JPS62102504A - Manufacture of resin bond permanent magnet - Google Patents

Manufacture of resin bond permanent magnet

Info

Publication number
JPS62102504A
JPS62102504A JP60242327A JP24232785A JPS62102504A JP S62102504 A JPS62102504 A JP S62102504A JP 60242327 A JP60242327 A JP 60242327A JP 24232785 A JP24232785 A JP 24232785A JP S62102504 A JPS62102504 A JP S62102504A
Authority
JP
Japan
Prior art keywords
particles
alloy
rare earth
alloys
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60242327A
Other languages
Japanese (ja)
Other versions
JPH067525B2 (en
Inventor
Noriyuki Inoue
宣幸 井上
Nobuo Imaizumi
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP60242327A priority Critical patent/JPH067525B2/en
Publication of JPS62102504A publication Critical patent/JPS62102504A/en
Publication of JPH067525B2 publication Critical patent/JPH067525B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make control of particle size easy and to prevent the welding of powder after treatment by using main components of R(T, M) (wherein, R is a rare earth element, T is Fe or a transition metal element represented mainly by FeCo and M is a semimetal element represented mainly by B.) CONSTITUTION:Two alloys, A, B wherein the compositions are given with A; R(T1-xMx)y and B; R(T1-xMx)z and x, y, z is defined as 0.01<=x<=0.2, 4<=y<=9, 1<=z<=3 respectively are used as raw materials. These two alloys are formed into an ingot by vacuum induced dissolution or Ar arc dissolution, the alloys A, B are mixed at the ratio of A 90-99.5wt% and B 0.5-10wt% respectively and are ground to 2-200mum particles. Then, the fine mixed powder is stirred and heated at 600-1,000 deg.C, the particles of the component B are welded and diffused on the surfaces of the particles of the alloy A preventing the mutual sintering of the particles of the main component alloy A, a destructed alloy A phase is reproduced, a surface layer is given a texture which has higher concentration of rare earth elements than the alloy A phase, then mixed with a resin, etc. and a permanent magnet material is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はR(T、M)(ただしRは希土類元素;Tは「
ebしくはFc、 Coを中心とする遷移金属元素:M
μBを中心とする半金属元素)を主成分とする高性能樹
脂結合型永久磁石用涼別粉体の製造方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to R(T, M) (where R is a rare earth element; T is “
Specifically, transition metal elements mainly consisting of Fc and Co: M
The present invention relates to a method for producing a high-performance resin-bonded permanent magnet Ryobetsu powder whose main component is a metalloid element mainly composed of μB.

[従来の技術] 近年、Nd−Fe−3から構成される合金が、従来磁気
特性が最畠とされていた5in−Co系材料を越える高
性能な永久磁石材料となることが確認されて以来、同系
合金の工業化が期待されている。
[Prior Art] In recent years, it has been confirmed that an alloy composed of Nd-Fe-3 can be a high-performance permanent magnet material that exceeds that of the 5in-Co material, which was conventionally considered to have the best magnetic properties. , industrialization of similar alloys is expected.

現在では研究段階において508GOeに及ぶほどの高
エネルギー槓の達成が報告されるようになった。この高
性能永久磁石は従来のSm−Co系材料と同様な粉末焼
結技術を応用して高密度な焼結体を形成している。
At present, it has been reported that the achievement of high-energy rams as high as 508 GOe has been achieved at the research stage. This high-performance permanent magnet is formed into a high-density sintered body by applying the same powder sintering technology as used for conventional Sm--Co materials.

一方上記とは別の要求、すなわち高磁気特性はある程度
制限されても複雑な形状加工が可能でしかも量産性にす
ぐれた製造方法として、射出成形等による樹脂結合型永
久磁石の用途が5in−Co系磁石の普及に伴なって言
及されるようになってきた。しかしながら現状の5II
l−Co系(ト)出成形磁石は、樹脂と共に金型中へ封
入させる流動性を与えるために体積で40%の高分子樹
脂を混合するので、その磁気特性は飽和磁束密度が40
%減少し、最終的な磁気特性はBrが約6KG。
On the other hand, there is a demand other than the above, that is, a manufacturing method that allows complex shapes to be processed even if high magnetic properties are limited to a certain extent, and has excellent mass productivity. With the spread of magnets, it has come to be mentioned. However, the current 5II
L-Co type extruded molded magnets are mixed with 40% polymer resin by volume in order to provide fluidity for sealing them into the mold together with the resin, so their magnetic properties are such that the saturation magnetic flux density is 40%.
% decrease, and the final magnetic properties are approximately 6KG of Br.

最大エネルギー積で約118GOeが限界となり、磁気
特性的に実用面では焼結型の最大エネルギー槓20〜3
08GOeに対してその減少が大ぎく、しかも磁石構成
体中のSm−Co系材料のml比は約93%で焼結型に
比較して大差ないため、形状の自由度、量産性の利点が
充分に活用されなかった。
The maximum energy product is approximately 118 GOe, and in terms of magnetic properties, the maximum energy product of the sintered type is 20 to 3 GOe in practical terms.
The decrease is large compared to 08GOe, and the ml ratio of Sm-Co material in the magnet structure is about 93%, which is not much different than the sintered type, so it has the advantages of freedom of shape and mass production. It was not fully utilized.

一方Nd−Fe−3系材料で同様な射出成形磁石を得る
場合、理論的に40%の磁気特性の減少が生ずるにもか
かわらず、Brが約8KG、最大エネルギー積が約16
8GOeまでは容易に実現でさると考えられており、原
料合金の安価性、形状の自由度、量産性をそのまま実現
できると乙えられる。
On the other hand, when obtaining a similar injection molded magnet using Nd-Fe-3 material, the Br is about 8 KG and the maximum energy product is about 16, although the magnetic properties are theoretically reduced by 40%.
It is believed that up to 8GOe can be easily realized, and it is possible to realize the low cost of the raw material alloy, the degree of freedom in shape, and the ease of mass production.

[発明が解決しようとする問題点] しかし、Nd−Fe−3系材料は機械的な歪みに極端に
敏感であり粉砕、加工等で応力が作用すると保磁性が低
下する現象が存在するため、射出成形用原料粉を製造す
ることが困難であった。
[Problems to be Solved by the Invention] However, Nd-Fe-3 materials are extremely sensitive to mechanical distortion, and there is a phenomenon in which coercivity decreases when stress is applied during crushing, processing, etc. It was difficult to produce raw material powder for injection molding.

この欠点を改善する方法として遠心噴霧法による溶融状
態から微小片を得る方法、あるいは直接還元法による目
的合金組成からなる還元粉末の直接製造方法等が考えら
れる。ただし曲名では粒径の制御が容易でなく、しかも
約数10011IRが限度とされ5〜100μsの微小
粉は製造困難であり、後者の方法では粒径は制御できる
が、還元後の洗浄が酸化しやすい活性粉のため、煩雑な
工程となり目的の磁気特性も劣化しやすいため達成困難
である。
Possible methods for improving this drawback include a method of obtaining fine particles from a molten state using a centrifugal spray method, or a method of directly producing a reduced powder having the desired alloy composition using a direct reduction method. However, according to the song title, it is not easy to control the particle size, and the limit is about several 10011 IR, and it is difficult to produce fine powder of 5 to 100 μs.The latter method allows the particle size to be controlled, but the washing after reduction causes oxidation. It is difficult to achieve this because it is a readily activated powder, which requires a complicated process, and the desired magnetic properties are also likely to deteriorate.

本発明はこの点を考慮して、粒径の制御が容易で処理後
の粉体の溶者が防止できる、Nd−Fe−B系樹脂結合
型永久磁石用原料粉体の製造方法を提供することを目的
とする。
In consideration of this point, the present invention provides a method for producing raw material powder for Nd-Fe-B resin-bonded permanent magnets, which allows easy control of particle size and prevents melting of the powder after treatment. The purpose is to

[問題点を解決するための手段] 本発明は原素材として組成範囲がA:R(T1−xMx
)yおよびB:R(T1−xMx)2(ただしRは希土
類元素;°丁はFeもしくはFe。
[Means for solving the problems] The present invention has a composition range of A:R (T1-xMx) as a raw material.
) y and B: R(T1-xMx)2 (where R is a rare earth element; ° is Fe or Fe.

Coを中心とする遷移金属元素;MはBを中心とする半
金属元素)で与えられx、y、zの範囲がそれぞれ、 0.01≦x≦0.2 4≦y≦9 1≦z≦3 で規定されるA、B二種類の組成合金を使用する。これ
ら二種類の合金は真空中誘導溶解、 Ar中アーク溶解
などによってインゴットにし、次にA、B合金をそれぞ
れ所望の割合で混合し粉砕工程を施こすことにより混合
、微粉化さぼる。
A transition metal element centered on Co; M is a metalloid element centered on B), and the ranges of x, y, and z are respectively 0.01≦x≦0.2 4≦y≦9 1≦z Two composition alloys, A and B, defined by ≦3 are used. These two types of alloys are made into an ingot by induction melting in vacuum, arc melting in Ar, etc., and then alloys A and B are mixed in desired proportions and subjected to a pulverization process to be mixed and pulverized.

次工程として本発明の特徴であるlj!拌加熱加熱処理
粉化された混合粉に施こし、主成分A合金粒子相互の焼
結を防止しながら日成分粒子をへ合金粒子表面に融着、
拡散させ粉砕工程によって破壊されたへ合金相を再現さ
せると共に、表面層をへ合金相よりも希土類濃度の高い
組織を形成させることにより、粒子内部がへ合金相。
The next step is lj!, which is a feature of the present invention! Stirring and heat treatment is applied to the powdered mixed powder, and the main component A particles are fused to the surface of the alloy particles while preventing sintering between the main component A alloy particles.
By diffusing and reproducing the he-alloy phase destroyed by the crushing process, and by forming a structure with a higher rare earth concentration than the he-alloy phase in the surface layer, the inside of the particle becomes the he-alloy phase.

表面がへ合金相より希土類成分の高い合金相を示す複合
粒子を製造し、樹脂等と混合し永久磁石材料を製造する
ことからなる。
The process involves producing composite particles whose surfaces exhibit an alloy phase with a higher rare earth content than the helium alloy phase, and mixing them with a resin or the like to produce a permanent magnet material.

本発明の最も効果的な構成要点はA、8合金の組成、そ
の混合比9粒径、攪拌方法、攪拌処理温度等を規定する
ことから成る。
The most effective constituent points of the present invention consist of defining the composition of alloy A, 8, its mixing ratio, 9 particle size, stirring method, stirring treatment temperature, etc.

へ合金は磁気性能を誘起する主たる成分であり、この種
の合金の場合R(T1−xMx)yの−船形でR/ (
T、M)比が1:5〜2;17の範囲で磁性が観察され
るが、y<4では磁性の構成因子中飽和磁化BSの低下
を示しy>9では遷移金属が中独で析出し保磁性の低下
を与える。またB合金は基本的にへ合金が固相である状
態で液相となりへ合金粒子表面を包囲しなければならな
いので希土類成分が多く、かつ粒子状態で扱うため酸化
性も考慮しなければならない。一般に希土類成分が多い
と活性度が高いので結果としてR(T1−xMx)zの
一般式においてR/ (T、M)比は1≦z≦3の範囲
が好ましい。
The alloy is the main component that induces magnetic performance, and in the case of this type of alloy, R/ (
Magnetism is observed when the T, M) ratio is in the range of 1:5 to 2:17, but when y<4, the saturation magnetization BS among the constituent factors of magnetism decreases, and when y>9, transition metals precipitate in China and Germany. This causes a decrease in coercivity. In addition, alloy B basically has a large amount of rare earth components since the helium alloy is in a solid phase and has to become a liquid phase to surround the surface of the helium alloy particles, and since it is handled in a particulate state, oxidation properties must also be taken into consideration. In general, the higher the rare earth component, the higher the activity, and as a result, in the general formula R(T1-xMx)z, the R/(T,M) ratio is preferably in the range of 1≦z≦3.

Xの限定理由は同様に保磁力と飽和磁化の相関から決定
されx>0.2ではBsは低下、x<0.01では保磁
力が得られないため0.01≦x≦0.2に6いて効果
がある。
The reason for limiting the value of 6 is effective.

△、Bの混合比は、Δ、Bの組成によって大幅に変化す
るが基本的には最終希土類、遷移金属比R/ (T、M
)比が1:5〜2:17の笥囲内であるとき磁気的に最
大効果が得られるため本発明においてはへ合金を90〜
99.5wt%、Bを0.5〜10wt%に規定したと
き所望の磁気特性が達成できる。粒径はAは大きく、B
は小さくする必要から△は10〜200gに粉砕しBは
2〜10−に粉砕した後に混合することが好ましいが、
A、B共2〜200.に含有されていれば本発明の目的
は達成できる。攪拌方法は各極内えられるが、基本的に
は同じへ合金粒子が相互に固着しなければ問題ない。攪
拌処理温度は8合金粒子がへ合金粒子に融着しかつ拡散
して内部へ合金相を再生しなければならないため600
〜1000℃の範囲で規定される。600℃未満では充
分な拡散が得られないため所望の保磁性が達成できない
し、1000℃を越えるとへ合金の相互固着が生じ粒状
の複合体が製造できない。
The mixing ratio of △ and B varies greatly depending on the composition of Δ and B, but basically the final rare earth and transition metal ratio R/(T, M
) Since the maximum magnetic effect can be obtained when the ratio is within the range of 1:5 to 2:17, in the present invention, the alloy is 90 to 2:17.
Desired magnetic properties can be achieved when B is defined as 99.5 wt% and B as 0.5 to 10 wt%. The particle size is large for A and B
Because it is necessary to reduce the size, it is preferable to grind △ to 10 to 200 g and grind B to 2 to 10 g before mixing.
Both A and B are 2-200. The object of the present invention can be achieved if it is contained in The stirring method can be determined within each pole, but basically there is no problem as long as the alloy particles in the same pole do not stick to each other. The stirring treatment temperature was 600°C because the 8 alloy particles had to be fused to the alloy particles and diffused to regenerate the alloy phase inside.
It is defined in the range of ~1000°C. If it is less than 600°C, sufficient diffusion cannot be obtained and the desired coercivity cannot be achieved, and if it exceeds 1000°C, the alloys will stick to each other, making it impossible to produce a granular composite.

[実膿例] Ndo、a Pr□、I Dy0.1 [(Fc0,3
600.2  ’0.9 Bo、1’ 6.5の組成合
金(A)およびNdo、s Pro、1DV   [(
Fe   Co   )   B   ]   の組0
.1  0.8 0.2  0.9 0.1 1.5成
合金(B)をそれぞれアーク溶解して得た。次に(^)
を98Q、(81を8g秤量し、混合した後ステンレス
乳鉢により1m+以下の粗粉としその粗粉をトルエンで
充満されたポット内に封入し振動ミルにより平均粒径で
〜15−まで粉砕した。。
[Actual pus case] Ndo, a Pr□, I Dy0.1 [(Fc0,3
600.2 '0.9 Bo, 1' 6.5 composition alloy (A) and Ndo, s Pro, 1DV [(
Fe Co ) B ] set 0
.. 1, 0.8, 0.2, 0.9, 0.1, and 1.5 alloys (B) were obtained by arc melting. Next (^)
We weighed 8 g of 98Q and (81), mixed them, made a coarse powder of 1 m+ or less in a stainless steel mortar, sealed the coarse powder in a pot filled with toluene, and pulverized it with a vibrating mill to an average particle size of ~15-. .

次に第1図の構成からなる真空管状炉に封入し、10r
pmの速度で管を回転させ900℃、 30m1nの加
熱処理を施しそのまま回転させ炉冷した。得られた粒子
は〜20Mの平均粒径であった。
Next, it was sealed in a vacuum tube furnace having the configuration shown in Figure 1, and
The tube was heated at 900° C. for 30 ml by rotating at a speed of 100 pm, and then cooled in a furnace by continuing to rotate. The resulting particles had an average particle size of ~20M.

振動磁力計により処理後の粒子の磁気特性を計測し第2
図の磁化曲線を得た。
The magnetic properties of the treated particles are measured using a vibrating magnetometer.
The magnetization curve shown in the figure was obtained.

[発明の効果] 本発明により、Nd−Fe−B系樹脂結合型永久磁石用
原料粉体の粉砕によって誘起された機械的歪が除去され
るだけでなく、複合化されることから高い保磁性が達成
され、本来の磁気特性が容易に得られるようになった。
[Effects of the Invention] According to the present invention, mechanical strain induced by pulverization of raw material powder for Nd-Fe-B resin-bonded permanent magnets is not only removed, but also composited, resulting in high coercivity. has been achieved, and the original magnetic properties can now be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施ザるための装置の一実施例の部分
的断面図である。 第2図は本発明の磁気特性を承り減磁曲線である。 1:真空系       2;モータ 3:ヒータ       4:カプセル5、粉体   
     6:炉芯管 特許出願人 並木幇密宝石株式会社 第  1  図
FIG. 1 is a partial cross-sectional view of one embodiment of an apparatus for practicing the invention. FIG. 2 shows a demagnetization curve based on the magnetic characteristics of the present invention. 1: Vacuum system 2; Motor 3: Heater 4: Capsule 5, powder
6: Furnace tube patent applicant Namiki Kanmitsu Jewelry Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】  希土類−鉄系粉体を主成分とした樹脂結合型永久磁石
であつて、一般式でA:R(T_1_−_xM_x)_
yおよびB:R(T_1_−_xM_x)_z(ただし
Rは希土類元素;TはFeもしくはFc、Coを中心と
する遷移金属元素:MはBを中心とする半金属元素)で
与えられx、y、zの範囲がそれぞれ、 0.01≦x≦0.2 4≦y≦9 1≦z≦3 で規定されるA、B二種類の組成合金において、Aを9
0〜99.5wt%、Bを0.5〜10wt%の割合で
混合し、2〜200μmの粒子まで粉砕し、600〜1
000℃の温度で主成分A粒子が互いに固着しないよう
該混合粉を攪拌させながら熱処理し、個々の主成分A粒
子表面にB粒子を融着、拡散させることから粒子内部が
A合金相、表皮部分はA合金相より希土類濃度が高い組
織から構成した複合粒子を形成させた後にn分子結合材
と混合し、硬化させることを特徴とした樹脂結合永久磁
石の製造方法。
[Claims] A resin-bonded permanent magnet mainly composed of rare earth-iron powder, which has the general formula A:R(T_1_-_xM_x)_
y and B: R(T_1_-_xM_x)_z (where R is a rare earth element; T is a transition metal element mainly composed of Fe or Fc, Co; M is a metalloid element mainly composed of B) x, y , z range is respectively defined as 0.01≦x≦0.2 4≦y≦9 1≦z≦3 In two composition alloys A and B, A is set to 9
B is mixed at a ratio of 0 to 99.5 wt% and B at a ratio of 0.5 to 10 wt%, and ground to particles of 2 to 200 μm.
The mixed powder is heat-treated while stirring at a temperature of 1,000°C to prevent the main component A particles from sticking to each other, and the B particles are fused and diffused on the surface of each main component A particle, so that the inside of the particle is formed into an A alloy phase and a skin layer. A method for producing a resin-bonded permanent magnet, comprising forming composite particles having a structure having a higher rare earth concentration than the A alloy phase, and then mixing with an n-molecule binder and curing the composite particles.
JP60242327A 1985-10-29 1985-10-29 Method for manufacturing resin-bonded permanent magnet Expired - Lifetime JPH067525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242327A JPH067525B2 (en) 1985-10-29 1985-10-29 Method for manufacturing resin-bonded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242327A JPH067525B2 (en) 1985-10-29 1985-10-29 Method for manufacturing resin-bonded permanent magnet

Publications (2)

Publication Number Publication Date
JPS62102504A true JPS62102504A (en) 1987-05-13
JPH067525B2 JPH067525B2 (en) 1994-01-26

Family

ID=17087550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242327A Expired - Lifetime JPH067525B2 (en) 1985-10-29 1985-10-29 Method for manufacturing resin-bonded permanent magnet

Country Status (1)

Country Link
JP (1) JPH067525B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325403A2 (en) * 1988-01-19 1989-07-26 Kabushiki Kaisha Toshiba Resin bonded magnets
US5049203A (en) * 1989-04-28 1991-09-17 Nippon Steel Corporation Method of making rare earth magnets
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN113571281A (en) * 2021-07-26 2021-10-29 包头天石稀土新材料有限责任公司 Preparation method of neodymium iron boron magnet and method for improving grain boundary diffusion effect

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325403A2 (en) * 1988-01-19 1989-07-26 Kabushiki Kaisha Toshiba Resin bonded magnets
US4975213A (en) * 1988-01-19 1990-12-04 Kabushiki Kaisha Toshiba Resin-bonded rare earth-iron-boron magnet
US5049203A (en) * 1989-04-28 1991-09-17 Nippon Steel Corporation Method of making rare earth magnets
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN113571281A (en) * 2021-07-26 2021-10-29 包头天石稀土新材料有限责任公司 Preparation method of neodymium iron boron magnet and method for improving grain boundary diffusion effect
CN113571281B (en) * 2021-07-26 2023-03-10 包头天石稀土新材料有限责任公司 Preparation method of neodymium iron boron magnet and method for improving grain boundary diffusion effect

Also Published As

Publication number Publication date
JPH067525B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JPS6015689B2 (en) permanent magnet alloy
JPS6181606A (en) Preparation of rare earth magnet
JPS62102504A (en) Manufacture of resin bond permanent magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS63238215A (en) Production of anisotropic magnetic material
JPH06338407A (en) Raw material of rare-earth permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS62229803A (en) Nd-fe-b alloy powder for plastic magnet
JPS61266502A (en) Production of raw material powder for permanent magnet
JPH07122414A (en) Rare earth permanent magnet and manufacture thereof
JPS6181604A (en) Preparation of rare earth magnet
JPS62169403A (en) Manufacture of polymer composite type rare earth magnet
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPS6223903A (en) Production of resin bound permanent magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH02297910A (en) Manufacture of radially oriented magnet
JPS61290701A (en) R-fe-b permanent magnet and manufacture thereof
JPS61245505A (en) Manufacture of rare-earth iron magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS62229804A (en) Manufacture of nd-fe-b alloy power for plastic magnet
JPS62131503A (en) Manufacture of rare earth-iron-boron alloy powder for resin magnet
JPS6318604A (en) Resin-bonded permanent magnet and manufacture thereof
JPS63213322A (en) Rare earth iron permanent magnet