JPS6199582A - Tig welding method in hot wire switching - Google Patents

Tig welding method in hot wire switching

Info

Publication number
JPS6199582A
JPS6199582A JP21938784A JP21938784A JPS6199582A JP S6199582 A JPS6199582 A JP S6199582A JP 21938784 A JP21938784 A JP 21938784A JP 21938784 A JP21938784 A JP 21938784A JP S6199582 A JPS6199582 A JP S6199582A
Authority
JP
Japan
Prior art keywords
current
wire
arc
welding
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21938784A
Other languages
Japanese (ja)
Inventor
Koji Tamura
広治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP21938784A priority Critical patent/JPS6199582A/en
Publication of JPS6199582A publication Critical patent/JPS6199582A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1093Consumable electrode or filler wire preheat circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain the welding part of high quality with high efficiency by making a wire current the alternating current electrifying in the same direction and reverse direction as an arc base current. CONSTITUTION:A tungsten electrode 1 and base material 2 are connected by DC arc current 3 and wire power sources 7a, 7b are connected in parallel via a contact tip 6 between the base material 2 and wire 5. The arc current is controlled by a current controlling circuit 11 so as to become the pulse current switching in an arc piece current and arc base current on the arc current 3 and wire power sources 7a, 7b. The wire power sources 7a, 7b as well electrify by a current controlling circuit 11 in the electrifying term of the arc base current with the wire current in the same direction as the arc current and the wire current in the reverse direction to the arc current as the alternating current alternately to the wire 5 with the alternate opening and closing of the wire power sources 7a, 7b.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はホットワイヤTIG溶接方法に係り、特に高能
率で高品質の溶接部が得られるホットワイヤスイッチン
グTIG(以下単にH8Tという)f8接方法に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a hot wire TIG welding method, and more particularly to a hot wire switching TIG (hereinafter simply referred to as H8T) f8 welding method that provides high efficiency and high quality welds. It is something.

〔発明の背景〕[Background of the invention]

TIG溶接は、MIG溶接に比べて溶接全域への酸素や
窒素の悪影響が少な(、高品質の溶接部が得られる等の
長所があるが、その反面TIG溶接はMIG溶接に比べ
て溶融金属量が少なく浴接能率が低い欠点がある。この
ためTIG溶接においては、溶融池に供給されるワイヤ
にもワイヤ電流を通電し、このワイヤ電流によるジュー
ル熱でワイヤを加熱して溶融金属量を増加させて溶接作
業能率を高めたホットワイヤTIG溶接法が実用化され
ている。
Compared to MIG welding, TIG welding has advantages such as less adverse effects of oxygen and nitrogen on the entire weld area (and high quality welds can be obtained), but on the other hand, TIG welding requires less molten metal than MIG welding. Therefore, in TIG welding, a wire current is also passed through the wire that is supplied to the molten pool, and the wire is heated by the Joule heat generated by this wire current to increase the amount of molten metal. The hot wire TIG welding method, which improves welding efficiency, has been put into practical use.

第8図はホットワイヤTIG溶接で使用されている溶接
電源の概略構成図である。タングステン電極1と母材2
を直流のアーク電源3で接続し、タングステン電極1を
負極、母材2を正極としてアルゴンシールドガス雰囲気
中でアーク4を形成させて、母材2の溶融を行う。これ
にワイヤ5を供給するだけであれば通常のTIG溶接で
あるが、コンタクトチップ6を介してワイヤ5にワイヤ
電源7から直流あるいは交流のワイヤ電流を通電し、こ
のワイヤ電流によってジュール熱を発生させ、ワイヤ5
の溶融速度を向上させて溶融金属量な増加させたのがホ
ットワイヤTIG溶接である。
FIG. 8 is a schematic diagram of a welding power source used in hot wire TIG welding. Tungsten electrode 1 and base material 2
are connected to a DC arc power source 3, and an arc 4 is formed in an argon shielding gas atmosphere with the tungsten electrode 1 as a negative electrode and the base material 2 as a positive electrode, and the base material 2 is melted. If only the wire 5 is supplied, it is normal TIG welding, but a DC or AC wire current is passed from the wire power source 7 to the wire 5 via the contact tip 6, and this wire current generates Joule heat. wire 5
Hot wire TIG welding improves the melting rate and increases the amount of molten metal.

ところが、ホットワイヤTIG溶接での問題点はワイヤ
5・\ワイヤ電流を通電することによって発生する磁界
によってアークの磁気吹き(MagngttcBlow
 )現象が発生することである。
However, the problem with hot wire TIG welding is that the magnetic field generated by passing wire current causes arc magnetic blow (MagngttcBlow).
) phenomenon occurs.

この磁気吹き現象はタングステン電極1とワイヤ5へ同
一方向のアーク電流とワイヤ電流を通電するとワイヤ電
流による磁界によってアーク4がワイヤ側に吸引され、
逆にタングステン電極1とワイヤ5へ逆方向のアーク電
流、ワイヤ電流を通電させると、ワイヤ電流による磁界
によってアーク4がワイヤ5から離れる方向へ反発する
現象である。
This magnetic blowing phenomenon occurs when an arc current and a wire current are passed in the same direction to the tungsten electrode 1 and the wire 5, and the arc 4 is attracted to the wire side by the magnetic field caused by the wire current.
Conversely, when an arc current and a wire current are applied in opposite directions to the tungsten electrode 1 and the wire 5, the arc 4 is repelled in the direction away from the wire 5 by the magnetic field caused by the wire current.

この様にアーク電流とワイヤ電流を逆方向に通電すると
、アーク4が溶接進行方向に対して前方あるいは後方に
太き(偏向して安定せず、このたl  めに溶接作業性
が著しく低下する欠点がある。このようにホットワイヤ
TIG溶接ではアーク4の磁気吹きの影響を少なくして
溶接するために、通常ワイヤ電流をアーク電流の2分の
1以下に制限する必要があり、ワイヤ5の溶融速度はせ
いぜい20g/分程度である。
When the arc current and wire current are applied in opposite directions in this way, the arc 4 becomes thicker (deflected and unstable) in the forward or backward direction relative to the direction of welding progress, resulting in a significant decrease in welding workability. In this way, in hot wire TIG welding, in order to weld while reducing the influence of the magnetic blow of the arc 4, it is usually necessary to limit the wire current to one-half or less of the arc current; The melting rate is at most about 20 g/min.

ところで、ワイヤ5への通電によるアーク4への磁気干
渉をなくし、更にワイヤ5の溶融速度を高める方法とし
てH3Tm接法が開発されている。
Incidentally, the H3Tm welding method has been developed as a method for eliminating magnetic interference with the arc 4 due to energization of the wire 5 and further increasing the melting speed of the wire 5.

第9図はH8T溶接のアークおよびワイヤに流れる電流
の時間的変化を示す特性図で、第9図において、■αは
アーク電流、ICLPはアークビーク電流、■αbはア
ークベース電流、IwPはワイヤピーク電流、T1はア
ークビーク電流IaPの通電期間、T、はワイヤピーク
電流IuPの通電期間を示す。
Figure 9 is a characteristic diagram showing temporal changes in the current flowing through the arc and wire during H8T welding. In Figure 9, ■ α is the arc current, ICLP is the arc peak current, ■ αb is the arc base current, and IwP is the wire peak. The current, T1, indicates the energization period of the arc peak current IaP, and T indicates the energization period of the wire peak current IuP.

このH3T溶接法は第9図に示す如(アーク電流Iαと
ワイヤ電流工wの電流波形から明らかなように、アーク
電流Iαをアークビーク電流ICLPとアークベース電
流Iαbの通電期間T1 p T2を持つパルス電流と
しアークペース電流工αbの通電期間T2の間にのみワ
イヤ5ヘワイヤ電流Iw  を通電することにより、ア
ーク4への磁気干渉を少なくして溶融金FA量を増加さ
せ、溶接作業能率を上げて高品質の溶接部を得ようとす
るものである。このH8T溶接方法によると、100.
9/分程度の溶融金属量を得るようにワイヤ電流Iwを
増大させても溶接作業性に悪影響を及ぼすほどのアーク
4の偏向は発生しない。
This H3T welding method is as shown in Fig. 9 (as is clear from the current waveforms of arc current Iα and wire current w), arc current Iα is pulsed with arc peak current ICLP and arc base current Iαb with conduction period T1 p T2. By passing the wire current Iw to the wire 5 only during the energization period T2 of the arc pace current machine αb, magnetic interference to the arc 4 is reduced, the amount of molten metal FA is increased, and welding work efficiency is increased. The aim is to obtain a high-quality weld.According to this H8T welding method, 100.
Even if the wire current Iw is increased to obtain an amount of molten metal of about 9/min, the arc 4 is not deflected to the extent that it adversely affects welding workability.

以上のように、H8T溶接方法はTIG溶接、ホットワ
イヤTIG溶接の欠点であった少ない溶融金fitの問
題を解決できたことから、広い範囲で実用化が行われて
いるが、溶融金属量が増加したことによって、TIG溶
接特有の問題がクローズアップされてきた。
As mentioned above, the H8T welding method has been put into practical use in a wide range of areas because it has solved the problem of small molten metal fit, which was a drawback of TIG welding and hot wire TIG welding. Due to this increase, problems unique to TIG welding have been brought into focus.

第10図はH3T溶接によって溶融金属量を3+[’/
秒以上にした場合のビード形状を示し、(α)はワイヤ
正極、母材負極の場合、(b)はワイヤ負極、母材正極
の場合を示す。
Figure 10 shows that H3T welding increases the amount of molten metal by 3+['/
The bead shape is shown when the time is longer than 2 seconds, (α) shows the case of a wire positive electrode and a base material negative electrode, and (b) shows the case of a wire negative electrode and a base material positive electrode.

第10図において2は母材、8は溶接金属、9は未溶融
ワイヤによる溶接欠陥、10はビード幅、θは母材2と
の接触角を示す。
In FIG. 10, 2 indicates the base material, 8 indicates the weld metal, 9 indicates a welding defect due to unmelted wire, 10 indicates the bead width, and θ indicates the contact angle with the base material 2.

第10図において、ワイヤ電流IuJをアーク電流Iα
と逆方向(第10図(α)に示す様にワイヤ正極、母材
負極にする)に通電すると溶接金属8のビード幅10は
広くなり、母材2との接触角θは小さくなるが、一方で
は溶接金属中央部に未溶融のワイヤが残ったことに起因
する溶接欠陥9がしばしば発生する。他方、ワイヤ電流
■wをアーク電流工αと同一方向(第10図(b)に示
す様にワイヤ負極、母材正極にする)に通電すると、溶
接金属8のビード幅1゜は狭くなってビード表面は凸型
に盛り上り、母材2との接触角θは大きくなる。このよ
うにビード形状はビードの上に次パスの溶接を行なうと
融合不良を発生しやすい。特に、厚肉材の狭開先溶接に
H8T溶接を応用すると第10図(Alに示した溶接金
属8の様にビード形状は盛り上ったものとなり2パス目
の溶接時にはこの盛り上ったビートカ大きな問題となる
In Fig. 10, the wire current IuJ is defined as the arc current Iα
When current is applied in the opposite direction (the wire is the positive electrode and the base metal is negative as shown in FIG. 10 (α)), the bead width 10 of the weld metal 8 becomes wider and the contact angle θ with the base metal 2 becomes smaller; On the other hand, weld defects 9 often occur due to unmelted wire remaining in the center of the weld metal. On the other hand, when the wire current ■w is applied in the same direction as the arc current α (the wire is the negative electrode and the base metal is the positive electrode, as shown in FIG. 10(b)), the bead width of the weld metal 8 becomes narrower by 1°. The bead surface is raised in a convex shape, and the contact angle θ with the base material 2 becomes large. As described above, the bead shape tends to cause fusion failure when the next pass of welding is performed on top of the bead. In particular, when H8T welding is applied to narrow gap welding of thick-walled materials, the bead shape becomes raised as shown in weld metal 8 shown in Figure 10 (Al). Beatka becomes a big problem.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、溶融金属量が多く、高能率で
溶接作業ができ、しかも健全な溶接部を得ることができ
るH8T溶接方法を得ようとするものである。
The present invention aims to eliminate such conventional drawbacks,
The purpose is to obtain an H8T welding method that allows for a large amount of molten metal, allows for highly efficient welding work, and provides a sound weld.

〔発明の概要〕[Summary of the invention]

本発明は前述の目的を達成するために、ワイヤ電流をア
ークペース電流と同一方向、逆方向に通電する交番電流
にしたのである。
In order to achieve the above-mentioned object, the present invention makes the wire current an alternating current flowing in the same direction as the arc pace current and in the opposite direction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係るH8T溶接における溶接
電源の概略構成図、第2図は第1図の溶接電源で得られ
るアーク電流、ワイヤ電流の電流波形図、第3図(α)
(b)は狭開先溶接における縦断面図および横断面図、
第4図は第1図の他の実施例を示す溶接電源の概略構成
図、第5図は第4図の溶接電源で得られるアーク電流、
ワイヤ電流の電流波形図、第6図(α)(h)はワイヤ
電流によるアークへの磁気干渉を説明する模式図、第7
図(α)(b)はアークの偏向を説明する溶接部の断面
図である。
Fig. 1 is a schematic configuration diagram of a welding power source for H8T welding according to an embodiment of the present invention, Fig. 2 is a current waveform diagram of arc current and wire current obtained with the welding power source of Fig. 1, and Fig. 3 (α)
(b) is a vertical cross-sectional view and a cross-sectional view in narrow gap welding,
Fig. 4 is a schematic configuration diagram of a welding power source showing another embodiment of Fig. 1, and Fig. 5 shows an arc current obtained with the welding power source of Fig. 4;
Current waveform diagram of wire current, Figure 6 (α) (h) is a schematic diagram explaining magnetic interference to the arc due to wire current, Figure 7
Figures (α) and (b) are cross-sectional views of the welded portion for explaining deflection of the arc.

r   第1図から第7図において、符号1がら8は従
来のものと同一のものを示す。
r In FIGS. 1 to 7, numerals 1 to 8 indicate the same parts as the conventional ones.

11は電流制御回路、12は磁界、13は溶融金属、I
んは交番電流である。
11 is a current control circuit, 12 is a magnetic field, 13 is a molten metal, I
is an alternating current.

この様な構造において、実施例について説明するが、そ
れ以前に第6図、第7図を用いて発明者が行なりた交番
電流IAによる磁界120発生およびこの磁界12によ
るタングステン電極1からのアーク4の偏向について述
べる。
In such a structure, an embodiment will be described. Prior to that, the inventor used FIG. 6 and FIG. Let's talk about deflection number 4.

第6図(α)、(bl ′VCおいて0、■はアーク電
流およびワイヤ電流の流れ方向を示す。
In FIG. 6 (α) and (bl'VC, 0 and ■ indicate the flow directions of arc current and wire current.

第6図(α)に示すようにアーク電流工αとワイヤ電流
I、を逆方向(アーク電流■、ワイヤ電流■)に通電し
た場合には、第6図(α)に示したように、ワイヤ電流
I、によってワイヤ5を中心に時計方向の磁界12が発
生し、この磁界12によってアーク4には溶接進行方向
側(第6図(α)の左方向)へ反発力が働きアーク4は
ワイヤ5から離れる。このため、第7図(α)に示すよ
うにタングステン電極1からのアーク4には溶接進行方
向に対して前方(第7図(α)の左)へ偏向するために
、母材2の前方が溶融されると同時に、溶融金属13も
前方へ流動するためビード幅はそれだけ広くなる。しか
し、ワイヤ5の供給位置での溶融金属量は少な(、しか
も温度も低くなっていることから、ワイヤ5の供給量が
多くなると未溶融の状態で溶融金属13内に残留し、溶
接欠陥となることがわかった。また逆に、ワイヤ電流I
wとアーク電流Iαを同一方向(0,(E))にすると
、第6図(A)に示すように、アーク4には、ワイヤ5
を中心に発生する反時計方向の磁界12によって第6図
(b)のワイヤ5方向(右方向)への吸引力が働き、第
7 tb) K示すようにタングステン電極1からのア
ーク4には溶接進行方向に対して後方、すなわちワイヤ
5の方向へ偏向する。このため、ワイヤ5の供給位置で
の溶融金属量は多くなり、またアーク4のふく射熱でワ
イヤ5が効果的に加熱されるため、未溶融ワイヤによる
溶接欠陥は発生しない。しかし、一方では溶接進行方向
前方に位置する母材2の溶融は少なくなり、ビード幅は
第7図(α)のものよりも広がらないことが確認された
When the arc current α and the wire current I are applied in opposite directions (arc current ■, wire current ■) as shown in FIG. 6(α), as shown in FIG. 6(α), A clockwise magnetic field 12 is generated around the wire 5 by the wire current I, and this magnetic field 12 exerts a repulsive force on the arc 4 in the direction of welding progress (to the left in FIG. 6 (α)), causing the arc 4 to Move away from wire 5. Therefore, as shown in FIG. 7(α), the arc 4 from the tungsten electrode 1 is deflected forward (to the left in FIG. 7(α)) with respect to the welding progress direction, so that the arc 4 is directed toward the front of the base metal 2. At the same time as the molten metal 13 is melted, the molten metal 13 also flows forward, making the bead width correspondingly wider. However, since the amount of molten metal at the supply position of the wire 5 is small (and the temperature is low), when the amount of the wire 5 supplied increases, it remains in the molten metal 13 in an unmelted state, causing welding defects. It was found that the wire current I
When w and the arc current Iα are set in the same direction (0, (E)), the arc 4 has a wire 5 as shown in FIG. 6(A).
The magnetic field 12 in the counterclockwise direction generated around It is deflected backward with respect to the direction of welding progress, that is, in the direction of the wire 5. Therefore, the amount of molten metal at the supply position of the wire 5 increases, and since the wire 5 is effectively heated by the radiated heat of the arc 4, welding defects due to unmelted wire do not occur. However, on the other hand, it was confirmed that the base metal 2 located at the front in the welding progress direction was less melted, and the bead width was not wider than that in FIG. 7 (α).

本発明はこのワイヤ電流の流れ方向によって発生する磁
界12によるアーク4の偏向を応用し、ワイヤ電流を交
番電流にしたものである。
The present invention utilizes the deflection of the arc 4 due to the magnetic field 12 generated by the flow direction of the wire current to turn the wire current into an alternating current.

第1図において、タングステン電極1と母材2を直流ア
ーク電源3で接続し、さらに、母材2とワイヤ50間に
コンタクトチップ6を介してワイヤ電源7α、7bを並
列に接続している。更にアーク電源3、ワイヤ電源7α
、7bには電流制御回路11によりアーク電流lαはア
ークビーク電流工αPとアークペース電流■αbに切替
わるパルス電流となるように制御される。また、ワイヤ
電源7α、7hも電流制御回路11により、アークペー
ス電流1abの通電期間T、において、ワイヤ電源7α
、7bが交互に開閉し、ワイヤ5にアーク電流工αと同
一方向のワイヤ電流Iwとアーク電流工αと逆方向のワ
イヤ電流Iwが交互に交番電流IAとして通電させるよ
うにしたものである。
In FIG. 1, a tungsten electrode 1 and a base material 2 are connected by a DC arc power source 3, and wire power supplies 7α and 7b are connected in parallel between the base material 2 and a wire 50 via a contact tip 6. Furthermore, arc power supply 3, wire power supply 7α
, 7b, the arc current lα is controlled by the current control circuit 11 so as to become a pulse current that switches to an arc beak current αP and an arc pace current αb. Further, the wire power supplies 7α and 7h are also controlled by the current control circuit 11 to control the wire power supplies 7α and 7h during the energization period T of the arc pace current 1ab.
, 7b are alternately opened and closed, and a wire current Iw in the same direction as the arc current flow α and a wire current Iw in the opposite direction to the arc current flow α are alternately energized as an alternating current IA.

第2図は、第1図の溶接電源におけるタングステン電極
1、ワイヤ5のアーク電流lα、ワイヤ電流Iwの電流
波形を示したものである。
FIG. 2 shows the current waveforms of the tungsten electrode 1, the arc current lα of the wire 5, and the wire current Iw in the welding power source shown in FIG.

第2図においてIaP、I(Lbs II#pb 11
% T2は第9図のものと同一でありs ”3 % T
4はワイヤ電流■おの通電期間、IAは交番電流を示す
In Fig. 2, IaP, I (Lbs II#pb 11
% T2 is the same as that in Figure 9, and s ”3 % T
4 indicates the conduction period of the wire current, and IA indicates the alternating current.

アーク電流Iαはアークピーク電流IaPとアークベー
ス電流1abに切替るパルス電流となっており、アーク
電流Iαがアークベース電流1abの通電期間T2にお
いて、まずWLR,制御回路11により、ワイヤ電源7
αが接続されるため、ワイヤ5にはアーク電流Iαと同
一方向のワイヤ電流I、が通電される。
The arc current Iα is a pulse current that switches between the arc peak current IaP and the arc base current 1ab, and during the conduction period T2 when the arc current Iα is the arc base current 1ab, the WLR and the control circuit 11 first control the wire power supply 7.
Since α is connected, the wire 5 is energized with a wire current I in the same direction as the arc current Iα.

その後、ワイヤ電源7αが電流制御回路11によって遮
断されると同時にワイヤ電源7bが接続され、アークを
流Iαと逆方向のワイヤ電流Iwがワイヤ5に通電され
る。このように、アークベース電流■αbの通電期間T
2において、ワイヤ5への通電方向が交互に変化して交
番電流I&となるために通電期間Tsにおいてはアーク
4がワイヤ5の方向すなわち後方に、通電期間T4にお
いてはワイヤ5とは逆の方向すなわち前方にアーク4が
偏向する。従って、ワイヤ電流Iwが流れる通電期間T
3においては、ワt  イヤ5の溶融が加速され、通電
期間T・にお、・【は前方の母材2が予熱、溶融されて
ビード幅が広くなり、母材2との接触角度θも小さくな
る。
Thereafter, the wire power source 7α is cut off by the current control circuit 11, and at the same time the wire power source 7b is connected, and the wire current Iw in the opposite direction to the arc flowing Iα is applied to the wire 5. In this way, the conduction period T of the arc base current ■αb
2, the direction of energization to the wire 5 changes alternately and becomes an alternating current I&, so that the arc 4 is in the direction of the wire 5, that is, backward, during the energization period Ts, and in the opposite direction to the wire 5 during the energization period T4. That is, the arc 4 is deflected forward. Therefore, the energization period T during which the wire current Iw flows
3, the melting of the wire 5 is accelerated, and during the energization period T, the base material 2 in front is preheated and melted, the bead width becomes wider, and the contact angle θ with the base material 2 also increases. becomes smaller.

第2図において1通電期間T3及びT4はほぼ同一時間
とするのが良いが、通電期間T3を長くすればビード幅
が狭く、又通電期間T4を長くすれば逆にビード幅の広
い溶接部を得ることができる。
In Fig. 2, it is preferable that one energization period T3 and T4 be approximately the same time, but if the energization period T3 is made longer, the bead width will be narrower, and if the energization period T4 is made longer, the bead width will be wider. Obtainable.

以下、本発明者が行なった5US316H厚肉管(ψ5
46 X t 106 )を本発明によろH8T溶接方
法で狭開先溶接した溶接条件を下表に示す。
Below, the 5US316H thick-walled pipe (ψ5
46

また、ワイヤはER16−8−2(φ1.2)を用いた
。この狭開先溶接においては、ビードが5凰になると次
パスの溶接が困難となるが、第3図(α)の模式図で示
したように、このH3T溶接法忙よれば凹型となり良好
であった。溶接後、放射線検査、染色探傷検査、断面検
査等を行ったが、溶接部のa接欠陥は全く発生しておら
ず、健全な溶接部であることが確認された。
Further, the wire used was ER16-8-2 (φ1.2). In this narrow gap welding, when the bead becomes 5mm, it becomes difficult to weld the next pass, but as shown in the schematic diagram in Figure 3 (α), with this H3T welding method, it becomes concave and is good. there were. After welding, radiographic inspection, dye inspection, cross-sectional inspection, etc. were conducted, and it was confirmed that there were no a-contact defects at all in the welded area, and that the welded area was sound.

第4図は本発明の他の実施例になるH3T溶接における
溶接電源の概略構成図、第5図は第4図における電流波
形を示す図である。
FIG. 4 is a schematic configuration diagram of a welding power source in H3T welding according to another embodiment of the present invention, and FIG. 5 is a diagram showing the current waveform in FIG. 4.

第4図に本発明の他の実施例になるホットワイヤスイッ
チングTIG溶接電源の概略構成図を、第5図に第4図
の電流波形を示す。第4図において、ワイヤtfi7は
交流電源を用いた。本実施例の場合、アーク電流■αの
パルスを周期は60H,9としてほり、アークベース電
流1ahの通電期間T2おいて、ワイヤN、源7を接続
すれば1サイクル毎に交流の1i流(交番電流It)が
ワイヤ5に通電されて、7X1図及び第2図で説明した
ものと同等の効果を奏するものである。この場合、ワイ
ヤ電源7を交流電源1台でH8T溶接を行なうことがで
きるので既済的である。
FIG. 4 shows a schematic configuration diagram of a hot wire switching TIG welding power source according to another embodiment of the present invention, and FIG. 5 shows the current waveform of FIG. 4. In FIG. 4, an AC power source was used for the wire tfi7. In the case of this embodiment, the period of the pulse of the arc current ■α is 60H, 9, and if the wire N and the source 7 are connected during the conduction period T2 of the arc base current 1ah, the AC current 1i current ( An alternating current It) is applied to the wire 5, and the same effect as that described in FIG. 7X1 and FIG. 2 is obtained. In this case, H8T welding can be carried out using only one AC power source as the wire power source 7, so it is economical.

〔発明の効果〕〔Effect of the invention〕

本発明はワイヤ1流タアークペース電流と同一方向、逆
方向に通電する交番電流にしたので、溶融金属量を増加
させて高能率のH8T溶接を行なうことができ、しかも
健全な溶接部が得られるH8T溶接を行なうことができ
る。
Since the present invention uses an alternating current that flows in the same direction and in the opposite direction to the wire first arc pace current, it is possible to increase the amount of molten metal and perform H8T welding with high efficiency, and also to obtain a sound weld. H8T welding can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るH8T溶接における溶接
電源の概略構成図、第2図は第1図の溶接電源で得られ
るアーク電流、ワイヤ電源の電流波形図、第3図(α)
、1b)は狭開先溶接におゆる縦断面図および横断面図
、第4図は他の実施例を示す溶接電源の概略構成図、第
5図は第4図の浴接′電源で得られるアーク電流、ワイ
ヤ電流の電流波形図、第6図(α)、(A)はワイヤ電
流によるアークへの磁気干渉を説明する模式図、第7図
(α)、(blはアークの偏向を説明する溶接部の断面
図、第8図は従来のホットワイヤTIG溶接における溶
接電源の概略構成図、第9図は第8図の溶接電源で得ら
れるアーク電流、ワイヤ電流の電流波形図、第10図(
α)、Ib)は従来のH8T溶接による浴着金属の断面
図である。 1・・・・・・タングステン電極、2・・・・・・母材
、4・・・・・・アーク、5・・・・・・ワイヤ、Lp
・・・・・・アークビーク電流、Iab・・・・・・ア
ークベース電流、T2・・・・・・アークベース電流の
通道期間、■、・・・・・・ワイヤ電流、IJ・・・・
・・交番電流。 l 第2図 第3図 (σ)               (b)S 第4図 第5図 第6図 (a)                    (b
)第7図
Fig. 1 is a schematic configuration diagram of a welding power source for H8T welding according to an embodiment of the present invention, Fig. 2 is a current waveform diagram of the arc current and wire power source obtained with the welding power source of Fig. 1, and Fig. 3 (α)
, 1b) are longitudinal sectional views and cross sectional views for narrow gap welding, FIG. 4 is a schematic configuration diagram of a welding power source showing another embodiment, and FIG. Figures 6 (α) and (A) are schematic diagrams explaining the magnetic interference to the arc caused by the wire current, and Figures 7 (α) and (bl are diagrams showing the deflection of the arc). 8 is a schematic diagram of a welding power source in conventional hot wire TIG welding, FIG. 9 is a current waveform diagram of the arc current and wire current obtained with the welding power source of FIG. 8, and FIG. Figure 10 (
α) and Ib) are cross-sectional views of bath-deposited metal by conventional H8T welding. 1... Tungsten electrode, 2... Base material, 4... Arc, 5... Wire, Lp
...Arc beak current, Iab...Arc base current, T2...Arc base current passage period,■,...Wire current, IJ...
...Alternating current. l Figure 2 Figure 3 (σ) (b) S Figure 4 Figure 5 Figure 6 (a) (b)
) Figure 7

Claims (1)

【特許請求の範囲】[Claims] タングステン電極と母材の間にアークピーク電流とアー
クベース電流を切替えてパルス電流を供給するとともに
、ワイヤと母材の間にアークベース電流の通電期間にの
みワイヤ電流を通電するホットワイヤスイッチングTI
G溶接方法において、前記ワイヤ電流をアークベース電
流と同一方向、逆方向に通電する交番電流にしたことを
特徴とするホットワイヤスイッチングTIG溶接方法。
Hot wire switching TI that supplies a pulse current between the tungsten electrode and the base metal by switching between the arc peak current and the arc base current, and also passes the wire current between the wire and the base metal only during the period when the arc base current is energized.
A hot wire switching TIG welding method characterized in that the wire current is an alternating current flowing in the same direction as the arc base current and in the opposite direction.
JP21938784A 1984-10-20 1984-10-20 Tig welding method in hot wire switching Pending JPS6199582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21938784A JPS6199582A (en) 1984-10-20 1984-10-20 Tig welding method in hot wire switching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21938784A JPS6199582A (en) 1984-10-20 1984-10-20 Tig welding method in hot wire switching

Publications (1)

Publication Number Publication Date
JPS6199582A true JPS6199582A (en) 1986-05-17

Family

ID=16734618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21938784A Pending JPS6199582A (en) 1984-10-20 1984-10-20 Tig welding method in hot wire switching

Country Status (1)

Country Link
JP (1) JPS6199582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777858A1 (en) * 2013-03-15 2014-09-17 Ewm Ag Heating of a welding filler for arc welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777858A1 (en) * 2013-03-15 2014-09-17 Ewm Ag Heating of a welding filler for arc welding

Similar Documents

Publication Publication Date Title
EP0844039B1 (en) Horizontal welding method and welding equipment
US5932121A (en) Welding method in the overhead and vertical positions
EP0316936B1 (en) Ac tig welding apparatus using hot wire
JP2000158132A (en) Short circuit welding machine
WO1982001839A1 (en) Rotating arc welding method
JPS61186172A (en) Hot wire tig welding method
CN108994427B (en) Direct current welding arc magnetic blow control method utilizing external magnetic field expansion device
JPH0337469B2 (en)
JPS6199582A (en) Tig welding method in hot wire switching
JP2778920B2 (en) Lateral welding method and lateral welding device
JPH0320310B2 (en)
JP3867164B2 (en) Welding method
CN113182689A (en) Titanium alloy angle joint welding method based on double-beam laser
JPS6048271B2 (en) Arc welding method
CZ287455B6 (en) Welding process and apparatus for making the same
KR20080082336A (en) Apparatus & method for electro gas welding using hot wire
JPH0635061B2 (en) Narrow groove TIG welding equipment
JPS6255472B2 (en)
JPH0359785B2 (en)
JPS5927773A (en) Single side welding method
JPH0221909B2 (en)
JP2005095953A (en) Tig welding method and device
JPH0299276A (en) Hot wire heating power source and hot wire welding procedure utilizing the same
JPH06328260A (en) Plasma arc welding method
JP2001300775A (en) Backing strip for welding