JPS62105925A - Production of hollandite type potassium titanium bronze - Google Patents

Production of hollandite type potassium titanium bronze

Info

Publication number
JPS62105925A
JPS62105925A JP60246509A JP24650985A JPS62105925A JP S62105925 A JPS62105925 A JP S62105925A JP 60246509 A JP60246509 A JP 60246509A JP 24650985 A JP24650985 A JP 24650985A JP S62105925 A JPS62105925 A JP S62105925A
Authority
JP
Japan
Prior art keywords
potassium
titanium dioxide
heating
titanium
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60246509A
Other languages
Japanese (ja)
Other versions
JPH0246530B2 (en
Inventor
Jun Watanabe
遵 渡辺
Yoshinori Fujiki
藤木 良規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP60246509A priority Critical patent/JPS62105925A/en
Publication of JPS62105925A publication Critical patent/JPS62105925A/en
Publication of JPH0246530B2 publication Critical patent/JPH0246530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce the titled potassium titanium bronze in a short time without using a vacuum vessel, by mixing a titanium dioxide-forming compound with potassium oxide component-forming compound at a specific ratio and heating the resultant mixture under specific conditions. CONSTITUTION:Titanium dioxide or a compound capable of forming titanium dioxide by heating is mixed with a potassium compound capable of forming a potassium oxide component by heating at 1/7.9-1/13, preferably 1/8-1/10 molar ratio (K2O/TiO2). A carbonate, oxalate, etc., may be used as the potassium compound. Both raw materials to be used are in the form of powder and uniformly mixed with an alcohol, etc. The resultant mixture is suitably dried and put in a vessel and air is replaced with a reducing gas. The mixture is heated at 950-1,300 deg.C, preferably 950-1,200 deg.C for about 4-8hr while flowing there reducing gas. Thereby, the aimed hollandite type potassium titanium bronze expressed by the general formula KxTi8O16 (x is 0.8-1.1) is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はホーランダイト型カリウムチタンブロンズの製
造法に関する。ホーランダイト型カリウムチタンブロン
ズの焼結体は室温で19cm 以下の良好な電子伝導性
を示し、またイオン伝導性もあるので、半導体を混合導
電体、セラミック電子。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing potassium titanium hollandite bronzes. The sintered body of hollandite-type potassium titanium bronze exhibits good electronic conductivity of 19 cm or less at room temperature, and also has ionic conductivity, so it can be used as a mixed conductor for semiconductors and ceramic electronics.

電気材料としての利用が期待され、その他触媒、あるい
は触媒担体としての利用も期待される。
It is expected to be used as an electrical material, and also as a catalyst or catalyst carrier.

従来技術 従来、ホーランダイト型カリウムチタンブロンズの製造
法としては、次の方法が知られている。
Prior Art Conventionally, the following method has been known as a method for producing hollandite-type potassium titanium bronze.

(1)  K2Ti20.を水素中で950℃で加熱処
理する方法。
(1) K2Ti20. A method in which heat treatment is performed at 950°C in hydrogen.

(2)二酸化チタンと硝酸カリウムをでI空下で100
0℃で24時間加熱処理する方法。
(2) Titanium dioxide and potassium nitrate were heated to 100% under an atmosphere.
A method of heat treatment at 0°C for 24 hours.

しかし、(1)の方法はに2Ti205を先ず作る必要
があり、それだけ工程が煩雑である欠点がある。また(
2)の方法は高温真空下で長時間保持する必要があるた
め、装置が高価とな抄、また長時間を必要とする欠点が
ある。
However, method (1) requires the production of 2Ti 205 first, which has the drawback of complicating the process. Also(
Method 2) requires holding the paper under high-temperature vacuum for a long period of time, and therefore has the disadvantage that the papermaking apparatus is expensive and that it requires a long time.

発明の目的 本発明は従来法の欠点を解消すべくなされたものであり
、その目的は、二酸化チタン、炭酸カリウム等をそのま
ま使用し、真空容器を必要とせす、かつ短時間に製造す
ることが可能な方法を提供するにある。
Purpose of the Invention The present invention was made in order to eliminate the drawbacks of the conventional method, and its purpose is to use titanium dioxide, potassium carbonate, etc. as they are, to require a vacuum container, and to be able to produce the product in a short time. We are here to provide you with a possible method.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、二
酸化チタンまたは加熱により二酸化チタ化合物を、特定
割合に混合したものを、常圧または僅かな加圧下の還元
性雰囲気中で加熱処理すると、従来法における真空下の
加熱に比べて短時間にホーランダイト型カリウムチタン
ブロンズが製造し得られることを究明し得た。この知見
に基いて本発明を完成した。
Structure of the Invention As a result of intensive research to achieve the above object, the present inventors have found that titanium dioxide or a mixture of titanium dioxide compounds by heating in a specific ratio is prepared in a reducing atmosphere under normal pressure or slightly pressurized. It has been found that by heat treatment, hollandite-type potassium titanium bronze can be produced in a shorter time than by heating under vacuum in the conventional method. The present invention was completed based on this knowledge.

本発明の要旨は、 二酸化チタンまたは加熱により二酸化チタンを生成する
チタン化合物と、加熱により酸化カリウム成分成カリウ
ム化合物を、K20/TiO2モル比で1/7 、9〜
1/13の割合で混合し、これを常圧あるいは加圧の還
元性雰囲気中で950〜1200℃で加熱することを特
徴とするホーランダイト型カリウムチタンブロンズの製
造法にある。
The gist of the present invention is to combine titanium dioxide or a titanium compound that produces titanium dioxide by heating and a potassium oxide component potassium compound by heating at a K20/TiO2 molar ratio of 1/7, 9 to
The method for producing a hollandite-type potassium titanium bronze is characterized in that the mixture is mixed at a ratio of 1/13 and heated at 950 to 1200° C. in a reducing atmosphere at normal pressure or pressurization.

本発明において加熱してカリウム酸化物を生成する塩と
しては、例えば、炭酸塩、炭酸水素塩。
In the present invention, examples of salts that generate potassium oxide upon heating include carbonates and hydrogen carbonates.

蓚酸塩、硝酸塩等が挙けられる。Examples include oxalate and nitrate.

本発明の方法において使用する原料混合物は、K20/
TiO2モル比で’/7.9〜1/13.好ましくけ1
/8〜1/loの範囲であることが必要である。該モル
比が’/7.9未満であると、大チタン酸塩が混入して
きて不純となり、またその比が1/10 を超えると、
ルチル型TiO2が混合してくる。
The raw material mixture used in the method of the present invention is K20/
TiO2 molar ratio '/7.9 to 1/13. Desirable 1
It is necessary to be in the range of /8 to 1/lo. If the molar ratio is less than '/7.9, large titanate will be mixed in and become impure, and if the ratio exceeds 1/10,
Rutile type TiO2 is mixed.

この原料の混合に際しては、粉末状のものを用いて、こ
れらを溶解しにくいアルコール等の液体を加えて均一に
混合することが好ましい。
When mixing these raw materials, it is preferable to use powdered materials and to mix them uniformly by adding a liquid such as alcohol that is difficult to dissolve them.

この混合物を適度に乾燥した後、白金等の容器に入れ、
雰囲気調整の可能な炉内に置き、H2+H2−002+
 H2H2Oあるいは002− Goなどの還元性気体
を通じて空気を置換する。置換後、外部空気が炉内へ逆
流しない程度以上の流量で還元性気体を流しながら加熱
昇温する。
After drying this mixture appropriately, put it in a container such as platinum,
Place in a furnace where atmosphere can be adjusted, H2+H2-002+
Air is replaced through a reducing gas such as H2H2O or 002-Go. After the replacement, the furnace is heated and heated while flowing reducing gas at a flow rate higher than that which prevents outside air from flowing back into the furnace.

このように還元性気体を流すことによって、雰囲気中の
酸素分圧を下げる。還元性気体中の酸素分圧上限値は、
表−1に示す通りであることが好ましい。
By flowing the reducing gas in this way, the oxygen partial pressure in the atmosphere is lowered. The upper limit of oxygen partial pressure in reducing gas is
It is preferable that it is as shown in Table-1.

表  −1 また、流量比で示すと概ね以下の通りである。Table-1 In addition, the flow rate ratio is approximately as follows.

混合ガス権   950℃   1050 ℃   1
150 ℃(1)  C02/H20,005以下 0
.055以下 0.35以下(II)  Go/Co2
25  以下 8.5以下  3.6 以下(Ill)
  H2/H2012以下 4.5 以下′  1.1
 以下加熱温度は950〜1300℃好ましくは950
〜1200℃で、加熱時間4〜8時間で得られる。加熱
温度が950℃未満では大チタン酸塩ps゛混入し易く
、特に900℃以下ではその混入を除去し難い。
Mixed gas rights 950℃ 1050℃ 1
150℃ (1) C02/H20,005 or less 0
.. 055 or less 0.35 or less (II) Go/Co2
25 or less 8.5 or less 3.6 or less (Ill)
H2/H2012 or less 4.5 or less' 1.1
The heating temperature below is 950-1300℃, preferably 950℃
Obtained at ~1200°C with a heating time of 4 to 8 hours. If the heating temperature is less than 950°C, the large titanate ps is likely to be mixed in, and especially if the heating temperature is 900°C or less, it is difficult to remove this contamination.

一方1200℃を超えると、カリウム成分の蒸発が始ま
る。1300℃前後までホーランダイト型チタンブロン
ズの単一生成領域は維持される。
On the other hand, when the temperature exceeds 1200°C, evaporation of potassium components begins. The single formation region of hollandite titanium bronze is maintained up to around 1300°C.

ホーランダイト型チタンブロンズと共生状仲でできる共
生相の種顛は次の通りである。
The details of the symbiotic phase formed in symbiotic relationship with hollandite-type titanium bronze are as follows.

釣り、。以上のに20/TiO,、モル比では、表−1
の酸素分圧以上で六チタン酸カリウムm (K2Ti2
O5,)が共生し、大チタン酸カリウム塩の含有量は温
度と酸素分圧が一定であればに20成分の増加に伴い増
え、温度と組成が一定であ机は戯素分圧の増加に伴い増
える。一方1/ 〜1/13モル比では温度が1150
℃以下であると、ルチル型TiO2と共生する。ルチル
型TiO2の含有量は温度と酸素分圧が一定であれ−ば
TiO2成分に比例して増え、温度と組成が一定であれ
ば酸素分圧の増加と共に増える。また、酸素分圧が低過
ぎると全モル比域でマグネリ相と共生する。
fishing,. Table 1 shows the molar ratio of 20/TiO.
Potassium hexatitanate m (K2Ti2
O5,) coexist, and the content of large potassium titanate salt increases with the increase of 20 components if the temperature and oxygen partial pressure are constant; It increases with On the other hand, at a molar ratio of 1/ to 1/13, the temperature is 1150
If the temperature is below 0.degree. C., it coexists with rutile TiO2. The content of rutile TiO2 increases in proportion to the TiO2 component if the temperature and oxygen partial pressure are constant, and increases as the oxygen partial pressure increases if the temperature and composition are constant. Furthermore, if the oxygen partial pressure is too low, it coexists with the Magnelli phase in all molar ratio ranges.

実施例1゜ 二酸化チタン粉末と無水炭酸カリウム粉末を、K20 
/TiO2モル比で1/8〜1/13の絆囲に混合した
。との混合物に少量のアルコールを加えて混合し、乾燥
した後振動ミルを用いて1時間再湿合川−2だ。こねを
白金容器に入れ、雰@気訓整炉内に置き、炉内の空気を
高純度水素と炭酸ガスからなシ)還元性ガスを流して置
換した。なお、還元性ガスは両ガスの所定流量?調整し
て酸素分圧を変え、合成ゼオライトカラムを通し脱水し
た後炉内へ導入した。この状態で1150℃、 105
0℃、及び950℃の温度で4〜8時間保持した後室温
まで降温した。この実験を系統的に行い、反応生成物を
しらべた。その結果をノjミすと、表−2+表−31及
び表−4の通りであった。
Example 1 Titanium dioxide powder and anhydrous potassium carbonate powder were mixed into K20
/TiO2 molar ratio of 1/8 to 1/13. Add a small amount of alcohol to the mixture, mix, dry, and rewet for 1 hour using a vibrating mill. The dough was placed in a platinum container and placed in an atmosphere conditioning furnace, and the air in the furnace was replaced by flowing a reducing gas consisting of high-purity hydrogen and carbon dioxide gas. In addition, is the reducing gas the specified flow rate of both gases? After adjusting the oxygen partial pressure and dehydrating it through a synthetic zeolite column, it was introduced into the furnace. In this state, 1150℃, 105
After maintaining the temperature at 0°C and 950°C for 4 to 8 hours, the temperature was lowered to room temperature. This experiment was conducted systematically and the reaction products were investigated. The results were as shown in Table-2 + Table-31 and Table-4.

表  −211501゛ Bz:ホーランダイト型カリウムチタンブロンズ。Table -211501゛ Bz: Hollandite type potassium titanium bronze.

)1t:大チタン酸塩+ R11ニルチル表 −310
50℃ BZ I Ht ! Ru  表−2に同じ表−495
0℃ BZ + Ht + Ru  表−2に同じ実施例2゜ ルチル型二酸化チタイと無水炭酸水素カリウム粉末を用
いて、K20/TiO,、モル比で/7.9 ’ ′/
8.5 ’1/9の三種類の混合物を作った。これらの
各混合物に少量のアルコールを加えて混合した後乾燥し
た。各々を白金ルツボに入れ、縦型シリコニット雰囲気
調整炉内に置き、高純度水素ガスをシリカゲル中を通し
て脱水し、毎時137の流量で炉内へ導入し炉内の空気
を置換した。このflflkを維持したまま1100℃
に昇温し、約7時間保持した。
) 1t: Large titanate + R11 nil tile table -310
50℃ BZ I Ht! Ru Table-495 Same as Table-2
0°C BZ + Ht + Ru Table 2 shows the same example 2. Using rutile titanium dioxide and anhydrous potassium hydrogen carbonate powder, the molar ratio is K20/TiO, /7.9 ''/
Three types of mixtures of 8.5'1/9 were made. A small amount of alcohol was added to each of these mixtures, mixed, and then dried. Each was placed in a platinum crucible and placed in a vertical siliconite atmosphere-controlled furnace, and high-purity hydrogen gas was passed through silica gel to dehydrate it and introduced into the furnace at a flow rate of 137/hour to replace the air in the furnace. 1100℃ while maintaining this flflk
The temperature was raised to 1, and maintained for about 7 hours.

得られた反応生成物は、1/7.、(比較)では黒色、
1/8 、5及び1/、の場合は暗紫色であった。
The obtained reaction product was 1/7. , black in (comparison),
In the case of 1/8, 5 and 1/, the color was dark purple.

後者の三者はいずれも、X線回折法でホーランダイト型
カリウムチタンブロンズの単−相からなることが確認さ
れた。
All of the latter three were confirmed by X-ray diffraction to be composed of a single phase of hollandite-type potassium titanium bronze.

実施例3゜ ルチル型二酸化チタン粉末1.54 fと無水炭酸fy
 IJ fy A O,24? (K20/Ti02=
約1/1□)を用い、実施例1と同様にして混合物を作
った。これを白金ルツボに入れて炉内に置き、高純度水
素ガスと炭酸ガスをそれぞれ毎時13.51と0.28
1の流量で合成ゼオライトを充填したカラムを通して炉
内に導入した。炉内空気を置換した後、同流量を維持し
たまま1200℃まで昇温し、6時間保持した。
Example 3 Rutile titanium dioxide powder 1.54 f and anhydrous carbonate fy
IJ fy A O, 24? (K20/Ti02=
A mixture was prepared in the same manner as in Example 1 using approximately 1/1□). This is placed in a platinum crucible and placed in a furnace, and high-purity hydrogen gas and carbon dioxide gas are pumped at 13.51 and 0.28 times per hour, respectively.
The zeolite was introduced into the furnace through a column packed with synthetic zeolite at a flow rate of 1. After replacing the air in the furnace, the temperature was raised to 1200° C. while maintaining the same flow rate and held for 6 hours.

得られた反応生成物はホーランダイト型カリウムチタン
ブロンズの単−相であった。
The resulting reaction product was a single-phase hollandite-type potassium titanium bronze.

実施例4゜ 実施例3におけると同じ原料を使用し、K20/TiO
2モル比で’/s + 1/s、s ・’/la 、1
/lo −Vll及び1/13の6e類の混合物を作り
、高純度水素ガスを使用し、反応温度、950℃、 t
oso℃、及び1150℃で反応させた。反応時間は9
50℃では4〜6時間、 1150℃では4時間とした
。その結果、1/8〜1/1oの出発混合物ではいずれ
の温度でも、ホーランダイト型カリウムチタンブロンズ
を単−相粉末として得られた。1/11〜’/13の出
発混合物ではいずれもホーランダイト型カリウムチタン
ブロンズとルチルの共存する粉末が得られた。ルチルの
含有量は同反応温度、同出発混合物の組成においては酸
素分圧の相違により異なり、実施例1において示す表2
〜表4に示゛すものと同程度であった。
Example 4゜Using the same raw materials as in Example 3, K20/TiO
2 molar ratio '/s + 1/s, s ・'/la, 1
A mixture of /lo-Vll and 1/13 of 6e was prepared, high-purity hydrogen gas was used, the reaction temperature was 950°C, and t
The reaction was carried out at oso°C and 1150°C. Reaction time is 9
The heating time was 4 to 6 hours at 50°C, and 4 hours at 1150°C. As a result, a hollandite-type potassium titanium bronze was obtained as a single-phase powder at any temperature with a starting mixture of 1/8 to 1/1o. In each of the starting mixtures from 1/11 to '/13, powders containing hollandite-type potassium titanium bronze and rutile were obtained. The content of rutile varies depending on the oxygen partial pressure in the same reaction temperature and the same starting mixture composition, and is shown in Table 2 in Example 1.
- It was comparable to that shown in Table 4.

発明の効果 本発明の方法によると、原料の混合物をそのまま使用し
、真空装置等の高価な装置を使用することなく、短時間
に極めて容易にホーランダイト型カリウムチタンブロン
ズを製造し得られる優れた効果を奏し得られる。
Effects of the Invention According to the method of the present invention, an excellent hollandite-type potassium titanium bronze can be produced very easily in a short time without using a mixture of raw materials as is and without using expensive equipment such as a vacuum device. It can be effective.

特許出願人  科学技術庁無機材質研究所長後  藤 
    優
Patent applicant Goto, director of the Institute for Inorganic Materials, Science and Technology Agency
Excellent

Claims (1)

【特許請求の範囲】[Claims] 二酸化チタンまたは加熱により二酸化チタンを生成する
チタン化合物と、加熱により酸化カリウム成分を生成す
るカリウム化合物を、K_2O/TiO_2モル比で1
/7.9〜1/13の割合で混合し、これを常圧あるい
は加圧の還元性雰囲気中で950〜1200℃で加熱す
ることを特徴とする一般式K_xTi_8O_1_6(
ただし、x=0.8〜1.1)で示されるホーランダイ
ト型カリウムチタンブロンズの製造法。
Titanium dioxide or a titanium compound that generates titanium dioxide when heated and a potassium compound that generates a potassium oxide component when heated are mixed at a K_2O/TiO_2 molar ratio of 1.
The general formula K_xTi_8O_1_6(
However, the method for producing hollandite-type potassium titanium bronze represented by x=0.8 to 1.1).
JP60246509A 1985-11-01 1985-11-01 Production of hollandite type potassium titanium bronze Granted JPS62105925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246509A JPS62105925A (en) 1985-11-01 1985-11-01 Production of hollandite type potassium titanium bronze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246509A JPS62105925A (en) 1985-11-01 1985-11-01 Production of hollandite type potassium titanium bronze

Publications (2)

Publication Number Publication Date
JPS62105925A true JPS62105925A (en) 1987-05-16
JPH0246530B2 JPH0246530B2 (en) 1990-10-16

Family

ID=17149447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246509A Granted JPS62105925A (en) 1985-11-01 1985-11-01 Production of hollandite type potassium titanium bronze

Country Status (1)

Country Link
JP (1) JPS62105925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683150C1 (en) * 2018-07-12 2019-03-26 Маргарита Кондратьевна Котванова Mechanochemical method for producing oxide potassium-titanium bronze

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017960A (en) * 1973-06-11 1975-02-25
JPS5943440A (en) * 1982-09-03 1984-03-10 Toshiba Corp Arithmetic control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017960A (en) * 1973-06-11 1975-02-25
JPS5943440A (en) * 1982-09-03 1984-03-10 Toshiba Corp Arithmetic control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683150C1 (en) * 2018-07-12 2019-03-26 Маргарита Кондратьевна Котванова Mechanochemical method for producing oxide potassium-titanium bronze

Also Published As

Publication number Publication date
JPH0246530B2 (en) 1990-10-16

Similar Documents

Publication Publication Date Title
Heald et al. Kinetics and mechanism of the anatase/rutile transformation, as catalyzed by ferric oxide and reducing conditions
Taguchi et al. Surface characterization of LaCoO3 synthesized using citric acid
JPS6354642B2 (en)
JPS62260721A (en) Basic material for manufacturing ceramic mtaerial, oxide by hot process and manufacture
EP0802159A1 (en) Method of manufacturing lithium sulfide
JP2003128415A (en) 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
Li et al. Synthesis of monocrystalline composite oxides La1− xSrxFe1− yCoyO3 with the perovskite structure using polyethylene glycol-gel method
JPH10251021A (en) Superfine titanium oxide powder small in chlorine content and its production
CN106379933B (en) A kind of preparation method of lithium titanate powdery
EP0478152B1 (en) Production of reduced titanium oxide
CN113461054B (en) BiOCl powder and preparation method and application thereof
JP2957455B2 (en) Zirconium dioxide powder produced by high pyrolysis, method for producing the same, and starting materials, fillers, electric industrial materials, heat insulating materials, catalyst materials, catalyst carrier materials, and cosmetic materials for producing ceramics and ceramic precursors composed thereof
JPS62105925A (en) Production of hollandite type potassium titanium bronze
US1293461A (en) Process of preparing manganese peroxid.
Kohno et al. Preparation of BaTi4O9 by a sol–gel method and its photocatalytic activity for water decomposition
CN1210474A (en) Compounds for sorption of gases
CN106278869B (en) A method of with the Fast back-projection algorithm MOFs materials of molecular sieve recycling design
US3352632A (en) Production of lead titanate and lead zirconate for ceramic bodies
JPH0747489B2 (en) Bi5O7 (NO3) compound represented by formula and process for producing the same
JP2747916B2 (en) Potassium titanate long fiber and method for producing titania fiber using the same
JP5311707B2 (en) Method for producing fine particle titanium dioxide
JP2018196843A (en) Manufacturing method of oxygen adsorbent molded body and oxygen adsorbent composition therefor
JPH08198601A (en) Decomposing method for water using titanium oxide or derivative thereof having laminar structure as photocatalyst
CN111847507A (en) Preparation process of nano titanium dioxide by gas phase method
JP5496252B2 (en) Fine particle titanium dioxide, its production method and its use

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term