JPS6210621Y2 - - Google Patents

Info

Publication number
JPS6210621Y2
JPS6210621Y2 JP12629182U JP12629182U JPS6210621Y2 JP S6210621 Y2 JPS6210621 Y2 JP S6210621Y2 JP 12629182 U JP12629182 U JP 12629182U JP 12629182 U JP12629182 U JP 12629182U JP S6210621 Y2 JPS6210621 Y2 JP S6210621Y2
Authority
JP
Japan
Prior art keywords
heat
heat transfer
mat
electronic circuit
circuit component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12629182U
Other languages
Japanese (ja)
Other versions
JPS5929575U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12629182U priority Critical patent/JPS5929575U/en
Publication of JPS5929575U publication Critical patent/JPS5929575U/en
Application granted granted Critical
Publication of JPS6210621Y2 publication Critical patent/JPS6210621Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【考案の詳細な説明】 この考案は、発熱体と放熱体の間にマツトを配
置した熱伝達装置に関するものである。
[Detailed Description of the Invention] This invention relates to a heat transfer device in which a mat is arranged between a heating element and a heat radiating element.

第1図は従来の熱伝達装置である冷却装置の構
成を示す断面図であり、図において1は配線板、
2は配線板上に装着および配線結合された抵抗
体、ICを含む電子回路部品であり、大矢印は強
制対流の流れを示す。
FIG. 1 is a cross-sectional view showing the configuration of a cooling device, which is a conventional heat transfer device. In the figure, 1 is a wiring board;
2 is an electronic circuit component including a resistor and an IC mounted and wired on a wiring board, and the large arrow indicates the flow of forced convection.

この構成において、電子回路部品2を作動させ
ると、これら電子回路部品2から成る発熱体は昇
温することになるが、温度が許容値以上になる
と、正常に作動しなくなるためなんらかの方法に
より冷却する必要がある。冷却の方法としては、
一般に大気中においてフアン、あるいはコンプレ
ツサ等(図示していない)で送り出される空気を
使つて電子回路部品2の温度が許容値以下となる
よう強制空冷をしている。
In this configuration, when the electronic circuit components 2 are operated, the temperature of the heating element made up of these electronic circuit components 2 will rise, but if the temperature exceeds a permissible value, it will no longer operate normally, so it must be cooled down by some method. There is a need. As a method of cooling,
Generally, forced air cooling is performed in the atmosphere using air sent out by a fan or a compressor (not shown) so that the temperature of the electronic circuit component 2 is below a permissible value.

しかし、配線板1の設置される場所は電子計算
機室や生産管理制御室などのように温度、湿度、
塵埃の調節や対策が厳しく行われているとは限ら
ない。例えば船舶の機関室、製鉄所、および精粉
所のように塩分を含む環境や、導電性、腐食性の
ガスやミスト、粉塵が空気中に浮遊している場所
等、悪環境の場所に設置される場合が最近ますま
す増加しているのが現状である。したがつて、上
記のような悪環境においては第1図に示した電子
回路部品2の装着部、および配線箇所に導電性あ
るいは腐食性のガスやミストを含む粉塵が付着す
るため粉塵の付着した部分が腐食したり、絶縁破
壊して電子回路部品2の機能が低下したり、寿命
が短くなるという欠点がある。
However, the location where the wiring board 1 is installed may vary in temperature, humidity, etc., such as in a computer room or a production management control room.
Dust control and countermeasures are not always strictly enforced. For example, installation in locations with adverse environments, such as environments containing salt such as ship engine rooms, steel mills, and flour mills, or locations where conductive or corrosive gases, mist, or dust are suspended in the air. The current situation is that the number of cases where this is done is increasing recently. Therefore, in the above-mentioned adverse environment, dust containing conductive or corrosive gas or mist adheres to the mounting area of the electronic circuit component 2 shown in Figure 1 and the wiring area. There are disadvantages in that parts may corrode or dielectric breakdown may occur, reducing the functionality of the electronic circuit component 2 and shortening its lifespan.

このような欠点を無くする方法として、第2図
に他の従来の熱伝達装置である冷却装置の構成を
断面図で示す。図において1,2および大矢印は
上記従来装置と全く同一のものであり、3は放熱
体である。
As a method for eliminating such a drawback, the structure of another conventional heat transfer device, a cooling device, is shown in a cross-sectional view in Figure 2. In the figure, 1, 2 and the large arrow are exactly the same as those in the above-mentioned conventional device, and 3 is a heat sink.

この構成において、電子回路部品2や配線板1
を外気と遮断する密閉容器を兼ねた放熱体3に収
納しようとするものであるが、この場合には電子
回路部品2を上記従来例のように冷却用の空気で
直接冷却できず、電子回路部品2の温度を次に説
明する理由から許容値内にすることが困難となる
欠点がある。
In this configuration, electronic circuit components 2 and wiring board 1
However, in this case, the electronic circuit components 2 cannot be directly cooled with cooling air as in the conventional example, and the electronic circuit components 2 There is a drawback that it is difficult to keep the temperature of the component 2 within an allowable value for reasons explained below.

(イ) 放熱体3が無い場合の電子回路部品2と冷却
空気との温度差の試算。
(a) Trial calculation of the temperature difference between the electronic circuit component 2 and the cooling air when there is no heat sink 3.

この場合、電子回路部品2からの熱は冷却空
気により直接奪われることになる。電子回路部
品2と冷却空気との温度差をΔθとすると、
Δθは1a式で表わされる。
In this case, heat from the electronic circuit component 2 is directly removed by the cooling air. If the temperature difference between the electronic circuit component 2 and the cooling air is Δθ 1 ,
Δθ 1 is expressed by equation 1a.

△θ=q(1/αav・S)deg (1a) (q:電子回路部品2の発熱量W αav:強制対流熱伝達率であり、通常40W/m2℃ (風速10m/S、代表長さ0.1m)程度であ
る。
△θ 1 = q (1/αav・S) deg (1a) (q: Calorific value W of electronic circuit component 2 αav: Forced convection heat transfer coefficient, usually 40 W/m 2 ℃ (Wind speed 10 m/S, typical The length is approximately 0.1m).

S:伝熱面積m2) したがつて1a式は1b式のようになる。S: heat transfer area m 2 ) Therefore, formula 1a becomes formula 1b.

△θ=q/40Sdeg (1b) (ロ) 放熱体3が有る場合の電子回路部品2と冷却
空気との温度差の試算。
△θ 1 = q/40Sdeg (1b) (b) Estimation of the temperature difference between the electronic circuit component 2 and the cooling air when the heat sink 3 is provided.

この場合、電子回路部品2からの熱はまず放
熱体3内の空気に熱伝達により伝わつた後、放
熱体3の壁に熱伝達により伝わり、次に放熱体
から冷却空気へ熱伝達により伝わることにな
る。電子回路部品2と冷却空気との温度差を△
θとすると、△θは2a式で表わされる。
In this case, the heat from the electronic circuit component 2 is first transferred to the air inside the heat sink 3 by heat transfer, then to the wall of the heat sink 3 by heat transfer, and then from the heat sink to the cooling air by heat transfer. become. The temperature difference between electronic circuit component 2 and cooling air is △
When θ 2 is assumed, Δθ 2 is expressed by equation 2a.

△θ=q(1/αan・S+1/αan・S +1/αav・S)deg (2a) (q・αav・Sは1a式と同じである。 Δθ 2 =q(1/αan・S+1/αan・S+1/αav・S)deg (2a) (q・αav・S is the same as equation 1a.

αan:空気の自然対流熱伝達率であり、通常
5W/m2℃程度である。) したがつて2a式は2b式のようになる。
αan: Natural convection heat transfer coefficient of air, usually
It is about 5W/m 2 ℃. ) Therefore, formula 2a becomes formula 2b.

△θ=q(1/5S+1/5S+1/40S)=
17q/40Sdeg(2b) なお、実際には2a式において、放熱体3の壁を
熱が伝わる影響も考慮する必要があるがこの影響
は非常に小さいので無視した。
△θ 2 =q(1/5S+1/5S+1/40S)=
17q/40Sdeg (2b) In practice, in formula 2a, it is necessary to consider the effect of heat being transmitted through the wall of the heat sink 3, but this effect is very small, so it was ignored.

上記1b,2b式から得られた△θ,△θ
値を比較するとわかるように、放熱体3を設ける
ことにより、電子回路部品2の冷却空気に対する
温度上昇値は、放熱体3を設けない場合の17倍に
もなる。
As can be seen by comparing the values of △θ 1 and △θ 2 obtained from equations 1b and 2b above, by providing the heat sink 3, the temperature rise value of the electronic circuit component 2 relative to the cooling air is This is 17 times more than if it were not installed.

この考案は、上記のような従来のものの欠点を
除去するためになされたもので、発熱体と放熱体
との間隙に、両者に密着しておかれたマツトを内
部に外気圧より高圧の熱媒体を充満させ変形自在
に形成することにより悪環境条件下においても、
熱輸送量を増大させ発熱体の熱を効果的に放熱し
ようとするものである。
This idea was made in order to eliminate the drawbacks of the conventional ones as mentioned above.In the gap between the heating element and the heat radiating element, a mat that was placed in close contact with both was placed inside to generate heat at a higher pressure than the outside pressure. By filling the medium and making it deformable, even under adverse environmental conditions,
The aim is to increase the amount of heat transport and effectively dissipate the heat from the heating element.

第3図はこの考案の一実施例を示す断面図であ
り、1,2は上記従来装置と全く同一のものであ
る。3は配線板1と電子回路部品2をその内部に
収納できるように作られた密閉容器を兼ねた放熱
体であるが、電子回路部品2の取換えや保守点検
の際には外せる構造になつている。4は伝熱マツ
トであり、5は伝熱マツト膜で、変形自在な材料
で形成されている。6は熱媒体であり例えば水な
どの液体が封入されている。
FIG. 3 is a sectional view showing an embodiment of this invention, and numerals 1 and 2 are exactly the same as the conventional device described above. Reference numeral 3 denotes a heat radiator that also serves as a sealed container that is made to accommodate the wiring board 1 and electronic circuit components 2, but has a structure that allows it to be removed when replacing or maintaining the electronic circuit components 2. ing. 4 is a heat transfer mat, and 5 is a heat transfer mat film made of a deformable material. Reference numeral 6 denotes a heat medium, and a liquid such as water is sealed therein.

上記のように構成された熱伝達装置である冷却
装置において、伝熱マツト4は、電子回路部品2
群と放熱体3の間隙に設けており、その体積を放
熱体3と電子回路部品2群の包絡面との間にでき
る間隙体積より少し大きくし、内圧も外圧より高
圧にしておくと、伝熱マツトが変形して、放熱体
と電子回路部品2の両方に密着することになる。
この場合、電子回路部品2からの熱は、まず電子
回路部品2に密着した伝熱マツト膜5を伝導で伝
わつた後、伝熱マツト4内の熱媒体6に熱伝達に
より伝わり、放熱体3に密着した伝熱マツト膜5
に熱伝達により伝わる。その後、マツト膜5と放
熱体3壁を伝導で伝わり、最後に冷却空気へ熱伝
達により伝わることになる。電子回路部品2と冷
却空気間の温度差を△θとすると、△θは3a
式で表わされる。
In the cooling device, which is a heat transfer device configured as described above, the heat transfer mat 4 is connected to the electronic circuit component 2.
If the volume is slightly larger than the volume of the gap formed between the heat sink 3 and the envelope surface of the electronic circuit component group 2, and the internal pressure is higher than the external pressure, the transmission will be improved. The thermal mat is deformed and comes into close contact with both the heat sink and the electronic circuit component 2.
In this case, the heat from the electronic circuit component 2 is first transmitted by conduction through the heat transfer mat film 5 in close contact with the electronic circuit component 2, and then transmitted to the heat medium 6 in the heat transfer mat 4 by heat transfer, and then transferred to the heat dissipation body 3. Heat transfer mat film 5 in close contact with
is transferred by heat transfer. Thereafter, the heat is transmitted through the pine membrane 5 and the wall of the heat sink 3 by conduction, and finally to the cooling air by heat transfer. If the temperature difference between the electronic circuit component 2 and the cooling air is △θ 3 , △θ 3 is 3a
It is expressed by the formula.

△θ=q(1/αG・S+1/αW・S+1/αW
・S +1/αG・S+1/αav・S)deg (3a) q・αav・Sは1a式と同じである。
△θ 3 = q (1/αG・S+1/αW・S+1/αW
・S +1/αG・S+1/αav・S)deg (3a) q・αav・S is the same as formula 1a.

1/αG・S:伝熱マツト膜の伝導熱抵抗に相当する ものであり、伝熱マツト膜の厚さを0.2mmとする
と、等価的にαGの値を1500W/m2・℃と考えら
れる。
1/αG・S: Corresponds to the conductive heat resistance of the heat transfer pine film. If the thickness of the heat transfer pine film is 0.2 mm, the value of αG can be equivalently considered to be 1500W/m 2・℃ .

αW:水の自然対流熱伝導率であり、通常
400W/m2・℃(平板代表長さ0.1m)程度
である。
αW: natural convection thermal conductivity of water, usually
It is about 400W/ m2・℃ (flat plate typical length 0.1m).

したがつて、3a式は3b式のようになる。 Therefore, formula 3a becomes formula 3b.

△θ=q(1/1500S+1/400S+1/4
00S+1/1500S +1/40S)=1.25q/40Sdeg (3b) 以上説明したように、この考案による伝熱マツ
ト4を使用することにより、電子回路部品2を放
熱体3に収納したにもかかわらず、電子回路部品
2と冷却空気間の温度差を、放熱体が無いものに
対して、25%程度の増加に押えることができる。
又、熱媒体6の容積比熱は熱媒体6が水の場合、
空気に比べて約3800倍も大きいため、電子回路部
品2にパルス的な過大発熱が生じても、熱媒体6
が熱を吸収して、電子回路部品2の温度上昇を最
小にすることが可能である。
△θ 3 = q (1/1500S+1/400S+1/4
00S + 1/1500S + 1/40S) = 1.25q/40Sdeg (3b) As explained above, by using the heat transfer mat 4 of this invention, even though the electronic circuit component 2 is housed in the heat sink 3 , the temperature difference between the electronic circuit component 2 and the cooling air can be suppressed to about 25% increase compared to one without a heat sink.
In addition, the volumetric specific heat of the heat medium 6 is when the heat medium 6 is water,
Since it is approximately 3800 times larger than air, even if pulsed excessive heat generation occurs in electronic circuit component 2, heating medium 6
can absorb heat and minimize the temperature rise of the electronic circuit component 2.

なお上記実施例で用いた変形自在マツトは、例
えばシリコーンゴム、フツソゴム等のゴム膜など
の伸縮性材料または、ガラスクロス等の裏面に、
熱媒体6に対して腐食、洩れのない金属や合成樹
脂等をコーテイングしたシートを少し大きめのマ
ツトにして用いても同様の動作を期待できる。更
に、これらの電気絶縁材料を伝熱マツト膜5に使
用することにより、電子回路部品2に伝熱マツト
膜5が密着した際にも電気的に何の問題も起こら
ないのはもちろんである。
The deformable mat used in the above examples is made of a stretchable material such as a rubber film such as silicone rubber or soft rubber, or the back side of glass cloth, etc.
A similar operation can be expected even if a sheet coated with metal, synthetic resin, etc. that does not corrode or leak against the heat medium 6 is used as a slightly larger mat. Furthermore, by using these electrically insulating materials for the heat transfer mat film 5, it goes without saying that no electrical problems will occur even when the heat transfer mat film 5 is brought into close contact with the electronic circuit component 2.

ところで上記説明ではこの考案を電子回路部品
2と放熱体3間の熱伝達をスムースに行わせる場
合について説明したが、これにとどまらず一般的
に発熱体と放熱体との間に熱が伝わりにくい空間
が存在する場合にも利用できることはいうまでも
ない。
By the way, in the above explanation, this invention was explained in the case of smooth heat transfer between the electronic circuit component 2 and the heat radiator 3, but it is not limited to this, and is generally applicable to cases in which heat is difficult to transfer between the heat generator and the heat radiator. Needless to say, it can be used even if there is space.

又、以上では発熱体として、ホツトな熱を発
し、放熱体でホツトな熱を放出する場合について
説明したが、発熱体として冷熱を発し、放熱体で
冷熱を放出する場合でも同様に適用できるもので
ある。
In addition, although the above description has been made of the case where the heating element emits hot heat and the heat radiator emits the hot heat, it can be similarly applied to the case where the heating element emits cold heat and the heat radiator emits the cold heat. It is.

次にフラツト面から成る発熱体からの熱を円筒
形のヒートパイプにより取り去る場合の従来例の
断面図を第4図に示す。図において7は発熱体、
8はヒートパイプであり、小矢印は熱の伝わり方
を示す。第5図に、この考案による伝熱マツト4
を使つた設置状況の断面図を示す。8,7は第4
図と全く同一である。これらを比較すると従来例
では、発熱体7とヒートパイプ8とは線接触であ
り、伝熱面積が小さい結果、発熱体の熱はヒート
パイプ8に伝わりにくい欠点がある。一方、この
考案による伝熱マツト4を使用した場合は、発熱
体7とヒートパイプ8とは接触部の形状にかかわ
らず、間に介在する伝熱マツト4と面接触とな
り、従来例に比べて伝熱面積が大きくなる結果、
発熱体7の熱がヒートパイプ8に伝わり易くな
る。
Next, FIG. 4 shows a sectional view of a conventional example in which heat from a heating element having a flat surface is removed by a cylindrical heat pipe. In the figure, 7 is a heating element,
8 is a heat pipe, and small arrows indicate how heat is transferred. Figure 5 shows a heat transfer mat 4 according to this invention.
A cross-sectional view of the installation situation is shown. 8 and 7 are the 4th
It is exactly the same as the figure. Comparing these, in the conventional example, the heating element 7 and the heat pipe 8 are in line contact, and as a result of the small heat transfer area, there is a drawback that the heat of the heating element is difficult to be transferred to the heat pipe 8. On the other hand, when the heat transfer mat 4 according to this invention is used, the heating element 7 and the heat pipe 8 come into surface contact with the heat transfer mat 4 interposed between them, regardless of the shape of the contact part, and compared to the conventional example, As a result of the increased heat transfer area,
The heat of the heating element 7 is easily transmitted to the heat pipe 8.

なお伝熱マツトの使用例を参考に示す。発熱体
又は放熱体の伝熱面積が小さい場合の熱輸送を増
加させるのに使用できる。すなわち空気中に置か
れた伝熱面積の小さな発熱体の熱を自然対流熱伝
達により放熱する場合の一般的の構成の断面図を
第6図に示す。図において8は空気中におかれた
伝熱面積の小さい発熱体である。第7図に伝熱マ
ツト4を使用した場合の構成の断面図を示す。図
において、伝熱マツト4は、内部に水が封入され
ている。これらを比較すると、一般的構成の場
合、放熱は、空気の自然対流熱伝達率(5W/
m2・℃)により行なわれるのに対し、伝熱マツト
4を使用した場合は、水の自然対流熱伝達率
(400W/m2・℃)を利用できるので、(1a)〜
(3a)式から類推して、伝熱マツトを使用すれ
ば、使用しない場合と比べ、熱輸送を増加させら
れることになる。
An example of the use of heat transfer mats is shown for reference. It can be used to increase heat transport when the heat transfer area of the heating element or heat dissipation element is small. That is, FIG. 6 shows a cross-sectional view of a general configuration in which heat from a heating element with a small heat transfer area placed in the air is radiated by natural convection heat transfer. In the figure, 8 is a heating element with a small heat transfer area placed in the air. FIG. 7 shows a cross-sectional view of the structure when the heat transfer mat 4 is used. In the figure, a heat transfer mat 4 has water sealed inside. Comparing these, in the case of a typical configuration, heat radiation is determined by the natural convection heat transfer coefficient of air (5W/
m2・℃), whereas when heat transfer mat 4 is used, the natural convection heat transfer coefficient of water (400W/ m2・℃) can be used, so (1a) ~
By analogy with equation (3a), using heat transfer mats can increase heat transport compared to not using them.

この考案は以上説明したとうり、発熱体と放熱
体との間隙に、内部に外気圧より高圧の熱媒体を
充満させて変形自在にしたマツトを両者に密着さ
せて置くことにより、悪環境条件下においても、
熱輸送量を増大させ発熱体の熱を効果的に放熱で
きる。
As explained above, this idea uses a deformable mat that is filled with a heating medium of higher pressure than the outside air pressure inside the gap between the heating element and the heat radiating element, and is placed in close contact with both of them. Even below,
The amount of heat transported can be increased and the heat of the heating element can be effectively dissipated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱伝達装置である冷却装置を示
す断面図、第2図は他の従来の熱伝達装置である
冷却装置を示す断面図、第3図は、この考案の一
実施例を示す断面図、第4図は他の従来の熱伝達
装置である冷却装置を示す断面図、第5図はこの
考案の他の実施例を示す熱伝達装置である冷却装
置の断面図、第6図は一般的な冷却装置の冷却状
況を示す断面図、第7図は、参考に示すもので、
伝熱マツトを使用する冷却装置の断面図である。 図において1は配線板、2は電子回路部品等の
発熱体、3は放熱体、4は伝熱マツト、5は伝熱
マツト膜、6は熱媒体、7は発熱体、8はヒート
パイプである。なお各図中同一符号は同一または
相当部分を示すものとする。
Fig. 1 is a sectional view showing a cooling device which is a conventional heat transfer device, Fig. 2 is a sectional view showing a cooling device which is another conventional heat transfer device, and Fig. 3 is a sectional view showing an embodiment of this invention. 4 is a sectional view showing a cooling device which is another conventional heat transfer device. FIG. 5 is a sectional view of a cooling device which is a heat transfer device according to another embodiment of this invention. The figure is a cross-sectional view showing the cooling situation of a general cooling device, and Figure 7 is for reference.
1 is a cross-sectional view of a cooling device using a heat transfer mat. In the figure, 1 is a wiring board, 2 is a heating element such as an electronic circuit component, 3 is a heat sink, 4 is a heat transfer mat, 5 is a heat transfer mat film, 6 is a heat medium, 7 is a heating element, and 8 is a heat pipe. be. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】 (1) 発熱体、放熱体、および両者の間隙に、両者
に密着しておかれ、内部に外気圧より高圧の熱
媒体を充満させた変形自在マツトを備えた熱伝
達装置。 (2) マツトを伸縮性材料で構成したことを特徴と
する実用新案登録請求の範囲第1項記載の熱伝
達装置。 (3) マツトを電気絶縁材料で構成したことを特徴
とする実用新案登録請求の範囲第1項または第
2項記載の熱伝達装置。 (4) マツトの内面に、マツト内の熱媒体に対して
耐久性を有する材料をコーテイングしたことを
特徴とする実用新案登録請求の範囲第1項ない
し第3項の何れかに記載の熱伝達装置。
[Scope of Claim for Utility Model Registration] (1) A heating element, a heat radiating element, and a deformable mat that is in close contact with both and filled with a heating medium at a pressure higher than the outside pressure is provided in the gap between the two. Heat transfer device. (2) The heat transfer device according to claim 1, wherein the mat is made of a stretchable material. (3) The heat transfer device according to claim 1 or 2, wherein the mat is made of an electrically insulating material. (4) The heat transfer according to any one of claims 1 to 3 of the claims for utility model registration, characterized in that the inner surface of the mat is coated with a material that is durable against the heat medium inside the mat. Device.
JP12629182U 1982-08-19 1982-08-19 heat transfer device Granted JPS5929575U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12629182U JPS5929575U (en) 1982-08-19 1982-08-19 heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12629182U JPS5929575U (en) 1982-08-19 1982-08-19 heat transfer device

Publications (2)

Publication Number Publication Date
JPS5929575U JPS5929575U (en) 1984-02-23
JPS6210621Y2 true JPS6210621Y2 (en) 1987-03-12

Family

ID=30287220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12629182U Granted JPS5929575U (en) 1982-08-19 1982-08-19 heat transfer device

Country Status (1)

Country Link
JP (1) JPS5929575U (en)

Also Published As

Publication number Publication date
JPS5929575U (en) 1984-02-23

Similar Documents

Publication Publication Date Title
JP4410466B2 (en) Electronic equipment
US6019167A (en) Liquid immersion cooling apparatus for electronic systems operating in thermally uncontrolled environments
US7623349B2 (en) Thermal management apparatus and method for a circuit substrate
TW470873B (en) Miniaturization of power supply system of portable computer by improving heat dissipation
CN107509365B (en) Ultrathin microwave assembly and heat pipe radiating device
US20050039884A1 (en) Conformal heat sink
JP3445784B2 (en) Equipment for heat dissipation, especially for high performance rated ultrasonic transducers
JPS6210621Y2 (en)
CN111479450A (en) Electrical apparatus box and be equipped with its indirect heating equipment
JPH1051170A (en) Cooling device
WO2013189316A1 (en) Terminal device
CN211183776U (en) High-temperature isolation power supply module
CN212362210U (en) Indoor unit and air conditioner with condensation prevention function
JP2000013066A (en) Outdoors casing
CN213659730U (en) Semi-physical simulation training equipment
CN113498305A (en) High-power water-cooling direct-current power supply
EP3209102A1 (en) Communication system and communication device therefor
CN112739176A (en) Radiating assembly, electric cabinet and air conditioner
CN217884248U (en) Case and electronic equipment
CN212086776U (en) Possesses high-efficient heat dissipation electrical apparatus box of leakproofness
CN211831667U (en) Electrical apparatus box and be equipped with its indirect heating equipment
CN220691149U (en) Optical module, heat radiation structure and communication equipment
CN218632406U (en) Heat radiation structure for communication antenna equipment
KR100886289B1 (en) An electronic device
US11520391B1 (en) Power supply for a mining machine