JPS62102507A - Manufacture of non-oriented silicon steel plate - Google Patents

Manufacture of non-oriented silicon steel plate

Info

Publication number
JPS62102507A
JPS62102507A JP60240421A JP24042185A JPS62102507A JP S62102507 A JPS62102507 A JP S62102507A JP 60240421 A JP60240421 A JP 60240421A JP 24042185 A JP24042185 A JP 24042185A JP S62102507 A JPS62102507 A JP S62102507A
Authority
JP
Japan
Prior art keywords
less
temperature
annealing
silicon steel
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60240421A
Other languages
Japanese (ja)
Inventor
Yoshinori Kobayashi
小林 義紀
Hiroshi Shimizu
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60240421A priority Critical patent/JPS62102507A/en
Publication of JPS62102507A publication Critical patent/JPS62102507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a non-oriented silicon steel plate which has smaller magnetic orientation ratio in a roll direction and its perpendicular direction and has excellent magnetic characteristics by making a final finish annealing cycle suitable and by appropriately controlling final finish annealing tension. CONSTITUTION:A hot roll plate of non-oriented silicon steel which contains 4.0wt% or less Si and 20ppm or less S, 20ppm or less O and 30ppm or less N as an impurity is brought to a final thickness by one cold rolling and then, in the manufacture of the non-oriented silicon steel plate consisting of finish annealing process series, final finish annealing is carried out under the conditions that rapid heating by heating speed of 10 deg.C/sec to a temperature of 800-1,200 deg.C, maintaining at the temperature for the time of 60sec or less and the tension of the plate passing in a furnace at the time of annealing is made exp.{4.8+0.023.S-(6.7+0.038.S)X10<-3>K}<=T<=exp.{4.9+0.02.S-(5.2+0.03.S)X 10<-3>K (wherein, T is tension, S is a time and K is a temperature).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気特性に優れた無方向性けい素鋼板の製造方
法に関し、特に低鉄損、高磁束密度で磁性方向比の小さ
な電磁鋼板を製造する技術についての提案である。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing non-oriented silicon steel sheets with excellent magnetic properties, and in particular to manufacturing electrical steel sheets with low iron loss, high magnetic flux density, and a small magnetic direction ratio. This is a proposal regarding manufacturing technology.

無方向性けい素鋼板は、発電機、変圧器、電動機等の鉄
心材料として用いられ、その磁気特性である鉄損と磁束
密度が優れていることが重要である。ところが、近年の
省エネルギーと高効率化は、上記鉄損等の磁気特性への
要求はますます厳しいものとなっている。
Non-oriented silicon steel sheets are used as iron core materials for generators, transformers, electric motors, etc., and it is important that they have excellent magnetic properties such as iron loss and magnetic flux density. However, with the recent efforts to save energy and increase efficiency, requirements for magnetic properties such as the above-mentioned iron loss have become increasingly strict.

(従来の技術) 上述した斯界技術分野における要請に対し、従来、無方
向性けい素鋼板の最終冷延後の最終仕上げ連続焼鈍を適
切に行うことにより磁気特性の改善を図る幾つかの技術
が既に提案されている。例えば、低不純物量にして焼鈍
方法(昇温速度、雰囲気、時間)を工夫する方法、(特
開昭57−35626号、特開昭59−74223号、
特開昭59−100218号)あるいは焼鈍中の張力や
伸びを制御する方法(特公昭47−505号、特開昭5
5−85630号、特開昭58−126733号)等が
ある。
(Prior Art) In response to the above-mentioned demands in the technical field, several technologies have been developed to improve magnetic properties by appropriately performing final continuous annealing after final cold rolling of non-oriented silicon steel sheets. Already proposed. For example, a method of reducing the amount of impurities and devising the annealing method (heating rate, atmosphere, time),
JP-A No. 59-100218) or a method for controlling tension and elongation during annealing (JP-A No. 47-505, JP-A-Sho 5)
5-85630, JP-A-58-126733), etc.

(発明が解決しようとする問題点) 上述の従来技術について研究した結果、まず前者の部類
に属する特開昭59−74223号として提案のもので
は、S < 15ppm、 0 < 20ppm、 N
 < 25ppmの低S、O,N鋼に対して、5℃/s
ec以上の昇温速度で昇温することにより、3.15%
Si鋼の0.50mmの製品で、1./、。が2.36
w/kgの特性が得られているが、S、 0. Nを常
にこのレベルに維持するためには多大の製鋼コストがか
かり、またW+515゜において2.35〜2.401
4/kg程度の磁性しか得られておらず近年のMLいユ
ーザーの要求を満たすためには製品板厚0.50mmで
WI5150で2.鵠へg以下を得ることが必要である
。また、特開昭57−35626号、同59−1002
18号公報の開示にみられる2段焼鈍、ドライ雰囲気焼
鈍、短時間焼鈍の組合わせにより、表面近傍の内部酸化
層を滅じて表面付近の微細結晶粒で減少させる方法もあ
るが、2段焼鈍は焼鈍炉長が長くなり設備投資が高くな
る欠点を有し、またこれらを組合わせても前述の公知技
術同様得られる磁気特性は鉄損値WIS/S。で2.3
5〜2.40W/kg、磁束密度B、。で1.68Tと
まだ十分とは言えないのが実情であった。
(Problems to be Solved by the Invention) As a result of researching the above-mentioned prior art, firstly, in the former category proposed as Japanese Patent Application Laid-Open No. 59-74223, S < 15 ppm, 0 < 20 ppm, N
5℃/s for <25ppm low S, O, N steel
3.15% by increasing the temperature at a rate of ec or higher
A 0.50mm Si steel product with 1. /,. is 2.36
Although the characteristics of w/kg have been obtained, S, 0. It takes a lot of steel manufacturing cost to always maintain N at this level, and at W+515°, it is 2.35 to 2.401
In order to meet the demands of recent ML users, the magnetic properties of WI5150 with a product board thickness of 0.50 mm have been obtained. It is necessary to get less than g to the mouse. Also, JP-A-57-35626, JP-A No. 59-1002
There is also a method of destroying the internal oxidation layer near the surface and reducing it by fine crystal grains near the surface by a combination of two-stage annealing, dry atmosphere annealing, and short-time annealing as disclosed in Publication No. 18. Annealing has the disadvantage that the annealing furnace length is long and the equipment investment is high, and even if these are combined, the magnetic properties obtained as with the above-mentioned known technology are the same as the iron loss value WIS/S. So 2.3
5 to 2.40 W/kg, magnetic flux density B. The reality was that it was still 1.68T, which was still not enough.

一方、後者の特公昭47−505号、特開昭55−85
630号、特開昭58−120733号公報開示のよう
に焼鈍中の張力または伸びを制御する公知技術の場合で
も、0.5On+成品において1,7.。で2.30賀
/kg以下の鉄損値を得るこ、とはできていないのが実
情である。
On the other hand, the latter Japanese Patent Publication No. 47-505, Japanese Patent Publication No. 55-85
Even in the case of known techniques for controlling tension or elongation during annealing as disclosed in Japanese Patent Application Laid-open No. 630 and JP-A-58-120733, 1,7. . The reality is that it is not possible to obtain an iron loss value of 2.30 kg/kg or less.

(問題点を解決するための手段) 上述した従来技術が抱える問題点に対し、最終仕上げ焼
鈍の焼鈍サイクルを好適なものにしまた最終仕上げ焼鈍
の張力を適切に制御することによって、1,15゜が2
.30h/kg以下となり、またB、。が1.69Tを
超える磁気特性を有し、そして最近ユーザーで問題視さ
れ始めた圧延方向とそれに直角な方向での磁性方向比が
小さな磁気特性の優れた無方向性けい素鋼板を短時間焼
鈍によって得る方法を開発した。
(Means for Solving the Problems) In order to solve the problems of the above-mentioned conventional techniques, by optimizing the annealing cycle of the final finish annealing and appropriately controlling the tension of the final finish annealing, is 2
.. 30h/kg or less, and B. A non-oriented silicon steel sheet with magnetic properties exceeding 1.69T and a small magnetic direction ratio between the rolling direction and the direction perpendicular to it, which has recently begun to be viewed as a problem by users, is annealed for a short time. We have developed a method to obtain

すなわち、本発明はかかる問題点解決手段として、重量
%で、Si:4.0%以下含有し、不純物として含むS
が20ppm以下、Oが20ppm以下そしてNが30
pp111以下である無方向性けい素鋼の熱延板を、1
回冷間圧延で最終板厚にまで導き、しかるのちに仕上ひ
焼鈍を施す一連の工程からなる無方向性けい素鋼板の製
造にあたり、前記最終仕上げ焼鈍を10℃/sec以上
の加熱速度で800〜1200℃の温度域に急速加熱し
てからこの温度域に60秒以下の時間保持し、かつ該焼
鈍時の炉中通板張力を、exp.{4.8+0.023
S  (6,7+0.038S)XIO−’Kl≦T≦
exp、  (4,9+〇、02×S  −(5,2+
0.03・5)XIO−’K)ここで、T:張力(kg
/mm2)   S:時間(sec)K:温度(”C) にする条件下に行うことを特徴とする無方向性けい素鋼
板の製造方法を提案する。
That is, the present invention, as a means for solving such problems, contains Si in an amount of 4.0% or less by weight, and contains S as an impurity.
is less than 20 ppm, O is less than 20 ppm, and N is less than 30
A hot-rolled sheet of non-oriented silicon steel with a pp of 111 or less,
In manufacturing a non-oriented silicon steel sheet, which consists of a series of steps in which the sheet is rolled to its final thickness by re-cold rolling and then finish annealed, the final annealing is carried out at a heating rate of 10°C/sec or higher for 800°C. After rapidly heating to a temperature range of ~1200°C, the temperature range is maintained for 60 seconds or less, and the tension through the furnace during annealing is set to exp. {4.8+0.023
S (6,7+0.038S)XIO-'Kl≦T≦
exp, (4,9+〇,02×S −(5,2+
0.03・5)XIO-'K) Here, T: Tension (kg
/mm2) S: Time (sec) K: Temperature ("C) We propose a method for producing a non-oriented silicon steel sheet, which is characterized in that it is carried out under the following conditions.

なお、上記最終仕上げ焼鈍温度は、Si含有量が1.5
〜4.0wt%の鋼板では900〜1200℃で行い、
また、Siを1.5wt%未満含有する変態鋼の場合、
上記最終仕上げ焼鈍温度は、(変態温度−100℃)〜
変態温度で行うものとする。
In addition, the final annealing temperature mentioned above is such that the Si content is 1.5.
~4.0wt% steel plate is carried out at 900~1200℃,
In addition, in the case of transformed steel containing less than 1.5 wt% of Si,
The above final annealing temperature is (transformation temperature - 100°C) ~
It shall be carried out at the transformation temperature.

(作  用) まず、本発明で対象とする素材鋼の成分組成について説
明する。
(Function) First, the composition of the steel material targeted by the present invention will be explained.

Stは、比抵抗を上げ鉄損を下げるために添加するが、
4wt%(以下は単に「%」で表示する)を超えると冷
延性が著しく劣化するため4%以下に限定する。
St is added to increase specific resistance and reduce iron loss, but
If it exceeds 4 wt% (hereinafter simply expressed as "%"), the cold rollability will deteriorate significantly, so it is limited to 4% or less.

Cは、その量が0.010%を超えると時効劣化防止の
ための脱炭焼鈍時間が長くなり、板表面に酸化膜や内部
酸化層を生じ磁性劣化を招くため、0.010%が上限
となる。ただ、かかる焼鈍は非脱炭焼鈍雰囲気で行うの
が好ましく、その場合の上限含有量は0.005%以下
である。
If the amount of C exceeds 0.010%, the decarburization annealing time to prevent aging deterioration will become longer, and an oxide film or internal oxide layer will be formed on the plate surface, leading to magnetic deterioration, so the upper limit is 0.010%. becomes. However, such annealing is preferably performed in a non-decarburizing annealing atmosphere, and in that case, the upper limit content is 0.005% or less.

Alは、比抵抗を上げ集合組織を改善するため添加され
るが、1.0%を超えると冷延性を害するため、1.0
%以下に限定することが好ましい。
Al is added to increase the resistivity and improve the texture, but if it exceeds 1.0%, it impairs cold rollability.
It is preferable to limit it to % or less.

Mnは、熱延時にl’lnsの微細結晶粒の析出防止し
、熱間脆性割れを防止するため0.1%以上必要である
が、その量が1.0%を超えると磁性に有害であるため
、0.1〜1.0%に限定することが好ましい。
Mn is required in an amount of 0.1% or more to prevent precipitation of l'lns fine crystal grains during hot rolling and to prevent hot brittle cracking, but if the amount exceeds 1.0%, it is harmful to magnetism. Therefore, it is preferable to limit the content to 0.1 to 1.0%.

また、本発明において不純物として含むS、0.Nは、
いずれも微細な析出物、介在物を形成し、焼鈍時の結晶
成長を妨げるため、S、Oの場合は20ppm以下、N
の場合は30ppn+以下に限定する。
In addition, in the present invention, S, 0. N is
Both form fine precipitates and inclusions that impede crystal growth during annealing.
In this case, it is limited to 30ppn+ or less.

Pは1.0%を超えると硬度が高くなりすぎるため1.
0%以下に限定することが好ましい。なお、希土類元素
の1種以上を0.001〜0.92%、BをB /N比
で0.4〜2.0の範囲で含む場合もこの発明の効果を
損なうわけではない。希土類元素は、S系析出物を大型
化して微細に析出するのを防止するのに有効であり、0
.001%以上添加しても良いが、0.02%を超える
とかえって希土類元素の析出物が多くなりすぎ、磁性劣
化を生じるため、0.001〜0.02%が好適である
。Bは、Nを無害化するのに有効であり、添加する場合
はB/N比で0.4〜2.0の範囲で最も大きな効果を
示す。
If P exceeds 1.0%, the hardness will become too high, so 1.
It is preferable to limit it to 0% or less. Note that the effects of the present invention are not impaired even when one or more rare earth elements are contained in an amount of 0.001 to 0.92% and B is contained in a B/N ratio of 0.4 to 2.0. Rare earth elements are effective in enlarging S-based precipitates and preventing them from becoming finely precipitated.
.. Although it may be added in an amount of 0.001% or more, if it exceeds 0.02%, the amount of rare earth element precipitates becomes too large and magnetic deterioration occurs, so 0.001 to 0.02% is preferable. B is effective in making N harmless, and when added, exhibits the greatest effect when the B/N ratio is in the range of 0.4 to 2.0.

次に、本発明において採用する冷延後の最終仕上げ焼鈍
を上述の如く制御する理由について述べる。
Next, the reason for controlling the final finish annealing after cold rolling employed in the present invention as described above will be described.

第1図および第2図に、特定の張力の下での焼鈍温度と
鉄損値、磁束密度との関係を均熱時間毎に示す。すなわ
ち、3.2%Si鋼熱延板を焼鈍後0.50mmに冷間
圧延し、仕上げ焼鈍を施したときの焼鈍条件と電磁特性
との関係である。これらの図から判るように、加熱速度
10℃/sec以上、900℃〜1200℃で60秒以
下の均熱を施したものについてきわめて優れた磁性が得
られていることがわかる。
FIG. 1 and FIG. 2 show the relationship between annealing temperature, iron loss value, and magnetic flux density under a specific tension for each soaking time. That is, this is the relationship between the annealing conditions and the electromagnetic properties when a 3.2% Si hot rolled steel sheet is annealed, cold rolled to a thickness of 0.50 mm, and finished annealed. As can be seen from these figures, extremely excellent magnetism was obtained when soaking was performed at a heating rate of 10° C./sec or higher and soaking at 900° C. to 1200° C. for 60 seconds or less.

本発明法による磁性向上の理由は、本発明者らの推察で
は、上記急熱高温短時間仕上げ焼鈍により、製品の集合
組織が磁性に不利な(111)面か減少し磁性に有利な
(200)および(110)面が増加したものに変化し
たためと思われる。
The reason for the improvement in magnetism by the method of the present invention is that the rapid heating, high-temperature, and short-time finish annealing reduces the texture of the product from the (111) plane, which is disadvantageous to magnetism, and the (200) plane, which is advantageous to magnetism. ) and (110) planes increased.

Siが1.5%〈の変態鋼の場合、変態温度と変態温度
−100℃の範囲内で最高の磁性が得られるため、焼鈍
温度は(変態温度−100℃)〜変態温度に制限される
。なお、この変態温度はほぼ900〜1100℃に相当
する範囲である。なお、800℃未満では再結晶が不十
分となり磁気特性が不満足になるため、下限温度は80
0℃に限定される。
In the case of transformed steel with Si of 1.5%, the best magnetism is obtained within the range of transformation temperature and transformation temperature -100°C, so the annealing temperature is limited to (transformation temperature -100°C) to transformation temperature. . Note that this transformation temperature is in a range corresponding to approximately 900 to 1100°C. Note that below 800°C, recrystallization will be insufficient and the magnetic properties will be unsatisfactory, so the lower limit temperature is 80°C.
Limited to 0°C.

要するに、本発明にかかる最後仕上げ焼鈍処理の要点構
成は急速昇温短時間均熱を行うことにある。
In short, the main feature of the final annealing treatment according to the present invention is to perform rapid temperature rise and short-time soaking.

また、本発明においては、優れた磁気特性を維持するた
めに、焼鈍中の炉中通板張力を適切に選ぶことも重要で
あ。すなわち、本発明者らの知見によれば、焼鈍中の適
正張力は、上記従来技術のような張力なし又は温度のみ
による伸び率制御では不十分であり、焼鈍温度と均熱時
間に依存して変わるので、これらとの関係で明らかにし
なげればならないことが分かった。
Furthermore, in the present invention, it is important to appropriately select the tension through the furnace during annealing in order to maintain excellent magnetic properties. In other words, according to the findings of the present inventors, the appropriate tension during annealing is insufficient to control the elongation rate without tension or only by temperature as in the prior art described above, and it depends on the annealing temperature and soaking time. Since things change, I realized that I needed to clarify the relationship between them.

そこで、そうした要請に応えられる通板張力として次式
を提案する。
Therefore, we propose the following formula as the threading tension that can meet such requests.

exp、 (4,8+0.023 ・S −(6,7+
0.038 ・S) X 10づ3K}≦T≦exp、
 (4,9+0.02 ・S −(5,2+0.03 
・S) X 1O−3K}ここでT:適正通板張力(k
g/開2)K:均熱温度(1) S:均熱時間(sec) 第3図は、Si:3.2%鋼の場合の焼鈍温度、時間と
張力と磁性との関係を示した。本発明の範囲内できわめ
てすぐれた磁性が得られており、しがも磁性の方向比も
低いことが明らかである。
exp, (4,8+0.023 ・S −(6,7+
0.038 ・S) X 10zu3K}≦T≦exp,
(4,9+0.02 ・S -(5,2+0.03
・S)
g/open 2) K: Soaking temperature (1) S: Soaking time (sec) Figure 3 shows the relationship between annealing temperature, time, tension, and magnetism in the case of Si: 3.2% steel. . It is clear that within the scope of the present invention, extremely excellent magnetism is obtained, and the directional ratio of magnetism is also low.

第4図には、本発明張力範囲についての焼鈍時間による
変化を示した。
FIG. 4 shows changes in the tension range of the present invention depending on the annealing time.

(実施例) 次に本発明法による実施例を示す。(Example) Next, examples using the method of the present invention will be shown.

去施開土 Si:3.25 %、  C:0.002%、 A E
 :0.70 %、Mn:0.30%。
Open soil Si: 3.25%, C: 0.002%, A E
:0.70%, Mn:0.30%.

P :0.010%、 S:10ppm、 O:12p
pm、 N:15ppmを含む無方向性けい素鋼素材ス
ラブを2.3 mm厚の熱延板・とじ、該熱延板を焼鈍
後酸洗し、0.50mm厚まで冷延した。第1表中に示
す試料A、Bは、50℃/secの速度で加熱し、均熱
湯度1050℃に10秒保持し、C1Dは5℃/sec
で980″Cで120秒、雰囲気)1.ニア3%。
P: 0.010%, S: 10ppm, O: 12p
A non-oriented silicon steel material slab containing 15 ppm of pm and N was formed into a 2.3 mm thick hot-rolled plate, and the hot-rolled plate was annealed, pickled, and cold-rolled to a thickness of 0.50 mm. Samples A and B shown in Table 1 were heated at a rate of 50°C/sec, held at a soaking temperature of 1050°C for 10 seconds, and C1D was heated at a rate of 5°C/sec.
At 980″C for 120 seconds, atmosphere) 1. Near 3%.

N227%、露点−25℃で焼鈍したものである。また
焼鈍中の張力は、試料^、B、C,D各々0.1kg/
mm”。
It was annealed at 27% N2 and a dew point of -25°C. In addition, the tension during annealing was 0.1 kg/each for samples ^, B, C, and D.
mm”.

0.6kg/mm”、 0.2kg/a+m”、 0.
6kg/mm”で行った。
0.6kg/mm", 0.2kg/a+m", 0.
6 kg/mm".

このときの磁気特性を第1表に示す。The magnetic properties at this time are shown in Table 1.

第1表 実施例2 Si;1.3%、 C:0.003%、 Mn:0.2
2%、 P :O,0O15%。
Table 1 Example 2 Si: 1.3%, C: 0.003%, Mn: 0.2
2%, P:O,0O15%.

S :19ppm、 0 :15ppm、 N :21
ppm、 Ce:0.005%を含む変態温度が950
〜1000℃の無方向性けい素鋼索材スラブを2.25
mm厚の熱延板とし、該熱延板を0.50am厚まで冷
延した。第2表中に示す試料E、Fは、40℃/sec
の加熱速度で昇温し、950℃で10秒の均熱を上げ、
G、11は5℃/sec −850℃で120秒、雰囲
気Hz:65%、 +1.:35%、露点−30℃で焼
鈍を行った。この時の張力はE 、 F 、 G 、 
Hは各々0.2kg/mm”。
S: 19ppm, 0: 15ppm, N: 21
ppm, Ce: transformation temperature including 0.005% is 950
~1000℃ non-oriented silicon steel cable slab 2.25
A hot-rolled sheet with a thickness of 0.50 mm was prepared, and the hot-rolled sheet was cold-rolled to a thickness of 0.50 mm. Samples E and F shown in Table 2 were heated at 40°C/sec.
Raise the temperature at a heating rate of , soak for 10 seconds at 950℃,
G, 11: 5°C/sec -850°C for 120 seconds, atmosphere Hz: 65%, +1. :35%, and annealing was performed at a dew point of -30°C. The tension at this time is E, F, G,
Each H is 0.2 kg/mm".

0.9kg/mm” 、 0.3kg/mm” 、 0
.9kg/mm”であり、その結果は第2表に示すよう
な磁性が得られた。
0.9kg/mm", 0.3kg/mm", 0
.. 9 kg/mm'', and the magnetic properties shown in Table 2 were obtained.

第2表 (発明の効果) 以上説明したように本発明によれば、上記実施例1,2
の結果から分かるように、きわめてすぐれた磁気特性を
有する無方向性けい素鋼が得られる。
Table 2 (Effects of the Invention) As explained above, according to the present invention, the above embodiments 1 and 2
As can be seen from the results, a non-oriented silicon steel with extremely excellent magnetic properties can be obtained.

なお、本発明法は、特に無方向性けい素鋼の最高級グレ
ードの鉄損低下に有効であるが、SiO量の近いグレー
ドでも十分その効果を生じるものである。
The method of the present invention is particularly effective in reducing the iron loss of the highest grade of non-oriented silicon steel, but the effect can be sufficiently produced even in grades with similar amounts of SiO.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、最終仕上げ焼鈍時の焼鈍温度と加熱速度と磁
性との関係を表わすグラフ、 第2図は、最終仕上げ焼鈍の焼鈍温度と均熱時間と磁性
との関係を表わすグラフ、 第3図の(イ)、(ロ)は、最終仕上げ焼鈍中の焼鈍温
度、時間張力と磁性との関係を表わすグラフ、 第4図は、焼鈍温度、時間と本発明法の張力範囲を表わ
すグラフである。 フ 張力CT”J (kf/mm2)   −;     
ミ     6 −継
Figure 1 is a graph showing the relationship between annealing temperature, heating rate, and magnetism during final finish annealing. Figure 2 is a graph showing the relationship between annealing temperature, soaking time, and magnetism during final finish annealing. Figures (A) and (B) are graphs showing the relationship between annealing temperature, time and tension during final finish annealing and magnetism. Figure 4 is a graph showing the annealing temperature, time and tension range of the method of the present invention. be. F tension CT”J (kf/mm2) −;
Mi 6 - continuation

Claims (1)

【特許請求の範囲】 1、Si:4.0wt%以下含有し、不純物として含む
Sが20ppm以下、Oが20ppm以下そしてNが3
0ppm以下である無方向性けい素鋼の熱延板を、1回
の冷間圧延で最終板厚にまで導き、しかるのちに仕上げ
焼鈍を施す一連の工程からなる無方向性けい素鋼板の製
造にあたり、前記最終仕上げ焼鈍を、10℃/sec以
上の加熱速度で800〜1200℃の温度域に急速加熱
してからこの温度域に60秒以下の時間保持し、かつ該
焼鈍時の通板張力を、 exp.{4.8+0.023・S−(6.7+0.0
38・S)×10^−^3K}≦T≦exp.{4.9
+0.02×S−(5.2+0.03・S)×10^−
^3K}ここで、T:張力(kg/mm^2)S:時間
(sec)K:温度(℃) にする条件下に行うことを特徴とする無方向性けい素鋼
板の製造方法。 2、上記最終仕上げ焼鈍温度を、Si含有量が1.5〜
4.0wt%の鋼では900〜1200℃で行うことを
特徴とする特許請求の範囲1に記載の製造方法。 3、上記最終仕上げ焼鈍温度を、Si含有量が1.5w
t%未満の変態鋼では(変態温度−100℃)〜変態温
度とすることを特徴とする特許請求の範囲1に記載の製
造方法。
[Claims] 1. Si: Contains 4.0 wt% or less, S contained as impurities is 20 ppm or less, O is 20 ppm or less, and N is 3
Manufacture of non-oriented silicon steel sheet, which consists of a series of steps in which a hot-rolled non-oriented silicon steel sheet with a concentration of 0 ppm or less is cold-rolled to its final thickness, and then subjected to final annealing. For the final annealing, the final annealing is rapidly heated to a temperature range of 800 to 1200 °C at a heating rate of 10 °C / sec or more, and then held in this temperature range for 60 seconds or less, and the threading tension at the time of annealing is , exp. {4.8+0.023・S-(6.7+0.0
38・S)×10^−^3K}≦T≦exp. {4.9
+0.02×S-(5.2+0.03・S)×10^-
^3K} Here, T: tension (kg/mm^2) S: time (sec) K: temperature (°C) A method for producing a non-oriented silicon steel sheet. 2. Change the final annealing temperature above to a Si content of 1.5 to
The manufacturing method according to claim 1, wherein the manufacturing method is carried out at 900 to 1200°C for 4.0 wt% steel. 3. Change the final annealing temperature above to a Si content of 1.5w.
The manufacturing method according to claim 1, characterized in that in the case of steel with a transformation temperature of less than t%, the transformation temperature is set to (transformation temperature -100°C) to (transformation temperature -100°C).
JP60240421A 1985-10-29 1985-10-29 Manufacture of non-oriented silicon steel plate Pending JPS62102507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60240421A JPS62102507A (en) 1985-10-29 1985-10-29 Manufacture of non-oriented silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60240421A JPS62102507A (en) 1985-10-29 1985-10-29 Manufacture of non-oriented silicon steel plate

Publications (1)

Publication Number Publication Date
JPS62102507A true JPS62102507A (en) 1987-05-13

Family

ID=17059224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60240421A Pending JPS62102507A (en) 1985-10-29 1985-10-29 Manufacture of non-oriented silicon steel plate

Country Status (1)

Country Link
JP (1) JPS62102507A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898627A (en) * 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
KR100544531B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic flux density
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
CN107849632A (en) * 2015-08-04 2018-03-27 杰富意钢铁株式会社 The manufacture method of the non-oriented electromagnetic steel sheet of having excellent magnetic properties
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898627A (en) * 1988-03-25 1990-02-06 Armco Advanced Materials Corporation Ultra-rapid annealing of nonoriented electrical steel
KR100544531B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic flux density
JP2013513724A (en) * 2010-10-25 2013-04-22 宝山鋼鉄股▲分▼有限公司 Manufacturing process of high magnetic induction non-oriented silicon steel
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
CN107849632A (en) * 2015-08-04 2018-03-27 杰富意钢铁株式会社 The manufacture method of the non-oriented electromagnetic steel sheet of having excellent magnetic properties
EP3333271A4 (en) * 2015-08-04 2018-07-04 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties

Similar Documents

Publication Publication Date Title
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
JP2004353036A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JP4653266B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JPS62102507A (en) Manufacture of non-oriented silicon steel plate
JPH0121851B2 (en)
JP2014208895A (en) Method of producing grain oriented electrical steel
KR20000039855A (en) Method for producing non-oriented electric steel plate having excellent magnetism
JP5928362B2 (en) Method for producing grain-oriented electrical steel sheet and primary recrystallized steel sheet for producing grain-oriented electrical steel sheet
JP5939156B2 (en) Method for producing grain-oriented electrical steel sheet
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
JPS6253572B2 (en)
JP6011586B2 (en) Method for producing grain-oriented electrical steel sheet
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPH0266138A (en) Non-oriented silicon steel sheet excellent in magnetic property and its production
JP5999040B2 (en) Method for producing grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing