JPS6181603A - Preparation of rare earth magnet - Google Patents

Preparation of rare earth magnet

Info

Publication number
JPS6181603A
JPS6181603A JP59183756A JP18375684A JPS6181603A JP S6181603 A JPS6181603 A JP S6181603A JP 59183756 A JP59183756 A JP 59183756A JP 18375684 A JP18375684 A JP 18375684A JP S6181603 A JPS6181603 A JP S6181603A
Authority
JP
Japan
Prior art keywords
powder
alloy
rare earth
alloy powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59183756A
Other languages
Japanese (ja)
Other versions
JPH0345883B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP59183756A priority Critical patent/JPS6181603A/en
Publication of JPS6181603A publication Critical patent/JPS6181603A/en
Publication of JPH0345883B2 publication Critical patent/JPH0345883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To improve magnetic characteristics by sintering after the powder of Nd, Fe, B system alloy whose main formation phase is Nd2Fe14B is mixed with the fine powder of Pr, Fe, B system alloy and is molded. CONSTITUTION:Nd2Fe14B system magnetic alloy containing Nd, Fe and B as the main components is manufactured by powder metallurgy. In this process, the powder of Nd, Fe, B system magnetic alloy is mixed with 0-23wt% (0 is not included) of the powder of Pr, Fe, B system magnetic alloy whose main formation phase is Pr2Fe14B and then is molded. This molded substance is sintered and represents improved magnetic characteristics as a product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNd2Fe、B系合金磁石で代表される希土類
金属(R)と遷移金属(T)とからなるR2T14B系
金属間化合物磁石の製造方法、特にNd r Fe r
 Bを主成分とする永久磁石の粉末冶金法による製造方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing an R2T14B intermetallic compound magnet consisting of a rare earth metal (R) represented by a Nd2Fe, B alloy magnet and a transition metal (T). , especially Nd r Fe r
The present invention relates to a method for producing a permanent magnet containing B as a main component using a powder metallurgy method.

〔従来技術〕[Prior art]

一般にR−Fe i系磁石の製造方法についてu2つの
方法に大別される。ひとつは溶解しているR−Fe−B
系合金を急冷した後9時効して粉砕した磁石粉末を磁場
中で配向して製造する方法であり。
Generally, methods for manufacturing R-Fe i magnets are roughly divided into two methods. One is dissolved R-Fe-B
This is a method of manufacturing by quenching a system alloy, aging it for 9 hours, and pulverizing it, then orienting the magnetic powder in a magnetic field.

これによって所謂高分子複合型磁石が得られる。In this way, a so-called polymer composite magnet is obtained.

一方はR−Fe−B系磁石合金を溶解してインゴットを
作り、このインゴットを微粉砕した後、磁場中で成形し
、焼結して製造する方法であり、これによって焼結型磁
石が得られる。なお9分末冶金法によって製造されるR
−Fe・B系の焼結型磁石に関しては特開昭59−46
008に記載されている。
One method involves melting an R-Fe-B magnet alloy to make an ingot, pulverizing this ingot, shaping it in a magnetic field, and sintering it. Through this method, a sintered magnet can be obtained. It will be done. In addition, R manufactured by a 9-minute metallurgical method
- Regarding Fe/B based sintered magnets, JP-A-59-46
008.

R−Fe−B系磁石の粉末冶金法による製造工程は溶解
、粉砕、磁場中配向、圧縮成形、焼結9時効の順に進め
られる。R−Fe−B系磁石合金の溶解は真空あるいは
不活性雰囲気中で、アーク又は高周波加熱によって行わ
れる。粉砕は粗粉砕と微粉砕に分けられ、粗粉砕はノヨ
ークラ、ンヤー、鉄乳鉢やロールミル等で行われる。微
粉砕はボールミル。
The manufacturing process of R-Fe-B magnets by powder metallurgy is carried out in the following order: melting, pulverization, orientation in a magnetic field, compression molding, sintering, and aging. The R-Fe-B magnetic alloy is melted in vacuum or in an inert atmosphere by arc or high-frequency heating. Grinding is divided into coarse grinding and fine grinding, and coarse grinding is carried out in Noyokra, Nya, iron mortar, roll mill, etc. Fine grinding is done using a ball mill.

振動ミル、ノエットミル等で行われる。磁場中配向及び
圧縮成形は金型を用いて磁場中で同時に行われる。焼結
は不活性雰囲気中で、温度1000〜1150℃の範囲
で行われる。また時効は必要に応じて温度300〜90
0℃程度の温度で行われる。
This is done using a vibrating mill, Noet mill, etc. Orientation in a magnetic field and compression molding are performed simultaneously in a magnetic field using a mold. Sintering is carried out in an inert atmosphere at a temperature in the range of 1000-1150°C. In addition, aging is performed at a temperature of 300 to 90°C as necessary.
It is carried out at a temperature of about 0°C.

一般に焼結型磁石では焼結温度を低下させる方向にもっ
ていくことにより減磁特性の角形性及び保磁力(He)
が向上する。またR−Fe−B系合金は非常に反応性に
富んでおり、微粉末状態での取シ扱い及び成形体の焼結
過程での酸化などによって。
In general, in sintered magnets, by lowering the sintering temperature, the squareness of the demagnetizing characteristics and the coercive force (He) can be improved.
will improve. In addition, R-Fe-B alloys are highly reactive, and can be damaged by handling in a fine powder state and oxidation during the sintering process of compacts.

焼結性の低下、磁気特性の低下及びバラツキを生ずる原
因となる。従来、焼結型磁石の特性向上のため、前述の
ように、焼結はヘリウム、アルゴンなどの不活性雰囲気
中で行われ、さらに不純ガスの影響を軽減するために、
粉末成形体の外部にゲッターを設置して焼結する場合も
あるが、R−Fe−B系合金においては磁石特性上の顕
著な効果をもたらすに至っていない。
This causes deterioration in sinterability, deterioration and variation in magnetic properties. Conventionally, in order to improve the characteristics of sintered magnets, sintering was performed in an inert atmosphere such as helium or argon, as described above, and in order to further reduce the effects of impurity gases,
In some cases, a getter is installed outside the powder compact and sintered, but this has not produced a significant effect on magnetic properties in R-Fe-B alloys.

以下余日 〔発明の目的〕 本発明の目的はR−Fe−B系磁石合金を用いて、磁石
特性上の顕著な効果をもたらす希土類磁石を製造するこ
とのできる希土類磁石の製造方法を提供することである
OBJECTS OF THE INVENTION The purpose of the present invention is to provide a method for producing rare earth magnets that can produce rare earth magnets that have remarkable effects on magnetic properties using an R-Fe-B magnet alloy. That's true.

〔発明の構成〕[Structure of the invention]

本発明ではNd2Fe14Bを主生成相とするNd−F
e−B系合金粉末にこの合金よりも融点が低くかつ酸化
作用の大きいPr−Fe−B系合金の微粉末を混合して
成形した後この成形体を焼結する。
In the present invention, Nd-F with Nd2Fe14B as the main phase
Fine powder of a Pr-Fe-B alloy having a lower melting point and greater oxidation action than that of the e-B alloy powder is mixed with the e-B alloy powder, and after the mixture is molded, the molded body is sintered.

化学的に活性で低融点なpr−Fef系合金微粉末がN
d”Fe’B系合金微粉末中に分散された成形体中では
、焼結過程で磁気特性の高いNd合金よシもPr合金の
酸化が還択的に行われ、結晶粒界の整った磁石特性の高
い焼結体となる。
Chemically active and low melting point pr-Fef alloy fine powder is N
In the compact dispersed in the Fe'B alloy fine powder, during the sintering process, the oxidation of the Pr alloy as well as the Nd alloy, which has high magnetic properties, takes place reductively, resulting in well-organized grain boundaries. The result is a sintered body with high magnetic properties.

〔発明の実施例〕[Embodiments of the invention]

(1)実施例1 高純度のNd + Pr r Fe + Bを使用して
、アルコゝン雰囲気中において高周波加熱によって。
(1) Example 1 High-purity Nd + Pr r Fe + B was used by high-frequency heating in an alcone atmosphere.

Nd15,5Fe78B6.5及びPrj5.5Fe7
8B6.5の組成比を有するR、Fe 、 4Bを宇土
iするインゴットをそれぞれ得た。これらNd合金及び
Pr合金をそれぞれ粗粉砕して+Pr合金粉末をNd合
金粉末に対して10重量・り−セント混合した後、ボー
ルミルを用いテ平均粒径3μmに湿式粉砕した。次にこ
の微粉末を10 koeの磁界中において1 ton/
(zの圧力で成形した。さらにこの圧粉体を温度107
0℃で1時間真空中で加熱し9次に同じ温度で1時間ア
ルゴンガス雰囲気中に保持した。その後100℃/時間
以下の冷却速度で除冷した。
Nd15,5Fe78B6.5 and Prj5.5Fe7
Ingots containing R, Fe, and 4B having a composition ratio of 8B6.5 were obtained. These Nd alloys and Pr alloys were coarsely ground, and +Pr alloy powder was mixed with 10 weight percent of the Nd alloy powder, followed by wet grinding using a ball mill to an average particle size of 3 μm. Next, this fine powder was placed in a magnetic field of 10 koe at a rate of 1 ton/
(Molded at a pressure of z. Furthermore, this green compact was heated to a temperature of 107
It was heated in vacuum at 0° C. for 1 hour, and then kept in an argon gas atmosphere at the same temperature for 1 hour. Thereafter, it was gradually cooled at a cooling rate of 100° C./hour or less.

上述のようにして製造されたPr合金粉末を10重−パ
ーセントを含む希土類磁石と従来の希土類磁石の特性を
表に示す。
Table 1 shows the characteristics of the rare earth magnet containing 10% by weight of the Pr alloy powder produced as described above and the conventional rare earth magnet.

表 以下余日 上記の表から明らかな通9.Pr合金粉末f:10重量
・ぐ−セント混合することによって焼結温度が低下し、
さらに上述のようにして製造された希土類磁石は高い磁
石特性を示している。
From the table below, it is clear that 9. By mixing Pr alloy powder f: 10% by weight, the sintering temperature is lowered,
Furthermore, the rare earth magnet produced as described above exhibits high magnetic properties.

(11)実施例2 実施例1において製造したNd15.5Fe78B6.
5及びPr15.5Fe78B6.5の組成比を有する
R2Fe14Bを主生成相とするインゴットをそれぞれ
粗粉砕して、 Nd合金粉末及びPr合金粉末を得た。
(11) Example 2 Nd15.5Fe78B6. produced in Example 1.
5 and Pr15.5Fe78B6.5 ingots containing R2Fe14B as the main phase were respectively coarsely ground to obtain Nd alloy powder and Pr alloy powder.

Nd合金粉末に対してPr合金粉末を0〜25重量・ぐ
−セントまで混合して、ゾールミルを用いて平均粒径約
3μ7nK粉砕した。これら混合粉末を10 koeの
磁界中において1 ton/mの圧力で成形し、これら
圧粉体を温度1080℃で1時間真空中で加熱し、さら
に同じ温度で3時間アルゴンがス雰囲気中に保持した。
Pr alloy powder was mixed with Nd alloy powder to a concentration of 0 to 25 weight cents, and the mixture was ground to an average particle size of about 3 μ7 nK using a sol mill. These mixed powders were compacted at a pressure of 1 ton/m in a magnetic field of 10 koe, and the green compacts were heated in vacuum at a temperature of 1080°C for 1 hour, and then kept in an argon gas atmosphere at the same temperature for 3 hours. did.

その後100℃/時間以下の冷却速度で除冷した。Thereafter, it was gradually cooled at a cooling rate of 100° C./hour or less.

このようにして得られた試料を温度550℃に1時間保
持した後、急冷した。上述のようにして得られたPr合
金粉末をO〜25重量パーセント含む希土類磁石の特性
を調べたところ第1図(、)〜(c)に示す結果が得ら
れた。第1図(a)〜(c)に示すように”+s、s”
’ysB6.sの混合毒O〜23重量%(Oを含まず)
の間で希土類磁石の特性の向上が認められる。
The sample thus obtained was held at a temperature of 550° C. for 1 hour and then rapidly cooled. When the characteristics of the rare earth magnet containing 0 to 25 weight percent of the Pr alloy powder obtained as described above were investigated, the results shown in FIGS. 1(a) to (c) were obtained. “+s, s” as shown in Figure 1 (a) to (c)
'ysB6. Mixed poison of s O ~ 23% by weight (not including O)
Improvements in the characteristics of rare earth magnets are observed between

このように、 Nd2Fe14B系磁石の粉末冶金法に
よる製造において、 Nd−Fef系合金粉末にPr−
Fe−B系合金粉末を混合分散させた成形体を焼結する
ことは著しい磁石特性の増加を実現させることができる
In this way, in the production of Nd2Fe14B magnets by powder metallurgy, Pr-
By sintering a molded body in which Fe-B alloy powder is mixed and dispersed, it is possible to realize a remarkable increase in magnetic properties.

〔発明の効果〕〔Effect of the invention〕

本発明を以上詳しく説明したが、 Nd、 Fe v 
Bを主成分とするNd2Fe14B系磁石合金を粉末冶
金法によって製造する方法において、 Nd・Fe−B
系磁石−合金粉末に対し、 Pr2Fe、4Bを主生成
相とするPr−Fe−B系磁石合金粉末を0〜23重量
%(0を含まず)混合した成形体を焼結する方法によシ
著しく優れた永久磁石材料が得られる。
Although the present invention has been explained in detail above, Nd, Fe v
In a method for producing a Nd2Fe14B magnetic alloy containing B as a main component by a powder metallurgy method, NdFe-B
A method of sintering a compact obtained by mixing 0 to 23% by weight (not including 0) of Pr-Fe-B magnet alloy powder with Pr2Fe and 4B as the main phases to the magnet alloy powder. A significantly superior permanent magnet material is obtained.

以下余白 4図面の1≦1単な説明 第1図(、)乃至(c)はそれぞれNd15.5F07
8B6.5の組成合金粉末にPr15.5Fe78B6
.5の組成合金粉末を0〜25重量・ぞ−セント混合し
て得られた希土類磁石をPr+5.5F078B6.5
の組成合金粉末との混合比と汲犬エネルギー積、残留磁
束密度及び保磁力との関係で示した図である。
The following margins are 1≦1 for the 4 drawings. Figures 1 (,) to (c) are each Nd15.5F07
8B6.5 composition alloy powder with Pr15.5Fe78B6
.. Pr+5.5F078B6.5 rare earth magnet obtained by mixing 0 to 25 weight cents of alloy powder with composition No.5
It is a diagram showing the relationship between the mixing ratio with the composition alloy powder, the Kikiinu energy product, the residual magnetic flux density, and the coercive force.

Claims (1)

【特許請求の範囲】[Claims] 1、Nd、Fe、Bを主成分とするNd_2Fe_1_
4B系磁石合金を粉末冶金法によって製造する方法にお
いて、Nd・Fe・B系磁石合金粉末に対してPr_2
Fe_1_4Bを主生成相とするPr・Fe・B系磁石
合金粉末を0乃至23重量パーセント(0を含まず)混
合した成形体を焼結することを特徴とする希土類磁石の
製造方法。
1, Nd_2Fe_1_ whose main components are Nd, Fe, and B
In the method of manufacturing 4B-based magnet alloy by powder metallurgy, Pr_2 is used for Nd/Fe/B-based magnet alloy powder.
A method for producing a rare earth magnet, which comprises sintering a molded body in which 0 to 23 weight percent (excluding 0) of Pr/Fe/B magnet alloy powder containing Fe_1_4B as the main phase is mixed.
JP59183756A 1984-09-04 1984-09-04 Preparation of rare earth magnet Granted JPS6181603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183756A JPS6181603A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183756A JPS6181603A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Publications (2)

Publication Number Publication Date
JPS6181603A true JPS6181603A (en) 1986-04-25
JPH0345883B2 JPH0345883B2 (en) 1991-07-12

Family

ID=16141425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183756A Granted JPS6181603A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS6181603A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146310A (en) * 1987-12-03 1989-06-08 Tokin Corp Manufacture of rare earth magnet
US4981513A (en) * 1987-05-11 1991-01-01 Union Oil Company Of California Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
US5015304A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Rare earth-iron-boron sintered magnets
US5015306A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Method for preparing rare earth-iron-boron sintered magnets
US5049203A (en) * 1989-04-28 1991-09-17 Nippon Steel Corporation Method of making rare earth magnets
US5055129A (en) * 1987-05-11 1991-10-08 Union Oil Company Of California Rare earth-iron-boron sintered magnets
US5281250A (en) * 1992-01-29 1994-01-25 Sumitomo Special Metals Company Limited Powder material for rare earth-iron-boron based permanent magnets
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN108389676A (en) * 2018-03-29 2018-08-10 江苏南方永磁科技有限公司 A kind of temperature tolerance permanent-magnet material and preparation method thereof
CN108515177A (en) * 2018-05-18 2018-09-11 江西理工大学 A kind of nanocomposite rare earth permanent-magnetic material and its preparation with more main phase structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981513A (en) * 1987-05-11 1991-01-01 Union Oil Company Of California Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
US5015304A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Rare earth-iron-boron sintered magnets
US5015306A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Method for preparing rare earth-iron-boron sintered magnets
US5055129A (en) * 1987-05-11 1991-10-08 Union Oil Company Of California Rare earth-iron-boron sintered magnets
JPH01146310A (en) * 1987-12-03 1989-06-08 Tokin Corp Manufacture of rare earth magnet
US5049203A (en) * 1989-04-28 1991-09-17 Nippon Steel Corporation Method of making rare earth magnets
US5281250A (en) * 1992-01-29 1994-01-25 Sumitomo Special Metals Company Limited Powder material for rare earth-iron-boron based permanent magnets
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN108389676A (en) * 2018-03-29 2018-08-10 江苏南方永磁科技有限公司 A kind of temperature tolerance permanent-magnet material and preparation method thereof
CN108515177A (en) * 2018-05-18 2018-09-11 江西理工大学 A kind of nanocomposite rare earth permanent-magnetic material and its preparation with more main phase structures
CN108515177B (en) * 2018-05-18 2020-09-01 江西理工大学 Nanocrystalline composite rare earth permanent magnet material with multi-main-phase structure and preparation thereof

Also Published As

Publication number Publication date
JPH0345883B2 (en) 1991-07-12

Similar Documents

Publication Publication Date Title
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS61263201A (en) Manufacture of generator
JPH10106875A (en) Manufacturing method of rare-earth magnet
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JP4870274B2 (en) Rare earth permanent magnet manufacturing method
JPS6181607A (en) Preparation of rare earth magnet
JPS6181605A (en) Preparation of rare earth magnet
JPH0352529B2 (en)
JPS6181604A (en) Preparation of rare earth magnet
JPS6348805A (en) Manufacture of rare-earth magnet
US3682715A (en) Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH044383B2 (en)
JPH0142338B2 (en)
JPS6184342A (en) Manufacture of rare earth metal-base magnet
JPS6238841B2 (en)
JPH0119461B2 (en)
JPS61252604A (en) Manufacture of rare earth magnet
JPS6140738B2 (en)
JPH0897022A (en) Manufacture of rare-earth magnet
JPH05234733A (en) Sintered magnet
JPH0583627B2 (en)
JPH055362B2 (en)