JPS62101371A - Forcedly cooling method for ladle slag line - Google Patents

Forcedly cooling method for ladle slag line

Info

Publication number
JPS62101371A
JPS62101371A JP24088985A JP24088985A JPS62101371A JP S62101371 A JPS62101371 A JP S62101371A JP 24088985 A JP24088985 A JP 24088985A JP 24088985 A JP24088985 A JP 24088985A JP S62101371 A JPS62101371 A JP S62101371A
Authority
JP
Japan
Prior art keywords
ladle
slag
cooling
slag line
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24088985A
Other languages
Japanese (ja)
Inventor
Saburo Sugiura
杉浦 三朗
Noboru Demukai
登 出向井
Atsushi Ishii
敦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP24088985A priority Critical patent/JPS62101371A/en
Publication of JPS62101371A publication Critical patent/JPS62101371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To provide an increase of the service times of a ladle, by disposing a cooling member near the slag line of the side wall of a ladle then passing a refrigerant to the cooling member to forcibly cool the slag line. CONSTITUTION:Refractories of the ladle dynamically contact the slag 7 in a high temp. state. A cooling box 9 is mounted in the position near the slag line of the refractory brick 2 of the side wall and is directory or indirectly contacted with the slag 7. The size in the vertical direction of the cooling box 9 is made adequately larger than the distance between the top and bottom surfaces of the slag 7. The box 9 is made of copper and the cooling water is circulated therein to increase the cooling capacity. The life of the refractories 2 is extended and the service times of the ladle are increased by the above- mentioned method. The consumption of the refractories is improved as well.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は精錬用取鍋の側壁に設けられる耐火物の溶損
、殊に取鍋精錬のスラグライン近傍の耐久性を向上させ
るとともに取鍋精錬時の電力パヮーアップ勺させ得る構
成に係る取鍋構造を利用した取鍋スラグラインの強制冷
却方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention prevents melting of the refractory provided on the side wall of a refining ladle, and improves the durability of the refractory, especially near the slag line in ladle refining. The present invention relates to a method for forced cooling of a ladle slag line using a ladle structure capable of increasing power during refining.

(従来の技術及び問題点) 一般に、従来の取鍋は、溶解炉において溶解された溶鋼
または溶鋼スラグを容器に移注し、溶鋼の移動および鋳
込みを行うために用いられていたが、近年は、取鍋精錬
法等の炉外精錬方法の技術発展に伴い、溶鋼の一時保持
だけにとどまらず。
(Prior art and problems) Conventional ladles were generally used to transfer molten steel or molten steel slag melted in a melting furnace to a container, and to move and pour the molten steel. With the technological development of out-of-furnace refining methods such as ladle refining, it is no longer limited to temporary storage of molten steel.

溶鋼を移注した取鍋に天井蓋をかぶせスラグ中に浸漬し
た電極に接続される三相電源により電弧(アーク)を発
生させ、そのアーク熱により溶鋼の昇温または温度維持
を行い、取鍋底部からの不活性ガスを強制的に吹き込ん
で18mと溶鋼スラブを撹拌し、高次元での脱硫と脱酸
および溶m@度の均一化を容易になし得たものである。
The ladle into which the molten steel has been poured is covered with a ceiling cover, and an electric arc is generated by a three-phase power supply connected to an electrode immersed in the slag.The arc heat raises or maintains the temperature of the molten steel, and the ladle is heated. By forcibly blowing inert gas from the bottom and stirring the molten steel slab, desulfurization and deoxidation at a high level and uniformity of the degree of melting were easily achieved.

上記炉外精練法を取鍋内において積極的に行なうことに
より。
By actively performing the above-mentioned out-of-furnace scouring method in a ladle.

取鍋の耐火物にとっては使用条件が極めて過酷なものに
変化してきた6上記取鍋精錬を可能とすべく、取鍋のス
トッパーおよび注湯ノズル等の材質及び形状等について
の耐火物改良が次々と加わえられてきた。
The usage conditions for ladle refractories have changed to extremely harsh conditions.6 In order to make the above-mentioned ladle refining possible, refractory improvements have been made one after another in terms of the materials and shapes of ladle stoppers and pouring nozzles, etc. has been added.

しかし、取鍋の側壁耐火物は取鍋精錬時にスラグライン
のみが高温スラグに接触され局部的に激しく溶損するこ
とにより、耐火物寿命を著しく低下していた。そのため
に、築造後の取鍋側壁スラグラインの補修および張り替
えが頻繁に行われ、上記補修および張り替えによる取鍋
稼働率の低下。
However, when refining the ladle, only the slag line of the side wall refractory of the ladle comes into contact with the high-temperature slag, resulting in severe local melting damage, which significantly shortens the life of the refractory. For this reason, the ladle side wall slag line is frequently repaired and replaced after construction, and the ladle operating rate decreases due to the repairs and replacement.

或いは取鍋精錬時の耐火物溶損による電力のパワーダウ
ンによる処理時間の延長を招くと共に取鍋原単位の上昇
をもたらすという問題があった。
Alternatively, there is a problem in that the processing time is extended due to power down due to refractory melting during ladle refining, and the ladle consumption rate is increased.

(発明の目的) 本発明は、取鍋耐大物構造に関する上記従来技術の諸問
題を解決するものであり、取鍋耐火物寿命を延長化して
取鍋耐大物の耐用回数アップを図ると共に取鍋精錬時の
電力のパワーアップを実現し、取鍋精錬処理時間の短縮
をはかると共に耐火物〃x単位の低減をも可能とする方
法を提供することを目的とするものである。
(Purpose of the Invention) The present invention solves the problems of the above-mentioned prior art related to the ladle-resistant structure, and aims to extend the life of the ladle refractory to increase the number of times the ladle-resistant structure can be used. It is an object of the present invention to provide a method that realizes an increase in electric power during refining, shortens ladle refining processing time, and also makes it possible to reduce x units of refractories.

(発明の構成) 上記目的を達成するため1本発明法は、取鍋の側壁1+
’l清、就中、スラグライン近傍の側壁に冷却用部材を
配設し、これに冷却水等の冷媒を流すことによってスラ
グライン部位を強制的に冷却し、耐火物を冷却すること
によってスラブラインの耐火物溶損の減少を図るもので
ある。
(Structure of the Invention) In order to achieve the above object, the method of the present invention provides a side wall 1+ of the ladle.
In particular, a cooling member is installed on the side wall near the slag line, and a coolant such as cooling water is flowed through this to forcibly cool the slag line area, and the refractory is cooled. The aim is to reduce corrosion of line refractories.

以下に本発明を図面を参照しつつ詳細に説明する。The present invention will be explained in detail below with reference to the drawings.

第5図は取鍋精錬用の取鍋の構造例を示す図であり、1
は外殻(鉄皮)で、その内側に側壁レンガ2、敷レンガ
3が内張すされている。側壁レンガ2は通常2重構造を
なし、取鍋底部にはスライディングノズル4及び不活性
ガスによる強制撹拌用羽口5が設けられている。13は
取鍋天井蓋、また6はアーク加熱用電極で、スラグ7を
介して溶@g8を加熱することができる。なお、14は
合金投入口、15は集塵ダクトである。
Figure 5 is a diagram showing an example of the structure of a ladle for ladle refining;
is an outer shell (iron skin), and inside it is lined with side wall bricks 2 and paving bricks 3. The side wall brick 2 usually has a double structure, and the bottom of the ladle is provided with a sliding nozzle 4 and a tuyere 5 for forced stirring using an inert gas. 13 is a ladle ceiling cover, and 6 is an electrode for arc heating, which can heat the molten @g8 via the slag 7. Note that 14 is an alloy inlet, and 15 is a dust collection duct.

上記構造を一例とする取鍋の側壁は、上下動、回転等に
より変動するスラグ7が接触する部位(スラグライン)
が著しく損傷を受ける。これは、スラブが高温状態のま
まで耐火レンガ2の表面に動的に接触するために生ずる
ことから、本発明においては、取鍋側壁のスラグライン
近傍に冷却用部材を配設し、この冷却用部材を冷媒で強
制冷却しつつスラグ7に直接接触せしめ或いは適宜厚さ
の耐火レンガを介することにより、スラグ7の接触部分
乃至その近傍を強制冷却し、スラグライン部位での接触
スラグ部分の温度を局部的に効果的に低下させ、或いは
スラブを固化させることにより、スラグと耐火物の反応
をおさえ耐火物の溶損を低減するものである。
The side wall of the ladle with the above structure as an example is the part (slug line) where the slag 7 that changes due to vertical movement, rotation, etc. comes into contact.
is severely damaged. This occurs because the slab dynamically contacts the surface of the refractory brick 2 while still in a high temperature state. Therefore, in the present invention, a cooling member is provided near the slag line on the side wall of the ladle, and this cooling member is provided near the slag line on the side wall of the ladle. By forcibly cooling the slag member with a refrigerant and bringing it into direct contact with the slag 7 or through a refractory brick of an appropriate thickness, the contact portion of the slag 7 or its vicinity is forcibly cooled, and the temperature of the contact slag portion at the slag line portion is reduced. By effectively lowering the slag locally or solidifying the slab, the reaction between the slag and the refractory is suppressed and the melting loss of the refractory is reduced.

(実施例) 具体的には、例えば、第1図に示すように、側壁耐火レ
ンガ2のスラグライン近傍部位に冷却箱9を装着し、ス
ラグ7と直接接触せしめる。勿論。
(Example) Specifically, for example, as shown in FIG. 1, a cooling box 9 is attached to a portion of the side wall refractory brick 2 near the slag line, and brought into direct contact with the slag 7. Of course.

スラグ7は取鍋使用回数に伴い、上下に変動することを
考慮してスラグ7の上面と下面の距離よりも適宜長い寸
法の冷却箱とすることは云うまでもない。この冷却箱9
は通常銅製とし、中に冷却水を循環させることによって
冷却能力を大きくすることができる。なお、冷却箱9に
接触する溶m8には成分的に何らの悪影響も生じない。
It goes without saying that the cooling box should be appropriately longer than the distance between the top and bottom surfaces of the slag 7, considering that the slag 7 will move up and down as the ladle is used. This cooling box 9
They are usually made of copper, and their cooling capacity can be increased by circulating cooling water inside them. Note that there is no adverse effect on the composition of the melt m8 that comes into contact with the cooling box 9.

また、冷却水の温度および水量等々の条件は特に制限し
ないが、冷却必要量を満足すれば良い。
Further, conditions such as the temperature and amount of cooling water are not particularly limited, but it is sufficient that the required amount of cooling is satisfied.

第2図に示す例は、第1図に示した形状の冷却箱9を補
助レンガ10を介して配設したもので。
In the example shown in FIG. 2, a cooling box 9 having the shape shown in FIG. 1 is disposed with auxiliary bricks 10 interposed therebetween.

第1図の直接水冷方式に対して間接水冷方式と云うこと
ができる。なお、補助レンガ10の材質は通常スラグラ
インに採用される材質の耐火物でもよいが、局部的に強
制冷却されて耐火物の温度が低下するので他より安価な
材質の耐火物を使用しても良い。この方式によれば、第
1図の直接水冷方式に比べ、耐火レンガを施している方
が安全性が高く、しかも、施工が容易で、構造上耐火物
も介し、強固である間接水冷方式の方が取鍋移動に伴う
信頼性が高いが、しかし、冷却能力が耐火物を介してい
る分だけやや劣る。
In contrast to the direct water cooling system shown in FIG. 1, it can be said to be an indirect water cooling system. The material of the auxiliary bricks 10 may be a refractory material that is normally used for slag lines, but since the temperature of the refractory decreases due to local forced cooling, it is recommended to use a refractory material that is cheaper than other materials. Also good. According to this method, compared to the direct water cooling method shown in Figure 1, the indirect water cooling method is safer due to the use of refractory bricks, is easier to construct, and is stronger due to the use of refractories. This method has higher reliability when moving the ladle, but its cooling capacity is slightly inferior due to the fact that it uses a refractory.

第3図に示す例は間接水スプレィ方式によるもので、冷
却板体11を補助レンガ10と共に側壁耐火レンガ2に
配設した構造である。冷却水をノズル12からスプレィ
することにより取鍋側壁の放散熱により水蒸気に変わり
、大気に飛散するので、敢えて冷却箱構造にする必要は
ない。この方式によれば、第2図の間接水冷方式よりも
更に第3図の間接水スプレィ方式は特に冷却水を循環さ
せる必要がないため直接的にホース等の付設が取鍋には
不要であるから、取鍋移動時の作業性が容易であり、冷
却能力も第2図と同等であるので、作業上における安全
性および信頼性も極めて高いものである。
The example shown in FIG. 3 is based on an indirect water spray method, and has a structure in which a cooling plate 11 is disposed on a side wall refractory brick 2 together with an auxiliary brick 10. By spraying the cooling water from the nozzle 12, the heat radiated from the side wall of the ladle turns it into water vapor and scatters it into the atmosphere, so there is no need to use a cooling box structure. According to this method, the indirect water spray method shown in FIG. 3 is even better than the indirect water cooling method shown in FIG. Therefore, the workability when moving the ladle is easy, and the cooling capacity is the same as that shown in FIG. 2, so the safety and reliability of the work are extremely high.

第4図に示す例は間接冷媒方式によるもので、冷却板体
又は冷却箱を補助レンガ10と共に側壁耐火レンガ2に
配設した構造であって、冷却水以外の通常使用される冷
媒(例、ガス)をスプレィ乃至流し込むものである。ま
た冷媒として冷却水より冷却能力の大きいものをも使用
してもよい。
The example shown in FIG. 4 is based on an indirect refrigerant system, and has a structure in which a cooling plate or a cooling box is disposed on the side wall refractory brick 2 together with the auxiliary brick 10. It sprays or pours gas). Furthermore, a refrigerant having a higher cooling capacity than cooling water may also be used.

以上示した各側は、必要に応じて選定して組合わせて適
用することができる。また取鍋側壁の他の部位の構造お
よび耐火レンガの材質等々は従来と同様であり、更に他
の形式の取鍋に対しても本発明を適用できることは云う
までもない。
Each side shown above can be selected and applied in combination as necessary. Further, the structure of other parts of the side wall of the ladle, the material of the firebrick, etc. are the same as conventional ones, and it goes without saying that the present invention can also be applied to other types of ladle.

(発明の効果) 本発明における取鍋構造によれば、取鍋側壁のスラグラ
インを強制冷却するので、取鍋の耐火物寿命を律する取
鍋精錬時のスラグラインの溶損を著しく減少することが
可能となり、耐火物寿命の延長化を図ることができる。
(Effects of the Invention) According to the ladle structure of the present invention, since the slag line on the side wall of the ladle is forcibly cooled, the erosion of the slag line during ladle refining, which determines the life of the refractory of the ladle, can be significantly reduced. This makes it possible to extend the life of refractories.

したがって、取鍋の耐用回数が大幅に増大し、耐火物原
単位の低減をも向上する。また、取鍋精錬時の耐火物溶
損の減少による電力パワーアップの向上により処理時間
を短縮することができる。
Therefore, the service life of the ladle is greatly increased, and the reduction of the refractory unit consumption is also improved. In addition, processing time can be shortened due to improved electric power due to reduced refractory erosion during ladle refining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の実施に用いる取鍋の側壁構
造を強制冷却方式にした種々の態様を示す説明図、第5
図は取鍋の構造例を示す断面説明図である。 1・・・外殻、      2・・・側壁耐火レンガ、
7・・・スラグ、     8・・・溶鋼、9・・・冷
却箱、    10・・・補助レンガ、11・・・冷却
板体、  12・・・ノズル。 13・・・取鍋天井蓋、 14・・・合金投入口、15
・・・集塵ダクト。 第1図 第2[ 第5図 4 第3図 第4図
1 to 4 are explanatory diagrams showing various embodiments in which the side wall structure of the ladle used for carrying out the present invention is of a forced cooling type;
The figure is an explanatory cross-sectional view showing an example of the structure of a ladle. 1...Outer shell, 2...Side wall refractory brick,
7... Slag, 8... Molten steel, 9... Cooling box, 10... Auxiliary brick, 11... Cooling plate body, 12... Nozzle. 13... Ladle ceiling cover, 14... Alloy inlet, 15
...Dust collection duct. Figure 1 Figure 2 [ Figure 5 4 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 取鍋側壁の耐火物において、スラグライン近傍部位
に冷却用部材を配設し、該冷却用部材に冷媒を流すこと
によってスラグラインを強制的に冷却することを特徴と
する取鍋スラグラインの強制冷却方法。 2 前記冷却用部材はスラグライン側に耐火レンガを介
して配設した特許請求の範囲第1項記載の取鍋スラグラ
インの強制冷却方法。
[Claims] 1. A cooling member is disposed in the vicinity of the slag line in the refractory of the side wall of the ladle, and the slag line is forcibly cooled by flowing a refrigerant through the cooling member. A forced cooling method for ladle slag lines. 2. The method for forced cooling of a ladle slag line according to claim 1, wherein the cooling member is disposed on the slag line side via a refractory brick.
JP24088985A 1985-10-28 1985-10-28 Forcedly cooling method for ladle slag line Pending JPS62101371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24088985A JPS62101371A (en) 1985-10-28 1985-10-28 Forcedly cooling method for ladle slag line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24088985A JPS62101371A (en) 1985-10-28 1985-10-28 Forcedly cooling method for ladle slag line

Publications (1)

Publication Number Publication Date
JPS62101371A true JPS62101371A (en) 1987-05-11

Family

ID=17066195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24088985A Pending JPS62101371A (en) 1985-10-28 1985-10-28 Forcedly cooling method for ladle slag line

Country Status (1)

Country Link
JP (1) JPS62101371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525927A (en) * 2014-11-18 2015-04-22 武汉恒威重机有限公司 Slag ladle with flow guide water channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525927A (en) * 2014-11-18 2015-04-22 武汉恒威重机有限公司 Slag ladle with flow guide water channel

Similar Documents

Publication Publication Date Title
US4796277A (en) Melting furnace for melting metal
KR20140085506A (en) Slag supply container for electric furnace for steel slag reduction
US6473446B2 (en) Electric furnace for steel making
CN105671242A (en) Maintenance method for converter lining
JPH08246014A (en) Water-cooled molten slag trough for blast furnace
JPH11223464A (en) Electric furnace
JPS62101371A (en) Forcedly cooling method for ladle slag line
RU2014951C1 (en) Cast iron ladle
JPH05331521A (en) Steel tapping hole in refining furnace for steel-making
JPS6293047A (en) Ladle structure
JP3596639B2 (en) Method of cooling ceiling of electric arc furnace
US3174737A (en) Holding furnaces
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
KR100229909B1 (en) Ladle structure
JPS6121838Y2 (en)
SU576341A1 (en) Blast furnace blowing tuyere
JP3249935B2 (en) Cooling method for metal smelting furnace inner wall
WO2004036131A1 (en) Electric furnace for steel making
JPH0532511Y2 (en)
JPS60286A (en) Vessel for molten metal
JP2000146452A (en) Fixed smelting furnace
JPH0577031A (en) Method for prolonging service life of ladle in lf refining and device for cooling ladle
JPH11291024A (en) Method for repairing inner surface of ladle and repairing device thereof
Russell et al. Refractory performance at LTV Steel's ladle metallurgy facility, Indiana Harbor Works
JPH0548069Y2 (en)