method for preventing corrosion os nonferrous metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034784A (en) * 1989-06-22 1991-07-23 Semiconductor Energy Laboratory Co., Ltd. Diamond electric device on silicon
JP2002371393A (en) * 2001-06-14 2002-12-26 Nakabohtec Corrosion Protecting Co Ltd Mobile device for supplying electrolytic iron ion
JP4549577B2 (en) * 2001-06-14 2010-09-22 株式会社ナカボーテック Mobile electrolytic iron ion supply device

Similar Documents

Publication Publication Date Title
Bianchi et al. “Horse shoe” corrosion of copper alloys in flowing sea water: mechanism, and possibility of cathodic protection of condenser tubes in power stations
Merrill et al. Corrosion control by deposition of CaCO₃ films: part 1, A practical approach for plant operators
CA1187765A (en) Control of iron induced fouling in water systems
US3580934A (en) Corrosion prevention with sodium silicate and soluble zinc salts
JPS63145788A (en) Anticorrosive
Weisstuch et al. An electrochemical study of heteropoly molybdates as cooling water corrosion inhibitors
JP3646385B2 (en) Method for inhibiting corrosion of water-based metals
JPH0293083A (en) Method for preventing corrosion of inner surface of copper alloy pipe
Larson Chemical control of corrosion
US3963472A (en) Process for preventing corrosion by incorporative soluble metal chromates in fertilizer solutions
JPH1128461A (en) Method for suppressing corrosion of metal in water system
KR890001377B1 (en) Corrosion inhibitor
GB1579217A (en) Her closed circuit water system composition for addition to a central heating system or ot
JPH01212780A (en) Method for preventing corrosion of copper alloy tube
JPS63121681A (en) Method for preventing corrosion of copper alloy pipe
US2728726A (en) Treatment of water with magnesium and sulfur dioxide
US2169584A (en) Prevention of corrosion
JP2919765B2 (en) Underwater corrosion inhibitor
JPH07506626A (en) Method and apparatus for forming coatings by deposition on internal surfaces of tanks and pipe equipment
JPH07316848A (en) Method for inhibiting corrosion of metal in water line
Perez et al. Scale prevention at high LSI, high cycles, and high pH without the need for acid feed
JPH0353080A (en) Method for preventing corrosion of inside of copper alloy tube
JPH0293084A (en) Anticorrosive injector
JP3389064B2 (en) Water-based anticorrosion agent and anticorrosion method
Borgmann Treatment of Natural Waters to Prevent and Control Corrosion