JPS6210135A - Production of perfluoro polyether - Google Patents

Production of perfluoro polyether

Info

Publication number
JPS6210135A
JPS6210135A JP14881685A JP14881685A JPS6210135A JP S6210135 A JPS6210135 A JP S6210135A JP 14881685 A JP14881685 A JP 14881685A JP 14881685 A JP14881685 A JP 14881685A JP S6210135 A JPS6210135 A JP S6210135A
Authority
JP
Japan
Prior art keywords
polyether
reaction
fluorocarbon
ultraviolet ray
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14881685A
Other languages
Japanese (ja)
Other versions
JPH0341455B2 (en
Inventor
Toshio Takaai
鷹合 俊雄
Yasushi Yamamoto
靖 山本
Yasuro Tarumi
樽見 康郎
Akira Yoshida
彰 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP14881685A priority Critical patent/JPS6210135A/en
Publication of JPS6210135A publication Critical patent/JPS6210135A/en
Publication of JPH0341455B2 publication Critical patent/JPH0341455B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

PURPOSE:To obtain a perfluoro polyether at a higher reaction rate with an ultraviolet ray having a wavelength in a lower intensity energy region than those of the conventional method, by using a specified fluorocarbon polyether as a starting material and irradiating it with an ultraviolet ray. CONSTITUTION:A fluorocarbon polyether of formula I (wherein z is a positive integer including 0) is irradiated with an ultraviolet ray to obtain a perfluoro polyether of formula II (wherein m, n are each a positive integer including 0). Pref, the wavelength of the ultraviolet ray is in the range of 370-250nm. The reaction system should have such a temp. and a pressure that the reaction mixture forms a liquid phase thereby. For example, the reaction is carried out at -80-200 deg.C and one to several atm. The perfluoro polyether has excellent resistance to heat, oxidation, chemicals and plasma.

Description

【発明の詳細な説明】 (産業上の利用分野ン 本発明はパーフルオロポリエーテルの製造方法、特(二
は耐熱性、耐酸化性、耐化学薬品性および耐プラズマ性
にてぐれており、溶媒、潤滑剤、グリース、シーリング
材として有用とされるパーフルオロポリエーテルの製造
方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing perfluoropolyether, which has excellent heat resistance, oxidation resistance, chemical resistance, and plasma resistance. The present invention relates to a method for producing perfluoropolyether, which is useful as a solvent, lubricant, grease, and sealant.

(従来の技術] パーフルオロポリエーテルの製造については、パーフル
オロオレフィンエポキシサイドの重合によって得られる
フルオロカーボンポリエーテルを紫外線照射する方法が
公知とされている(米国特許第3,214,478号明
細書、特開昭38−25586号、特公昭43−687
号公報参照)。しかし、この方法には使用される出発原
料が末端C二カルボン酸フルオライド基を有するフルオ
ロカーボンポリエーテルとされるためg:、紫外線照射
による、反応がおそいという不利があり、またこ\に使
用する紫外線を約3003fi以下の比較的高エネルギ
ー領域の波長のものとする必要があり、さら1−は出発
原料がカルボン酸フルオライド基を有するものであるた
めに反応の進行(=伴なって00F などの有毒な副住
物を発生するという問題型 点があった。
(Prior Art) Regarding the production of perfluoropolyether, a method is known in which fluorocarbon polyether obtained by polymerizing perfluoroolefin epoxide is irradiated with ultraviolet light (U.S. Pat. No. 3,214,478). , Japanese Patent Publication No. 38-25586, Japanese Patent Publication No. 43-687
(see publication). However, since the starting material used in this method is a fluorocarbon polyether having a terminal C dicarboxylic acid fluoride group, there is a disadvantage that the reaction is slow due to ultraviolet irradiation; It is necessary to have a wavelength in a relatively high energy region of about 3003fi or less, and furthermore, since the starting material 1- has a carboxylic acid fluoride group, the reaction progresses (= accompanied by toxic substances such as 00F). There was the problem of creating secondary residents.

(発明の構成) 本発明はこのような不利を伴なわないパーフルオロポリ
エーテルの製造方法に関するものであり、これは一般式 (こ\≦二2はOを含む正の整数)で示されるフルオロ
カーボンポリエーテル(:紫外線照射し、一般式 (こへにm、 nは0を含む正の整数)で示されるパー
フルオロポリエーテルとすることを特徴とするものであ
る。
(Structure of the Invention) The present invention relates to a method for producing perfluoropolyether that does not involve such disadvantages, and this invention relates to a method for producing perfluoropolyether that does not involve such disadvantages. The polyether is characterized by being irradiated with ultraviolet rays to form a perfluoropolyether represented by the general formula (where m is a positive integer including 0).

すなわち、本発明者らは前記したような不利を解決でき
るパーフルオロポリエーテルの製造方法について種々検
討した結果、紫外線照射なする出発原料として上記した
一般式で示されるフルオロカーボンポリエーテルを選択
すれば、1)従来法(:(らべて反応速度を大きくする
ことかで赴、この反応を速かに進行、完了させることが
できる、2)約3003m以上の低エネルギー領域の波
長の紫外線(近紫外線〕のみの照射によっても反応の進
行が可能となる、3)同一の照射条件、照射時間で比較
した場合には従来法にくらべて約20%程度の反応率の
向上が認められる、4)反応の進行(二よってOOF 
などの有毒ガスの発生することがない、という効果を得
ることができることを見出すと共(二、この方法で得ら
れる上記した一般式で示されるパーフルオロポリエーテ
ルは耐熱性、耐酸化性、耐化学薬品性、耐プラズマ性(
−すぐれているので、溶剤、潤滑剤、グリース、シーリ
ング剤などとして有用とされることを確認して本発明を
完成させた。
That is, the present inventors have studied various methods for producing perfluoropolyether that can solve the above-mentioned disadvantages, and as a result, if a fluorocarbon polyether represented by the above-mentioned general formula is selected as a starting material without ultraviolet irradiation, 1) Conventional method (by increasing the reaction rate, this reaction can proceed quickly and be completed. ] 3) When comparing the same irradiation conditions and irradiation time, the reaction rate is improved by about 20% compared to the conventional method. 4) The reaction Progression (2 OOF
(2) The perfluoropolyether represented by the above general formula obtained by this method has heat resistance, oxidation resistance, Chemical resistance, plasma resistance (
-The present invention was completed after confirming that it is useful as a solvent, lubricant, grease, sealant, etc. due to its excellent properties.

本発明の方法において始発材料とされるフルオロカーボ
ンポリエーテルは一般式 %式%(2 (こ\に2は0を含む正の整数)で示される木端にカル
ボキシル基を有するものとされるが、このものはへキせ
フルオロプロピレンオキチイド(HFPO)の重合i二
よって得られる、一般式%式% で示される末端にカルボン酸フルオライド基を有するフ
ルオロカーボンポリエーテルを加水分解するたとによっ
て容易−二得ることができる。
The fluorocarbon polyether used as the starting material in the method of the present invention has a carboxyl group at the end represented by the general formula % (2 (where 2 is a positive integer including 0)). This product can be easily synthesized by hydrolyzing a fluorocarbon polyether having a terminal carboxylic acid fluoride group, which is obtained by the polymerization of fluoropropylene oxytide (HFPO). Obtainable.

本発明の目的とする上記一般式+11で示されるパーフ
ルオロポリエーテルは上記した一般式(21で示される
フルオロカーボンポリエーテルに紫外線を照射すること
C;よって得ることがで壺るが、こ−ぽ二側用される紫
外線は4003m以下の波長をもつものとすればよく、
この波長の下限は光が通過丁べき物質の透過特性I:よ
り決定されるものであることから特(:制限はないが、
この紫外線の波長は370〜2503F11の範囲とす
ることがよい。
The perfluoropolyether represented by the above general formula +11, which is the object of the present invention, can be obtained by irradiating the fluorocarbon polyether represented by the above general formula (21) with ultraviolet light; The ultraviolet rays used on both sides should have a wavelength of 4003 m or less,
The lower limit of this wavelength is determined by the transmission characteristics of the material through which the light passes;
The wavelength of this ultraviolet ray is preferably in the range of 370 to 2503F11.

この反応を行なわせるための光源としては一般(二市販
されている各種の水銀アーク灯を使用すればよいが、こ
れは石英、高透明ガラスなどのジャケットを有するもの
とすることが望ましい。この反応を有利(重付なわせる
ためには光源と反応体との距離は短いものとすることが
よく、このためC二は光源を反応体に隣接させるか、光
源を反応空間中に設置することがよい。また、この反応
を完了させるために必要とされる照射時間はこの照射条
件、すなわち使用する光源の種類、出力と系内に存在す
る反応点の数との組合せ、反応体と光源の距離、反応体
であるフルオロカーボンポリエーテルの重合度および系
の希釈、攪拌条件などに依存するので特定することはむ
づかしいが1個々の反応の進行および完了C重要する照
射時間は反応混合物中のカルボニル基を赤外分光分析に
よって追跡し決定すればよい。なお、この反応系の温度
、圧力は反応進行にとって重要な因子とはならないが、
好ましくは反応混合物が液相となるような温度、圧力と
することがよく、したがってこれは−80℃〜200℃
、1〜数気圧の範囲から適宜に定めればよい。
As a light source for this reaction, various commercially available mercury arc lamps may be used, but it is preferable that this has a jacket made of quartz, highly transparent glass, etc. (In order to increase the weight of the light source, the distance between the light source and the reactant is often short. Therefore, in C2, the light source may be placed adjacent to the reactant or the light source may be installed in the reaction space.) The irradiation time required to complete this reaction also depends on the irradiation conditions, i.e. the type of light source used, the combination of power and number of reaction points present in the system, and the distance between the reactants and the light source. Although it is difficult to specify because it depends on the degree of polymerization of the fluorocarbon polyether that is the reactant, dilution of the system, stirring conditions, etc. 1. Progress and completion of each individual reaction C. Important irradiation time It can be tracked and determined by infrared spectroscopy.The temperature and pressure of this reaction system are not important factors for the progress of the reaction, but
Preferably, the temperature and pressure are such that the reaction mixture becomes a liquid phase, so this is -80°C to 200°C.
, may be determined as appropriate from the range of 1 to several atmospheres.

本発明の方法の実施に当っては必ずしも希釈剤を使用す
る必要はないが、始発物質としてのフルオロカーボンポ
リエーテルが特に高分子壁のものである場合には希釈剤
を使用することがよい。ここに使用する希釈剤は反応系
の攪拌効率を向上させるものであり、その添加量には特
に制限はなく、これは反応系が容易に攪拌できる状態に
まで希釈される程度とすればよい。しかし、この希釈剤
については本発明方法シーおける反応およびこの反応副
生物l二対して不活性で、反応終了後には蒸留などで容
易に留去できるものであることが必要とされるので、こ
れC:はパーフルオロへブタン、パーフルオロシクロへ
キチン、パーフルオロジメチルジグロブタンなどのよう
なパーフルオロ飽和フルオロカーボン、パーフルオロ(
2−n−ブテルテトラヒドロックンへパーフルオロ(2
−n−プロピtvテ)ラヒドロビラン2などのようなパ
ーフルオロ環状エーテルが好ましいものとされる。
Although it is not necessary to use a diluent in carrying out the process of the invention, it may be advantageous if the starting fluorocarbon polyether is particularly polymer-walled. The diluent used here improves the stirring efficiency of the reaction system, and there is no particular restriction on the amount added, as long as it dilutes the reaction system to a state where it can be easily stirred. However, this diluent is required to be inert to the reaction in the process of the present invention and to the by-products of this reaction, and to be easily removed by distillation after the reaction is completed. C: is perfluoro saturated fluorocarbon, perfluoro(
2-n-butertetrahydrocne perfluoro(2
Perfluorocyclic ethers such as -n-propyte)lahydrobilane 2 and the like are preferred.

なお、この反応の進行および完了は反応混合物中のカル
ボニル基量が赤外分光分析で容易に確認で傘るので、こ
れで監視すればよい。
The progress and completion of this reaction can be easily monitored by checking the amount of carbonyl groups in the reaction mixture by infrared spectroscopy.

つぎC二本発明方法の実施例をあげる。Next, C2 Examples of the method of the present invention will be given.

実施例1 直径20簡、厚さ1.5鴎の石英管中に、ヘキサフルオ
ロプロピレンオキサイドの重合体を加水分解して得た、
末端に力!シボキシル基を有する次式で示されるフルオ
ロカーボンポリエーテル30Iを窒素ガス雰囲気下で仕
込み、この石英管に石英製のジャケットを有する高圧水
銀ランプ(400W)を直接接触させて室温で36時間
こ\に250〜370間の波長の紫外線照射を行なった
ところ、無色透明な液体26.!Mが得られた。
Example 1 A hexafluoropropylene oxide polymer was obtained by hydrolyzing it in a quartz tube with a diameter of 20 mm and a thickness of 1.5 mm.
Power at the end! A fluorocarbon polyether 30I having a siboxyl group and having the following formula was charged in a nitrogen gas atmosphere, and a high-pressure mercury lamp (400 W) with a quartz jacket was brought into direct contact with the quartz tube for 36 hours at room temperature. When irradiated with ultraviolet light with a wavelength between ~370°C, a colorless and transparent liquid 26. ! M was obtained.

ついで、この処理後に石英管中にあるポリエーテルを取
り出して赤外線分析をしたところ、これにはパーフルオ
ロアルキルポリエーテルの末端に位置するカルボキシル
基についての1.780 (m−’の吸収が完全に消失
したので、つぎにこれについてガスグロマトグラフイお
よびガスマススペクトル分析をしたところ、これは次式 (n+m=4.26)で示されるパーフルオロ環状エー
テルであることが確認された。
After this treatment, the polyether in the quartz tube was taken out and subjected to infrared analysis, which revealed that the absorption at 1.780 (m-') of the carboxyl group located at the end of the perfluoroalkyl polyether was completely absorbed. Since it disappeared, gas chromatography and gas mass spectroscopy were performed on it, and it was confirmed that it was a perfluorocyclic ether represented by the following formula (n+m=4.26).

比較例1 実施例1で使用した石英管1:、ヘキサフルオロプロピ
レンオキサイドを重合して得た末端にカルボン酸フルオ
ライド基を有する次式 で示されるフルオロカーボンポリエーテル30.9を窒
素ガス雰囲気下で仕込み、これに実施例1と同様の方法
で紫外線処理を施し、照射開始から90時間後に照射を
中断した。
Comparative Example 1 Quartz tube 1 used in Example 1: A fluorocarbon polyether 30.9 having a carboxylic acid fluoride group at the end and having a carboxylic acid fluoride group at the end obtained by polymerizing hexafluoropropylene oxide was charged in a nitrogen gas atmosphere. This was treated with ultraviolet light in the same manner as in Example 1, and the irradiation was interrupted 90 hours after the start of the irradiation.

ついでこの石英管からポリエーテルを取り出しこれI:
ついての赤外線分析をしたところ、このものはカルボン
酸フルオライドのカルボニル基(二もとづ<1.890
cIL の吸収が完全に消失せず、カルボン酸フルオラ
イドが10%残存していることが認められ、ついでこれ
I:ついてガスクロマトグラフィ分析したところ、これ
C:は出発原料としてのフルオロカーボンポリエーテル
が約20%混在していることが検出され、この場合C二
は上記した実施例1の方法にくらべて反応が非常に緩や
かであることが確認されたが、この場合にはまた約15
ミリモルのOOF、の発生が認められた。
Next, take out the polyether from this quartz tube and see this I:
Infrared analysis of the product revealed that the carbonyl group of carboxylic acid fluoride (2motozu<1.890
It was observed that the absorption of cIL did not completely disappear and 10% of the carboxylic acid fluoride remained, and gas chromatography analysis of this I: revealed that about 20% of the fluorocarbon polyether as a starting material was found in this C:. In this case, it was confirmed that the reaction of C2 was very slow compared to the method of Example 1 described above, but in this case also about 15% of the reaction was detected.
Generation of mmol of OOF was observed.

実施例2 を用いたほかは実施例1と全く同様にしてフルオr:t
カーボンホリエーテルに300〜370 fLFmの波
長の紫外線照射をし、照射開始から90時間後に照射を
中断して石英管からポリエーテルを取り出したところ、
26.21iの生成物が取得された。
Example 2 Fluoro r:t was prepared in the same manner as in Example 1 except that
Carbon polyether was irradiated with ultraviolet light with a wavelength of 300 to 370 fLFm, and 90 hours after the start of irradiation, the irradiation was stopped and the polyether was taken out from the quartz tube.
A product of 26.21i was obtained.

つぎにこのものを赤外線分析したところ、出発物質とし
てのポリエーテルの末端に位置するカルボキシル基直:
もとづ(1,73QclIL  の吸収は照射前i二く
らべて約40%にまで減少しており、このものについて
ガスクロマトグラフィ分析したところ、この約50%が
パーフルオロポリエーテルとなっていることが検出され
、この場合には照射光の波長が約30011m以上の低
エネルギー波のみでも反応の進行していることが確認さ
れた。
Next, infrared analysis of this material revealed that the carboxyl group located at the end of the polyether as the starting material:
The absorption of Motozu (1,73QclIL) decreased to about 40% compared to that before irradiation, and gas chromatography analysis of this material revealed that about 50% of this was perfluoropolyether. In this case, it was confirmed that the reaction progressed even with only low energy waves having a wavelength of approximately 30011 m or more.

比較例2 比較例1における光源をパイレツク製の冷却ジャケット
を有する高圧水鉗灯(400W)としたほかは比較例1
と同様シーしてフルオロカーボンポリエーテルに波長3
00〜370amの紫外線照射1し、照射開始から90
時間後に照射を中断して石英管からポリエーテルを取出
したところ、26、7 Nの生成物が得られたが、この
ものを赤外線分析およびガスクロマトグラフィ分析をし
たところ、この場合C:は反応が全く進行していないこ
とが確認された。
Comparative Example 2 Comparative Example 1 except that the light source in Comparative Example 1 was changed to a high-pressure water lamp (400W) with a cooling jacket made of Pyrex.
Similarly, wavelength 3 is applied to fluorocarbon polyether.
00 to 370 am UV irradiation 1, 90 am from the start of irradiation
When the irradiation was interrupted and the polyether was taken out from the quartz tube after a period of time, a 26,7N product was obtained, but when this product was analyzed by infrared rays and gas chromatography, it was found that in this case C: had not reacted. It was confirmed that no progress was made.

実施例3 実施例1で使用した石英管C二、ヘキチフルオロブロビ
レンオキサイドの重合体を加水分解して得た、末端Cニ
カルボキシル基を有する次式で示されるフルオロカーボ
ンポリエーテル25IIと希釈剤としてのパーフルオロ
(2−n−ブチルテトラヒドロフラン)25gとを窒素
ガス雰囲気下り=仕込み、攪拌して均一な溶液としてか
ら、これに実施例1と同じ方法で室温下シー90時間、
波長250〜370%mの紫外線照射を行なったところ
、油状生成物2,211.9が得られたので、このもの
を100℃/2mの条件で減圧下ζ−加熱して希釈剤を
分離して目的とするパーフルオロポリエーテルを得た。
Example 3 The quartz tube C2 used in Example 1 was mixed with fluorocarbon polyether 25II, which was obtained by hydrolyzing a polymer of hexyfluorobrobylene oxide and is represented by the following formula and has a C-terminal carboxyl group, as a diluent. 25 g of perfluoro(2-n-butyltetrahydrofuran) under a nitrogen gas atmosphere, stirred to form a homogeneous solution, and then heated at room temperature for 90 hours in the same manner as in Example 1.
When irradiated with ultraviolet light with a wavelength of 250-370% m, an oily product 2,211.9 was obtained, which was heated under reduced pressure at 100°C/2m to separate the diluent. The desired perfluoropolyether was obtained.

ついで、このパーフルオロポリエーテルについて赤外線
分析をしたところ、このものはポリエーテル末端のカル
ボキシル基り=モとづ<1.780cmの吸収が完全に
消失しており、これはガスマススペクトル分析およびゲ
ルパーミヱーシヨンクロマトグラフイ分析の結果から次
式 (m+n=50)で示されるパーフルオロポリエーテル
であることが確認された。
Next, when this perfluoropolyether was subjected to infrared analysis, it was found that the absorption of the carboxyl group at the end of the polyether = motozu < 1.780 cm completely disappeared, which was confirmed by gas mass spectrometry analysis and gel par. From the results of the measurement chromatography analysis, it was confirmed that it was a perfluoropolyether represented by the following formula (m+n=50).

なお、この生成物は25℃C;おける動粘度が1.40
0o8 の油状物であり、空気雰囲気下、250℃C二
おける1、000時間後の重量損失は10%であった。
This product has a kinematic viscosity of 1.40 at 25°C.
The weight loss was 10% after 1,000 hours at 250° C. in an air atmosphere.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ (式中のzは0を含む正の整数)で示されるフルオロカ
ーボンポリエーテルに紫外線照射し、一般式 ▲数式、化学式、表等があります▼ (こゝにm、nは0を含む正の整数)で示されるパーフ
ルオロポリエーテルとすることを特徴とするパーフルオ
ロポリエーテルの製造方法。
[Claims] 1. The fluorocarbon polyether represented by the general formula ▲ includes mathematical formulas, chemical formulas, tables, etc. (in the formula, z is a positive integer including 0) is irradiated with ultraviolet light, and the general formula ▲ mathematical formula, chemical formula, etc. , tables, etc. ▼ (where m and n are positive integers including 0).
JP14881685A 1985-07-05 1985-07-05 Production of perfluoro polyether Granted JPS6210135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14881685A JPS6210135A (en) 1985-07-05 1985-07-05 Production of perfluoro polyether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14881685A JPS6210135A (en) 1985-07-05 1985-07-05 Production of perfluoro polyether

Publications (2)

Publication Number Publication Date
JPS6210135A true JPS6210135A (en) 1987-01-19
JPH0341455B2 JPH0341455B2 (en) 1991-06-24

Family

ID=15461358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14881685A Granted JPS6210135A (en) 1985-07-05 1985-07-05 Production of perfluoro polyether

Country Status (1)

Country Link
JP (1) JPS6210135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293863A2 (en) * 1987-06-02 1988-12-07 Daikin Industries, Limited Fluorine-containing polyether and process for preparing the same
US5457810A (en) * 1992-09-23 1995-10-10 Siemens Aktiengesellschaft Mobile speed sensitive hand over method in hierarchial cell structures
JP2006512449A (en) * 2002-12-30 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated polyether composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103334A (en) * 1981-12-14 1983-06-20 Tokuyama Soda Co Ltd Perfluoropolyether and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103334A (en) * 1981-12-14 1983-06-20 Tokuyama Soda Co Ltd Perfluoropolyether and its preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293863A2 (en) * 1987-06-02 1988-12-07 Daikin Industries, Limited Fluorine-containing polyether and process for preparing the same
US5457810A (en) * 1992-09-23 1995-10-10 Siemens Aktiengesellschaft Mobile speed sensitive hand over method in hierarchial cell structures
JP2006512449A (en) * 2002-12-30 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Fluorinated polyether composition

Also Published As

Publication number Publication date
JPH0341455B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
KR0134375B1 (en) Perfluoropolyethers containing a halogen different from fluor and having and acid end group
JP3135544B2 (en) Process for preparing controlled molecular weight perfluoropolyethers having perfluoroalkyl or perfluorochloroalkyl end groups
US4500739A (en) Process for the insertion of perfluoroolefines on perfluoropolyethers and corresponding products
EP0427820B1 (en) Process for preparing peroxidic perfluoropolyethers
JP2941305B2 (en) Improved process for producing perfluoropolyethers substantially constituted by perfluorooxyethylene and perfluorooxypropylene units
KR900007874B1 (en) Process for the preparation of difunctional and monofunctional perfluoropolyether having brominated terminal group and regulated molecular weight
EP1524287B1 (en) Perfluoropolyethers
RU2060248C1 (en) Peroxyperfluoropolyoxy alkylenes
JPH0249027A (en) Improved method for manufacture of fluorocarbon polyether
JPS6210135A (en) Production of perfluoro polyether
JPS61268642A (en) Production of chlorine-modified fluorocarbon polyether
JPH0123488B2 (en)
JP2001504845A (en) Method for producing carboxylic acid fluoride
JP2673119B2 (en) Method for producing alkyl halodifluoroacetate
EP0344935A2 (en) Photo-assisted solution phase direct fluorination process improvement
JPS60168711A (en) Manufacture of fluoride ion exchange polymer precursor
JPS58164535A (en) Preparation of perfluoro compound
JPS6343419B2 (en)
JPH04316577A (en) Perfluoro cyclic ether and its production
US3637842A (en) Perfluoro polyether acyl fluorides
US5446206A (en) Process for preparing controlled molecular weight perfluoropolyethers having perfluoroalkyl or perfluorochloroalkyl end groups
CN114682190A (en) Method and equipment for selective fluorination reaction by taking fluorine gas as fluoro reagent
JP3214065B2 (en) Method for producing difluorobromoacetyl fluoride
EP0638103B1 (en) Preparation of fluorinated polyethers
JPH0768338B2 (en) Fluorine-containing polyether and its manufacturing method