JPS6199869A - Measuring device for dielectric loss - Google Patents

Measuring device for dielectric loss

Info

Publication number
JPS6199869A
JPS6199869A JP22146384A JP22146384A JPS6199869A JP S6199869 A JPS6199869 A JP S6199869A JP 22146384 A JP22146384 A JP 22146384A JP 22146384 A JP22146384 A JP 22146384A JP S6199869 A JPS6199869 A JP S6199869A
Authority
JP
Japan
Prior art keywords
voltage
multiplier
circuit
gain control
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22146384A
Other languages
Japanese (ja)
Other versions
JPH0646203B2 (en
Inventor
Takanori Tsunoda
孝典 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP22146384A priority Critical patent/JPH0646203B2/en
Publication of JPS6199869A publication Critical patent/JPS6199869A/en
Publication of JPH0646203B2 publication Critical patent/JPH0646203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To eliminate the need for an expensive standard capacitor and to calculate the dielectric tangent tandelta of a body to be tested with simple constitution by giving constant amplitudes to a voltage and a current signal corresponding to a voltage applied to the body to be tested and a current flowing through the body to be tested, and multiplying and smoothing both signals. CONSTITUTION:Test voltages are applied to the series of the body 1 to be tested and a shunt resistance 2 and the series circuit of voltage dividing resistances 3a and 3b respectively. The voltage signal VR proportional to the applied voltage is led out from the connection point of those resistances 3a and 3b and the current signal IC proportional to the current flowing through the body 1 to be tested is led out from the connection point of the body 1 to be tested and resistance 2. Those voltage and current signals VR and IC are applied to automatic gain control circuits X1 and X2 to make the voltage signal VR and current signal IC constant in amplitude, and those signals are multiplied by a multiplier 7. The output of the multiplier 7 is smoothed by a smoothing circuit 8 to measure the dielectric loss tandelta of the body 1 to be tested without using any expensive reference capacitor.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は電気絶縁物の絶縁性能を評価するための誘電
正接(tanδ)を求める誘電体損失測定装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a dielectric loss measuring device for determining dielectric loss tangent (tan δ) for evaluating the insulation performance of electrical insulators.

従来例の構成とその問題点 一般に、電気絶縁物の絶縁性能を評価するために、被試
験物に交流電圧を印加し、その誘電体損失を測定する、
すなわちtanδを測定するタンデルタ法が用いられて
いる。
Conventional configuration and its problems In general, in order to evaluate the insulation performance of electrical insulators, an AC voltage is applied to the test object and its dielectric loss is measured.
That is, the tan delta method for measuring tan δ is used.

タンデルタ法とは、つぎのようにして誘電体の損失を評
価するものである。すなわち、誘電体に交流電圧を印加
したとき、全く損失のない誘電体ではその充電電流の位
相が印加交流電圧の位相よ990度進んでいるといえる
が、一般には多少の損失をもつために電流の進みは90
度より小となる。誘電体が例えば第3図のよ・うな等何
回路(コンデンサCおよび抵抗Rの並列回路)で表わさ
れると考えれば、本来損失のない誘電体なら、第4図に
示すように交流印加電圧Eに対して90度進んだ位相の
電流iが流れるべきであるが、tJ4失のために交流印
加電圧Eに対して90度より小なる進み角φをもった電
流が流れる訳で、ごの90−ψという角度をδとし、こ
の正接、tanδをもって誘電体の損失を評価しようと
するものである。このfanδは、材料の大きさ、形状
に無関係に絶縁性能を評価することができ、従来からシ
ェーリングブリソジ、電流比較型変成器ブリッジおよび
位相差法タンデルタ計などを用いた種々の方法によって
tanδを求めるようにしていた。
The tan delta method evaluates the loss of a dielectric material as follows. In other words, when an AC voltage is applied to a dielectric material, the phase of the charging current can be said to lead the phase of the applied AC voltage by 990 degrees in a dielectric material with no loss, but in general, the current progress is 90
less than degree. If we consider that a dielectric substance is represented by a circuit (parallel circuit of a capacitor C and a resistor R) as shown in Fig. 3, then if the dielectric substance is originally lossless, then the AC applied voltage E will be as shown in Fig. 4. A current i with a phase lead of 90 degrees should flow, but due to the loss of tJ4, a current with a lead angle φ smaller than 90 degrees with respect to the AC applied voltage E flows, so that The angle −ψ is set as δ, and the loss of the dielectric is evaluated using the tangent, tanδ. This fan δ can be used to evaluate the insulation performance regardless of the size and shape of the material, and has been conventionally evaluated by various methods such as the Schering bridge, the current comparison type transformer bridge, and the phase difference method tan delta meter. I was trying to ask for it.

しかしながら、シェーリングブリソジや電流比較型変成
器ブリッジによってtanδを求める方法では、ブリッ
ジの平衡操作が多く繁雑で時間がかかって不便であり、
かつ人為的測定誤差が含まれるとともに、標準コンデン
サが高耐圧になればなるほど高価になり、高圧機器の絶
縁劣化診断はコスト的に高くつくという問題があった。
However, the method of determining tan δ using the Schering bridge or current comparison type transformer bridge is inconvenient because it requires many bridge balancing operations, which is complicated and time-consuming.
In addition, it involves human measurement errors, and the higher the withstand voltage of standard capacitors, the more expensive they become, so diagnosing insulation deterioration in high-voltage equipment becomes expensive.

発明の目的 この発明は、簡単かつ高速に、試料のtanδを求める
ことができる安価な誘電体損失測定装置を提供すること
を目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide an inexpensive dielectric loss measuring device that can easily and quickly determine the tan δ of a sample.

発明の構成 この発明の誘電体損失測定装置は、被試験物に印加され
る電圧に応じた電圧信号を覗り出ず電圧信号取出回路と
、前記被試験物に流れる電流に応じた電流信号を取り出
す電流信号取出回路と、前記電圧信号取出回路により取
り出された電圧信号を一定振幅化する第1の自動利得制
御回路と、前記電流信号取出回路により取り出された電
流信号を一定振幅化する第2の自動利得制御回路と、前
記第1および第2の自動利得制御回路の出力を乗算する
乗算器と、この乗算器の出力を平滑して前記被試験物の
誘電正接に比例した信号を出力する平滑回路とを備える
構成にしたことを特徴とする。
Structure of the Invention The dielectric loss measuring device of the present invention includes a voltage signal extraction circuit that does not detect a voltage signal corresponding to a voltage applied to a test object, and a current signal that corresponds to a current flowing through the test object. a first automatic gain control circuit that makes the voltage signal taken out by the voltage signal take-out circuit a constant amplitude; and a second automatic gain control circuit that makes the current signal taken out by the current signal take-out circuit a constant amplitude. an automatic gain control circuit; a multiplier for multiplying the outputs of the first and second automatic gain control circuits; and a multiplier for smoothing the output of the multiplier to output a signal proportional to the dielectric loss tangent of the test object. The present invention is characterized by having a configuration including a smoothing circuit.

このように、被試験物に印加される電圧および被試験物
に流れる電流に応じた電圧信号および電流信号をそれぞ
れ一定振幅化し、両者を乗算して平滑することにより誦
δに比例した信号を取り出す構成にすると、高耐圧にな
ればなるほど高価となる従来のような標準コンデンサが
不要で、しかもブリッジ調整操作が不要であって、安価
でかつ簡便に被試験物lの誘電正接(tanδ)を求め
ることができ、特に高圧機器等の絶縁劣化診断には有用
である。
In this way, a voltage signal and a current signal corresponding to the voltage applied to the DUT and the current flowing through the DUT are made to have a constant amplitude, respectively, and by multiplying and smoothing the two, a signal proportional to δ is extracted. This configuration eliminates the need for conventional standard capacitors, which become more expensive as the withstand voltage increases, and also eliminates the need for bridge adjustment operations, making it possible to determine the dielectric loss tangent (tan δ) of the test object l at low cost and easily. It is particularly useful for diagnosing insulation deterioration in high-voltage equipment.

実施例の説明 この発明の一実施例を第1図および第2図に基づいて説
明する。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図はこの発明の一実施例の誘電体損失測定装置の回
路図を示している。この誘電体損失測定装置は、第1図
に示すように、被試験物1と直列にシャント抵抗2が接
続され、この被試験物1およびシャント抵抗2の直列回
路に試験電圧が印加されるようになっている。この試験
電圧は分圧抵抗3a、3bの直列回路にも印加されてい
る。
FIG. 1 shows a circuit diagram of a dielectric loss measuring device according to an embodiment of the present invention. As shown in FIG. 1, this dielectric loss measuring device has a shunt resistor 2 connected in series with a device under test 1, and a test voltage is applied to the series circuit of the device under test 1 and the shunt resistor 2. It has become. This test voltage is also applied to a series circuit of voltage dividing resistors 3a and 3b.

被試験物1およびシャント抵抗2の接続点に得られる電
流信号1c  (電圧として得られる)は被試験物1を
流れる充電電流に比例したものとなり、一方分圧抵抗3
a、3bの接続点に得られる電圧信号V Rは試験電圧
に比例したものとなる。
The current signal 1c (obtained as a voltage) obtained at the connection point between the DUT 1 and the shunt resistor 2 is proportional to the charging current flowing through the DUT 1, while the voltage dividing resistor 3
The voltage signal VR obtained at the connection point between a and 3b is proportional to the test voltage.

上記の電圧信号VRは、乗算器4a、整流平滑回路5a
および比較器6aからなるAGC回路(自動自得制御回
路)X+に入力され、また電流信号rcは、乗算器4b
、整流平滑回路5bおよび比較器6bからなるAGC回
路X2に入力される。
The above voltage signal VR is generated by the multiplier 4a, the rectifying and smoothing circuit 5a
The current signal rc is input to an AGC circuit (automatic self-control circuit) X+ consisting of a comparator 6a, and a multiplier 4b.
, is input to an AGC circuit X2 consisting of a rectifying and smoothing circuit 5b and a comparator 6b.

ここで、AGC回路X1.x2の動作について簡単に説
明する。まず、AGC回路X1については、電圧信号※
Rが乗算器4aの一方の入力端に加えられ、この乗算器
4aの出力電圧は整流平滑回路5aで整流平滑されたの
ち、比較器6aの一方の入力端に加えられる。比較器6
aの他方の入力端には基準電圧Vが入力され、比較器6
aの出力は乗算器4aの他方の入力端に帰還される。こ
の結果、比較器6aの両人力が一致するように帰還が行
われるごとになり、電圧信号ΩR(=VR鋪ωt)が入
力された場合には、乗算器4aの出力の電圧信号0の平
均値と基準電圧■(定数)とが一致するごとになるので
、 ↓ −kVs山ω t と表わされる。ただし、kは正弦波のピーク値と平均値
の比(定数)である。
Here, AGC circuit X1. The operation of x2 will be briefly explained. First, regarding the AGC circuit X1, the voltage signal*
R is applied to one input terminal of a multiplier 4a, and the output voltage of this multiplier 4a is rectified and smoothed by a rectification and smoothing circuit 5a, and then applied to one input terminal of a comparator 6a. Comparator 6
The reference voltage V is input to the other input terminal of a, and the comparator 6
The output of a is fed back to the other input terminal of the multiplier 4a. As a result, each time feedback is performed so that the two forces of the comparator 6a match, and when the voltage signal ΩR (=VR ωt) is input, the average of the voltage signal 0 of the output of the multiplier 4a Since the value and the reference voltage (constant) match each other, it is expressed as ↓ -kVs peak ω t . However, k is the ratio (constant) between the peak value and the average value of the sine wave.

したがって、入力の電圧信号vRの振幅変動に依存しな
い一定振幅の電圧信号0が得られることになる。
Therefore, a voltage signal 0 having a constant amplitude that does not depend on amplitude fluctuations of the input voltage signal vR is obtained.

また、AGC回路X2についても、上記と同様の動作を
行い、電流信号Ic  (= ICs:n (ωを十φ
))が入力された場合には、乗算器4bの出力の電流信
号i (電圧として得られる)の平均値と基準電圧I 
(定数で基準電流に相当)とが一致することになるので
、 1=kls山 (ω t + φ) と表わされる。
Furthermore, the AGC circuit X2 also performs the same operation as above, and the current signal Ic (= ICs:n
)), the average value of the current signal i (obtained as a voltage) of the output of the multiplier 4b and the reference voltage I
(which is a constant and corresponds to the reference current) coincides with each other, so it is expressed as 1=kls mountain (ω t + φ).

したがって、入力の電流信号rcの振幅変動に依存しな
い一定振幅の電流信号iが得られることになる。
Therefore, a current signal i having a constant amplitude that does not depend on amplitude fluctuations of the input current signal rc is obtained.

上記した電圧信号÷および電流信号1を乗算器7へ入力
し、乗算器7の出力を平滑回路8に入力すると、平滑回
路8より得られる電圧信号vtanは、 一τ vtan=vi −k 2 V  Is+nω ts+n  (ω t 
 + φ)となる。ここで、 A=に2Vl(定数) とすれば、 vtan=A四φ となる。ここで、第2図をもとにして上式を変形すると
、 vtan =AQ)S (yr/ 2−δ)−A Si
n δ となる。そしてδが小さい範囲では、S山δ= tan
δと近似できるので、 Vtan#Atanδ となる。
When the above voltage signal ÷ and current signal 1 are input to the multiplier 7, and the output of the multiplier 7 is input to the smoothing circuit 8, the voltage signal vtan obtained from the smoothing circuit 8 is: 1τ vtan=vi −k 2 V Is+nω ts+n (ω t
+φ). Here, if A=2Vl (constant), then vtan=A4φ. Here, if we transform the above equation based on Fig. 2, we get vtan = AQ)S (yr/2-δ)-A Si
It becomes n δ. And in the range where δ is small, S mountain δ= tan
Since it can be approximated to δ, it becomes Vtan#Atanδ.

したがって、平滑回路8から得られる電圧信号v ta
nとしては、fanδ、すなわち被試験物の誘電正接に
比例したものが得られる。
Therefore, the voltage signal v ta obtained from the smoothing circuit 8
As n, fan δ, that is, a value proportional to the dielectric loss tangent of the test object is obtained.

上記によるtanδの測定は、電圧および電流の振幅を
一定にしているところに特徴があり、AGC回路x、、
x2が波形歪、すなわち高調波の影響を除くように配慮
すれば、tanδの測定精度を高めることができる。特
に、電流信号1cは、高調波を増幅した信号となってお
り、高調波の影響を除くために、乗算器4bと整流平滑
回路5bとの量器こローパスフィルタ9を挿入して高調
波をしゃ断し、基本波ヘースのAGC回路X2を構成し
ている。なお、上記の箇所にローパスフィルタ9を挿入
しても電圧信号Vおよび電流信号iの位相関係に何ら影
響を与えることはない。
The above measurement of tan δ is characterized by keeping the voltage and current amplitudes constant, and the AGC circuit x,
If consideration is given to x2 to remove waveform distortion, that is, the influence of harmonics, the measurement accuracy of tan δ can be improved. In particular, the current signal 1c is a signal with harmonics amplified, and in order to remove the influence of harmonics, a low-pass filter 9 is inserted between the multiplier 4b and the rectifier and smoothing circuit 5b to amplify the harmonics. This constitutes the AGC circuit X2 of the fundamental wave Haas. Note that even if the low-pass filter 9 is inserted at the above location, it will not affect the phase relationship between the voltage signal V and the current signal i.

このように、この実施例は、被試験物lに印加される電
圧に応じた電圧信号■Rおよび被試験物1に流れる電流
に応じた電流信号ICをAGC回路xi、x2により一
定振幅の電流信号↓および電流信号iに変庚し、篭LN
:信号v:8よひ軍尻慴号iオ垂を西7で垂箪1.−さ
らに乗算器7の出力を平滑回路8で平滑し、平滑回路8
の出力としてtanδに比例した電圧信号v tanを
得る構成であるため、高耐圧になればなるほど高価にな
る従来のような標準コンデンサが不要で、しかもブリッ
ジ調整操作が不要であって、安価でかつ簡便に被試験物
1の誘電正接(I2nδ)を求めることができ、特に高
圧機器等の絶縁劣化診断には有用である。
In this way, in this embodiment, the voltage signal R corresponding to the voltage applied to the device under test l and the current signal IC corresponding to the current flowing through the device under test 1 are converted into a current of constant amplitude by the AGC circuits xi and x2. The signal ↓ and the current signal i change to the basket LN.
: Signal V: 8 Yohi Gunjiri Kei Go I Otare at West 7 and Taritan 1. - Furthermore, the output of the multiplier 7 is smoothed by the smoothing circuit 8, and the smoothing circuit 8
Since the configuration is such that a voltage signal v tan proportional to tan δ is obtained as the output of The dielectric loss tangent (I2nδ) of the test object 1 can be easily determined, and is particularly useful for diagnosing insulation deterioration of high-voltage equipment and the like.

発明の効果 この発明の誘電体損失測定装置は、被試験物に印加され
る電圧および被試験物に流れる電流に応じた電圧信号お
よび電流信号をそれぞれ一定振幅化し、両者を乗算して
平滑する構成であるため、高耐圧になればなるほど高価
になる従来のような標準コンデンサが不要で、しかもブ
リッジ調整操作が不要であって、安価でかつ簡便に被試
験物の誘電正接(tanδ)を求めることができ、特に
高圧機器等の絶縁劣化診断にはコスト面で有用である。
Effects of the Invention The dielectric loss measuring device of the present invention has a configuration in which a voltage signal and a current signal corresponding to a voltage applied to a test object and a current flowing through the test object are each made into constant amplitudes, and the two are multiplied and smoothed. This eliminates the need for conventional standard capacitors, which become more expensive as the withstand voltage increases, and also eliminates the need for bridge adjustment operations, making it possible to easily and inexpensively determine the dielectric loss tangent (tanδ) of the test object. It is particularly useful in terms of cost for diagnosing insulation deterioration in high-voltage equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のブロック図、第2図はそ
の原理説明図、第3図および第4図はtanδの説明図
である。 1・・・被試験物、2・・・シャント抵抗(電流信号取
出回路)、3.4・・・分圧抵抗(電圧信号取出回路)
、xi、x2・・・AGC回路、7・・・乗算器、8・
・・平滑回路、9・・・ローパスフィルタ 第3図 第4図
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a diagram explaining its principle, and FIGS. 3 and 4 are diagrams explaining tan δ. 1... Test object, 2... Shunt resistance (current signal extraction circuit), 3.4... Voltage division resistor (voltage signal extraction circuit)
, xi, x2... AGC circuit, 7... Multiplier, 8...
...Smoothing circuit, 9...Low pass filter Fig. 3 Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)被試験物に印加される電圧に応じた電圧信号を取
り出す電圧信号取出回路と、前記被試験物に流れる電流
に応じた電流信号を取り出す電流信号取出回路と、前記
電圧信号取出回路により取り出された電圧信号を一定振
幅化する第1の自動利得制御回路と、前記電流信号取出
回路により取り出された電流信号を一定振幅化する第2
の自動利得制御回路と、前記第1および第2の自動利得
制御回路の出力を乗算する乗算器と、この乗算器の出力
を平滑して前記被試験物の誘電正接に比例した信号を出
力する平滑回路とを備えた誘電体損失測定装置。
(1) A voltage signal extraction circuit that extracts a voltage signal corresponding to the voltage applied to the DUT, a current signal extraction circuit that extracts a current signal corresponding to the current flowing through the DUT, and the voltage signal extraction circuit. a first automatic gain control circuit that makes the amplitude of the voltage signal taken out constant; and a second automatic gain control circuit that makes the amplitude of the current signal taken out by the current signal extraction circuit constant.
an automatic gain control circuit; a multiplier for multiplying the outputs of the first and second automatic gain control circuits; and a multiplier for smoothing the output of the multiplier to output a signal proportional to the dielectric loss tangent of the test object. A dielectric loss measuring device equipped with a smoothing circuit.
(2)前記第2の自動利得制御回路は前記電流信号が一
方の入力端に加えられる利得制御用乗算器と、この利得
制御用乗算器の出力の基本波成分を通過させるローパス
フィルタと、このローパスフィルタの出力を整流および
平滑する整流平滑回路と、この整流平滑回路の出力が一
方の入力端に加えられるとともに基準電圧が他方の入力
端に加えられ出力を前記利得制御用乗算器の他方の入力
端に与える比較器とで構成している特許請求の範囲第(
1)項記載の誘電体損失測定装置。
(2) The second automatic gain control circuit includes a gain control multiplier to which the current signal is applied to one input terminal, a low-pass filter that passes the fundamental wave component of the output of the gain control multiplier, and A rectifying and smoothing circuit rectifies and smoothes the output of the low-pass filter, and the output of this rectifying and smoothing circuit is applied to one input terminal, a reference voltage is applied to the other input terminal, and the output is applied to the other input terminal of the gain control multiplier. and a comparator applied to the input terminal.
1) The dielectric loss measuring device described in item 1).
JP22146384A 1984-10-22 1984-10-22 Dielectric loss measuring device Expired - Lifetime JPH0646203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22146384A JPH0646203B2 (en) 1984-10-22 1984-10-22 Dielectric loss measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22146384A JPH0646203B2 (en) 1984-10-22 1984-10-22 Dielectric loss measuring device

Publications (2)

Publication Number Publication Date
JPS6199869A true JPS6199869A (en) 1986-05-17
JPH0646203B2 JPH0646203B2 (en) 1994-06-15

Family

ID=16767109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22146384A Expired - Lifetime JPH0646203B2 (en) 1984-10-22 1984-10-22 Dielectric loss measuring device

Country Status (1)

Country Link
JP (1) JPH0646203B2 (en)

Also Published As

Publication number Publication date
JPH0646203B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
JP2003028900A (en) Non-contact voltage measurement method and apparatus
US3786349A (en) Electrical reactance and loss measurement apparatus and method
US3766469A (en) Capacitance and loss tangent measuring apparatus
JPH03142372A (en) Mean square value signal measuring apparatus for measuring current in solid tripping apparatus
JP2962244B2 (en) PCB passive element isolation measurement circuit
US3458803A (en) Apparatus and method for directly measuring capacitance and dissipation factor of capacitors
EP0423987A2 (en) Apparatus and method for extracting the RMS value from a signal
JPS6199869A (en) Measuring device for dielectric loss
US6559630B2 (en) Method of measuring frequency of AC power
US5164660A (en) True, power, RMS current, and RMS voltage measuring devices
US2012291A (en) Modulation meter and method
US4322679A (en) Alternating current comparator bridge for resistance measurement
RU2115131C1 (en) Device determining loss tangent of dielectric
US6777959B2 (en) Method of determining a resistive current
JP3389528B2 (en) Impedance / voltage converter
US3452274A (en) Apparatus for measuring loss characteristics of dielectric test specimens including an electrical bridge with sine to square wave conversion means and integration means
SU938179A2 (en) Measuring converter of ac to dc voltage
JPH0466878A (en) Apparatus and method for measuring electrostatic capacitance, resistance and inductance
JPH0314146B2 (en)
KR940009817B1 (en) R-c or r-l parallel circuit separating testing apparatus using multiplier
JPS5938731Y2 (en) phase detector
US4820969A (en) Polarity compensated apparatus for measuring the impedance of a polar device
KR19980034681A (en) In Circuit Tester
JPH0564782U (en) Insulation resistance / voltage converter
JP6626766B2 (en) Measurement method of nth harmonic current