JPS6199273A - Thionyl chloride-lithium battery - Google Patents

Thionyl chloride-lithium battery

Info

Publication number
JPS6199273A
JPS6199273A JP59220997A JP22099784A JPS6199273A JP S6199273 A JPS6199273 A JP S6199273A JP 59220997 A JP59220997 A JP 59220997A JP 22099784 A JP22099784 A JP 22099784A JP S6199273 A JPS6199273 A JP S6199273A
Authority
JP
Japan
Prior art keywords
charging
thionyl chloride
battery
lithium
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220997A
Other languages
Japanese (ja)
Inventor
Takeya Kazehara
風原 健也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59220997A priority Critical patent/JPS6199273A/en
Publication of JPS6199273A publication Critical patent/JPS6199273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent any voltage delay by charging a thionyl chloride-lithium battery before it is used. CONSTITUTION:A thionyl chloride-lithium battery is charged before its use by either a constant current method or a constant voltage method. And a more stable cycle reaction is produced by the constant current method. When using the constant current method to charge the battery, it is preferable that the charging current density be adjusted to around 0.1-20mA/cm<2>. In order to sufficiently prevent voltage delay by charging, it is preferable that the charging depth relative to the electric amount of thionyl chloride be adjusted to at least 5% preferably at least 10%. By the means mentioned above, it is possible to prevent any voltage reduction during the initial stage of electric discharge and to prevent voltage delay without causing any decrease of discharge capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩化チオニル−リチウム電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to thionyl chloride-lithium batteries.

〔従来の技術〕[Conventional technology]

塩化チオニルを電解液の溶媒および正極活物質とし、リ
チウムを負極とする塩化チオニル−リチウム電池では、
正極活物質である塩化チオニルが必然的にリチウム負極
と接触するため、リチウム負極上に塩化リチウムの皮膜
が形成され、この塩化リチウム皮膜が非常に緻密な膜で
あるため、リチウム負極の不働態化を招くことになる。
In the thionyl chloride-lithium battery, which uses thionyl chloride as the electrolyte solvent and positive electrode active material and lithium as the negative electrode,
Since thionyl chloride, which is a positive electrode active material, inevitably comes into contact with the lithium negative electrode, a lithium chloride film is formed on the lithium negative electrode, and since this lithium chloride film is a very dense film, it becomes passivated. will be invited.

その結果、この電池を一定期間貯蔵したのちに使用する
と、放電初期に電圧降下が生じ、そのため所定の作動電
圧値に上昇するまでに時間がかかる、いわゆる電圧遅延
が生じるという欠点があった。
As a result, when this battery is used after being stored for a certain period of time, a voltage drop occurs at the beginning of discharge, which causes a so-called voltage delay, in which it takes time for the battery to rise to a predetermined operating voltage value.

そのため、電解液に二酸化イオウを添加し、リチウム負
極上に生成する塩化リチウム皮膜の結晶性を高めて放電
初期の電圧降下を抑制しようという試みがなされている
(米国特許第4,309.490号         
    乞明細書) しかしながら、二酸化イオウを添加した電解液を用いて
作製した電池は、二酸化イオウを添加した分だけ、正極
活物質である塩化チオニルの量が減少して電池の電気容
量が低下し、また二酸化イオウの蒸気圧が高いため、f
fi ’kX ?eiを電池内に注入した後、二酸化イ
オウガスが蒸発し、それに伴なって電解液も注入口から
溢れ、そのため注入口を封止するための溶接が困難にな
るという製造工程丑の問題もあった。
Therefore, attempts have been made to add sulfur dioxide to the electrolyte to increase the crystallinity of the lithium chloride film formed on the lithium negative electrode, thereby suppressing the voltage drop at the initial stage of discharge (U.S. Pat. No. 4,309,490).
However, in a battery manufactured using an electrolytic solution containing sulfur dioxide, the amount of thionyl chloride, which is a positive electrode active material, decreases by the amount of sulfur dioxide added, and the electric capacity of the battery decreases. Also, since the vapor pressure of sulfur dioxide is high, f
fi'kX? After injecting ei into the battery, the sulfur dioxide gas evaporated and the electrolyte overflowed from the injection port, making it difficult to weld to seal the injection port, which was a problem in the manufacturing process. .

そこで、使用に供する前に予備放電することによって負
極リチウム表面の緻密な塩化リチウム皮膜を除去して放
電初期の電圧降下を防止することが見出され、本出願人
によって特許出願されている(特願昭59−16525
7号)。
Therefore, it was discovered that by pre-discharging before use, the dense lithium chloride film on the surface of the lithium negative electrode can be removed and the voltage drop at the initial stage of discharge can be prevented, and a patent application has been filed by the present applicant. Gansho 59-16525
No. 7).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記予備放電による場合は、安定して放電初期の電圧降
下を防止することができ、かつ電解液に二酸化イオウを
添加する場合のような製造工程上の問題も引き起さない
が、放電する関係上、放電容量の低下を招くことは避け
られない。
In the case of the preliminary discharge described above, it is possible to stably prevent a voltage drop at the initial stage of discharge, and it does not cause problems in the manufacturing process such as when sulfur dioxide is added to the electrolyte, but Moreover, a decrease in discharge capacity is unavoidable.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するためになされたものであ
り、使用に供する前に充電することによって、放電容量
の低下を招くことなく、放電初期の電圧降下を防止し、
電圧遅延を防止したものである。
The present invention has been made to solve the above problems, and by charging before use, it prevents a voltage drop at the initial stage of discharge without causing a decrease in discharge capacity.
This prevents voltage delay.

勾 すなわち、−次電池では充電するとガス発生などにより
電池破壊を招くおそれがあるので、iMl富は充電を)
テなわないが、本発明ではこの塩化千オニルーリチウム
電池の耐充電性について検討を加え、その充電反応がサ
イクル反応によって進行し、塩化チオニルやリチウムは
一旦消費されるが充電反応の間に再生され、充電によっ
ては正負極活物質量にほとんど変化がなく、充電生成物
として微量の二塩化イオウ(SCI2)、塩化スルフリ
ル(SO2CI2)、塩素(CI2)、−塩化イオウ(
S2CI2)、二酸化イオウ(S02)などが生成する
だけであることを見出した。そして、この充電した電池
は、放電した際、放電電気量が未充電のものと変らず、
かつ充電によって、貯蔵の間にリチウム負極上に生成し
ていた緻密な塩化リチウム皮膜が新しい多孔質の塩化リ
チウム皮膜と入れ替わって消失し、未充電の電池で生し
ていた放電初期の電圧降下が防止されることを見出した
のである。
In other words, if you charge a negative battery, it may cause damage to the battery due to gas generation, etc.
However, in the present invention, we investigated the charging resistance of this 1,000-onyl chloride lithium battery, and found that the charging reaction proceeds through a cyclic reaction, and thionyl chloride and lithium are once consumed, but are regenerated during the charging reaction. There is almost no change in the amount of positive and negative electrode active materials depending on charging, and trace amounts of sulfur dichloride (SCI2), sulfuryl chloride (SO2CI2), chlorine (CI2), -sulfur chloride (
It was found that only sulfur dioxide (S2CI2), sulfur dioxide (S02), etc. are produced. When this charged battery is discharged, the amount of discharged electricity is the same as that of an uncharged battery,
Furthermore, upon charging, the dense lithium chloride film that had formed on the lithium negative electrode during storage is replaced with a new porous lithium chloride film and disappears, eliminating the voltage drop that occurs in uncharged batteries at the beginning of discharge. They found that it can be prevented.

上述のように塩化チオニル−リチウム電池を充電すると
、充電した電池の電解液中には、充電生       
     )酸物として微量の二塩化イオウ(SC12
)、塩化スルフリル(SO2CI2)、塩素(CI2)
、−塩化イオウ(32CI211、二酸化イオウ(S0
2)などの揮発成分が生成する。これらの揮発成分はガ
スクロマトグラフィーによって検出することができるが
、それらの充電生成物は、電流密度1 m A / c
4で充電を行なった場合、塩化チオニルの電気量を基準
にして充電深度250%までは充電電気量にほぼ比例し
て増加し、250%以上ではほぼ;負ぽいとなる。第1
表に充電深度250%での電M、液中における揮発成分
組成を示す。
When a lithium thionyl chloride battery is charged as described above, charge generation occurs in the electrolyte of the charged battery.
) A trace amount of sulfur dichloride (SC12
), sulfuryl chloride (SO2CI2), chlorine (CI2)
, - sulfur chloride (32CI211, sulfur dioxide (S0
Volatile components such as 2) are generated. These volatile components can be detected by gas chromatography, but their charged products can be detected at a current density of 1 mA/c
When charging is carried out at 4, the depth of charge increases approximately in proportion to the amount of charged electricity up to 250% based on the amount of electricity of thionyl chloride, and becomes almost negative at 250% or more. 1st
The table shows the charge M and volatile component composition in the liquid at a charging depth of 250%.

第  1  表 また、充電によって生成した二塩化イオウ、塩化スリフ
リル、塩素、−塩化イオウなどは塩化チオニルより高電
位なので、電池の開路電圧は必然的に上昇し、充電した
電池はそれらの高電位成分の組成に応して3.67〜3
.90Vの値を示す。
Table 1 Also, since sulfur dichloride, sulfuryl chloride, chlorine, -sulfur chloride, etc. produced by charging have a higher potential than thionyl chloride, the open circuit voltage of the battery will inevitably increase, and a charged battery will have a higher potential than those high potential components. 3.67-3 depending on the composition of
.. Indicates a value of 90V.

充電した電池のさらにもう一つの特徴は、リチウム負極
表面にクレータ−状の凹凸が見られることである。これ
は充電によって負極表面で塩化リチウムの生成と熔解が
繰り返されるためであると考えられる。
Yet another characteristic of a charged battery is that crater-like irregularities can be seen on the surface of the lithium negative electrode. This is thought to be because lithium chloride is repeatedly generated and melted on the negative electrode surface during charging.

上記のように充電した塩化チオニル−リチウム電池は、
二塩化イオウなどの充電生成物の分析と、該充電生成物
による高電位の発現およびリチウム負極表面のクレータ
−状の凹凸の有無を稠ぺることによってli!認するこ
とができる。
The thionyl chloride-lithium battery charged as above is
Li! can be approved.

充電方法としては、定電流充電、定電圧充電のいずれも
が採用できるが、定電流充電による方がサイクル反応を
安定して行なわせることができるので好ましい。
As a charging method, both constant current charging and constant voltage charging can be employed, but constant current charging is preferable because it allows the cycle reaction to be carried out stably.

定電流充電による場合、充電電流密度は0.1〜20m
A/an程度で行なうのが好ましい。充電電流密度が2
0 m A / c(を超えると充電時にサイクル反応
が生しがたくなり、ガス発生などを引き起すおそれがあ
る。
When using constant current charging, the charging current density is 0.1 to 20 m
It is preferable to carry out the process at about A/an. Charging current density is 2
If it exceeds 0 mA/c (0 mA/c), it becomes difficult for cycle reactions to occur during charging, which may cause gas generation.

充電によって電圧a延の防止効果を充分に発1■させる
には、塩化チオニルの電気量を基準にした充電深度で5
%以上、特に10%以上にするのが好ましい。なお塩化
チオニル1gは451mAhの電気容量に相当する。充
電深度の上限は特に限定されるものではないが、前記の
ように充電生成物が充電深度250%を超えるとほぼ横
ばいとなり、充電をそれ以上行なっても充電による効果
がそれほど向上しなくなると推定されるので、250%
以下にするのが好ましい。
In order to fully generate the effect of preventing voltage a spread by charging, the charging depth based on the amount of electricity of thionyl chloride must be 5.
% or more, particularly preferably 10% or more. Note that 1 g of thionyl chloride corresponds to a capacitance of 451 mAh. The upper limit of the charging depth is not particularly limited, but as mentioned above, it is estimated that the charging products become almost flat when the charging depth exceeds 250%, and the effect of charging will not improve much even if charging is continued beyond that point. 250%
It is preferable to do the following.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving Examples.

実施例1 7           第1図に示す構成の単3形塩
化チオニルーリチウム電池を組み立て、1mA/cnl
の電流密度でその容量(塩化チオニル量を基準にした電
気容量)の15%に相当する電気量充電した。
Example 1 7 Assemble an AA lithium thionyl chloride battery with the configuration shown in Figure 1, and
The battery was charged with an amount of electricity equivalent to 15% of its capacity (electrical capacity based on the amount of thionyl chloride) at a current density of .

上記充電後の電池を20℃、300Ωの定抵抗で放電さ
せ、その放電初期の放電特性を第2図に示した。
The charged battery was discharged at 20° C. with a constant resistance of 300Ω, and the discharge characteristics at the initial stage of discharge are shown in FIG.

なお、第1図において、lはリチウムよりなる負極で、
2は炭素多孔質成形体よりなる正極であり、3は負極l
と正極2とを隔離するセパレークである。
In addition, in FIG. 1, l is a negative electrode made of lithium,
2 is a positive electrode made of a carbon porous molded body, and 3 is a negative electrode l.
This is a separate lake that separates the positive electrode 2 from the positive electrode 2.

4はステンレス鋼製の電池容器で、この電池容器4はそ
の内周面にリチウムが圧着されていて負極端子としての
役目を兼ねている。5はステンレス鋼製の電池蓋で、電
池蓋5の外周1!部の上端部は上記電池容器4の開口端
部に溶接され、また電池蓋5の内周側にはガラスシール
6が形成され、該ガラスシール6の内周側にはステンレ
ス鋼製のパイプ7が溶着されている。8はステンレス鋼
製の正極集電体で、棒状をしており、パイプ7内に挿入
され、下端は前記正極2内に達し、上部はバ     
         1イブ7の上端部と溶接されている
。そして、9およびIOは、セパレータ3と同材質でつ
くられた底部隔離紙および上部隔離紙である。
Reference numeral 4 denotes a battery container made of stainless steel. Lithium is crimped onto the inner peripheral surface of the battery container 4, and the battery container 4 also serves as a negative electrode terminal. 5 is a battery cover made of stainless steel, and the outer circumference 1 of the battery cover 5! The upper end of the section is welded to the open end of the battery container 4, and a glass seal 6 is formed on the inner circumference of the battery lid 5, and a stainless steel pipe 7 is formed on the inner circumference of the glass seal 6. is welded. Reference numeral 8 denotes a positive electrode current collector made of stainless steel, which is rod-shaped and inserted into the pipe 7, with the lower end reaching inside the positive electrode 2 and the upper part being connected to the bar.
It is welded to the upper end of the first tube 7. Further, 9 and IO are a bottom isolation paper and an upper isolation paper made of the same material as the separator 3.

この電池の組立は、電池容器4の内周面にリチウムを圧
着して負極1とし、負極1の内周面にそってセパレータ
3を配置し、ついで底部隔離紙9を挿入し、正極2をセ
パレーク3の中空部に入れたのち、上部隔離紙10を正
極2上に載置し、電池蓋5を電池容器4の開口部に嵌合
し、電池N5の外周縁部と電池容器4の開口端部とを溶
接し、電池蓋5の内周側に形成されたガラスノール6に
あらかしめ溶着されているパイプ7から電解液を注入し
たのら、パイプ7に正極集電体8を挿入し、その下端を
正極2内に到達せしめ、正極東電体8の上部をパイプ7
の上端部に溶接して電池内部を密閉構造にすることによ
って行なわれた。なお、電解液は塩化チオニルに四塩化
アルミニウムリチウムを1.0モル/ E i解させた
も゛ので、塩化チオニルは上記のように電解液に溶媒と
して使用されるとともに正極活物質としての作用を果す
ものである。
To assemble this battery, lithium is pressed onto the inner circumferential surface of the battery container 4 to form the negative electrode 1, a separator 3 is placed along the inner circumferential surface of the negative electrode 1, a bottom separator 9 is inserted, and the positive electrode 2 is attached. After putting the separator 3 into the hollow part, the upper separator paper 10 is placed on the positive electrode 2, the battery cover 5 is fitted into the opening of the battery container 4, and the outer peripheral edge of the battery N5 and the opening of the battery container 4 are placed. After welding the ends and injecting the electrolyte through the pipe 7 which is roughly welded to the glass noll 6 formed on the inner circumferential side of the battery lid 5, the positive electrode current collector 8 is inserted into the pipe 7. , its lower end reaches inside the positive electrode 2, and the upper part of the positive electrode TODEN body 8 is connected to the pipe 7.
This was done by welding the top end of the battery to create a sealed structure inside the battery. The electrolytic solution is made by dissolving 1.0 mol/Ei of lithium aluminum tetrachloride in thionyl chloride, so thionyl chloride is used as a solvent in the electrolytic solution as described above, and also acts as a positive electrode active material. It is something that will be fulfilled.

比較例1 実施例1と同様の単3形塩化チオニルーリチウム電池を
組み立て、充電することなく、そのまま20℃、300
Ωの定抵抗で放電した。その際の放電初期の放電特性を
第2図に示す。
Comparative Example 1 The same AA thionyl chloride lithium battery as in Example 1 was assembled and heated at 20°C and 300°C without charging.
Discharge was performed with a constant resistance of Ω. The discharge characteristics at the initial stage of discharge at that time are shown in FIG.

第2図に示すように、充電した本発明の実施例1の電池
は放電開始直後から放電電圧が高く電圧遅延はまったく
認められなかった。これに対し充電しなかった比較例1
の電池は放電開始直後のhk電電圧が低(、正常の作動
電圧に復帰するのに5分程度要した。
As shown in FIG. 2, the discharge voltage of the charged battery of Example 1 of the present invention was high immediately after the start of discharge, and no voltage delay was observed at all. Comparative example 1 where no charging was performed
The battery had a low hk voltage immediately after the start of discharge (it took about 5 minutes to return to normal operating voltage).

上記のように充電した実施例1の電池が電圧遅延を生し
ないのは、充電によりリチウム負極上の塩化リチウム皮
膜が改質されたためであると考えられる。また実施例1
の電池は放電開始時の電圧が正常値より若干高いが、こ
れは充電によって塩素、塩化スルフリル、二塩化イオウ
、−tp化イオウなどの塩化チオニルより高電位成分が
bm生成した結果によるものと考えられる。
The reason why the battery of Example 1 charged as described above did not exhibit voltage delay is considered to be because the lithium chloride film on the lithium negative electrode was modified by charging. Also, Example 1
The voltage at the start of discharge for this battery is slightly higher than the normal value, but this is thought to be due to the formation of components with a higher potential than thionyl chloride such as chlorine, sulfuryl chloride, sulfur dichloride, and -TP sulfur during charging. It will be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、塩化チオニル−
リチウム電池を使用に供する前、充電することによって
、放電開始時の電圧遅延が解消された。
As explained above, according to the present invention, thionyl chloride-
By charging the lithium battery before use, the voltage delay at the start of discharge was eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の塩化チオニル−リチウム電池の一実施
例を示す部分断面図、第2図は本発明の塩化チオニル−
リチウム電池と従来の塩化チオニル−リチウム電池の放
電初期の放電特性を示す図である。 l・・・負極、 セ・・・正極、 3・・・セパレータ
第1図
FIG. 1 is a partial cross-sectional view showing an embodiment of the thionyl chloride-lithium battery of the present invention, and FIG.
FIG. 3 is a diagram showing the discharge characteristics of a lithium battery and a conventional thionyl chloride-lithium battery at the initial stage of discharge. l...Negative electrode, C...Positive electrode, 3...Separator Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)塩化チオニルを電解液の溶媒および正極活物質と
し、リチウムを負極とする塩化チオニル−リチウム電池
であって、使用に供する前に充電したことを特徴とする
塩化チオニル−リチウム電池。
(1) A thionyl chloride-lithium battery having thionyl chloride as the solvent of the electrolytic solution and the positive electrode active material and lithium as the negative electrode, which is characterized in that it is charged before use.
(2)充電深度が塩化チオニルの電気量を基準にして5
%以上である特許請求の範囲第1項記載の塩化チオニル
−リチウム電池。
(2) Depth of charge is 5 based on the amount of electricity of thionyl chloride
% or more of the thionyl chloride-lithium battery according to claim 1.
JP59220997A 1984-10-19 1984-10-19 Thionyl chloride-lithium battery Pending JPS6199273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220997A JPS6199273A (en) 1984-10-19 1984-10-19 Thionyl chloride-lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220997A JPS6199273A (en) 1984-10-19 1984-10-19 Thionyl chloride-lithium battery

Publications (1)

Publication Number Publication Date
JPS6199273A true JPS6199273A (en) 1986-05-17

Family

ID=16759845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220997A Pending JPS6199273A (en) 1984-10-19 1984-10-19 Thionyl chloride-lithium battery

Country Status (1)

Country Link
JP (1) JPS6199273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635379B2 (en) * 2000-02-22 2003-10-21 Matsushita Electric Industrial Co., Ltd. Battery sealing inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635379B2 (en) * 2000-02-22 2003-10-21 Matsushita Electric Industrial Co., Ltd. Battery sealing inspection method

Similar Documents

Publication Publication Date Title
JP4952878B2 (en) Primary battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH09161837A (en) Cylindrical battery
JPS6199273A (en) Thionyl chloride-lithium battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP3014054B2 (en) Negative electrode active material for alkaline batteries
JP2004220792A (en) Lead-acid battery
JPS59130070A (en) Nonaqueous electrolytic secondary battery
JP3702568B2 (en) Organic electrolyte secondary battery
JPH1173973A (en) Lithium ion battery
JPS6182674A (en) Nonaqueous solvent battery
JP4366541B2 (en) Oxyhalide-lithium battery
JP2005025963A (en) Nonaqueous electrolyte liquid secondary battery
JP2009176582A (en) Nonaqueous electrolyte secondary battery
JPH10284038A (en) Nonaqueous solvent battery
JPH09120824A (en) Inorganic nonaqueous solvent battery
JPH11144743A (en) Nonaqueous solvent battery
JPH0437548B2 (en)
JPH0570269B2 (en)
JP2980618B2 (en) Organic electrolyte primary battery
JPH09320613A (en) Inorganic nonaqueous solvent battery
JPH04355069A (en) Lithium secondary battery
JPH0259590B2 (en)
JPH0439187B2 (en)
JPS6247952A (en) Alkaline battery