JPS6199210A - Ceramic dielectric composition - Google Patents

Ceramic dielectric composition

Info

Publication number
JPS6199210A
JPS6199210A JP59219379A JP21937984A JPS6199210A JP S6199210 A JPS6199210 A JP S6199210A JP 59219379 A JP59219379 A JP 59219379A JP 21937984 A JP21937984 A JP 21937984A JP S6199210 A JPS6199210 A JP S6199210A
Authority
JP
Japan
Prior art keywords
oxide
weight
dielectric constant
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59219379A
Other languages
Japanese (ja)
Other versions
JPH0510762B2 (en
Inventor
正 山田
真吾 木村
明石 景泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59219379A priority Critical patent/JPS6199210A/en
Publication of JPS6199210A publication Critical patent/JPS6199210A/en
Publication of JPH0510762B2 publication Critical patent/JPH0510762B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁器組成物、特に1200℃程度の低温で焼
結でき、広い温度範囲にわたって誘電率の変化率が小さ
く、誘電率が大きく、かつ誘電損失の少ない優れた誘電
体磁器組成物に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a ceramic composition that can be sintered at a low temperature of about 1200°C, has a small rate of change in dielectric constant over a wide temperature range, has a large dielectric constant, The present invention also relates to an excellent dielectric ceramic composition with low dielectric loss.

(従来の技術) 従来、誘電率が高く、誘電率の温度変化の小さな磁器組
成物として、BaTiO3にNb、0.−11nOを添
加したもの(特公昭57−41042)、)Jl)、0
.− Coo等を添加したもの(Electrocom
ponent 5cience andTec、、19
76、Vol、2 、P、241〜247J、Nbz0
5 MgOを添加したもの(特開昭48−53297)
、Nb2O,−MgO−CaTiO3を添加したもの(
特公昭57−23366)、NiNb、Ob −Sm、
O,を添加したもの(特開昭57−88611)など多
(のちのが知られていた。
(Prior Art) Conventionally, as a ceramic composition having a high dielectric constant and a small temperature change in dielectric constant, BaTiO3, Nb, 0. -11nO added (Japanese Patent Publication No. 57-41042), )Jl), 0
.. - Added Coo etc. (Electrocom
ponent 5science and Tec,, 19
76, Vol, 2, P, 241-247J, Nbz0
5 Added MgO (Japanese Unexamined Patent Publication No. 1983-53297)
, Nb2O, -MgO-CaTiO3 added (
Special Publication No. 57-23366), NiNb, Ob-Sm,
Many other types were known, such as those containing O, (Japanese Unexamined Patent Publication No. 57-88611).

しかしながら、それらの組成物を焼結する温度は、いず
れも1350〜1400℃の高温である。そのため、こ
れを積層形コンデンサーに利用する場合、内部電極材料
として、この高温の焼結温度に耐え得る白金、パラジウ
ム等の高価な貴金属を使うことが必要であり、コストア
ンプの最大の原因になっていた。それ故、積層形コンデ
ンサーを安価に製造するには、銀を主成分とする安価な
金属を内部電極に使用できるような、1200℃程度の
低温で焼結できる磁器組成物が望まれてきている。
However, the temperature at which these compositions are sintered is a high temperature of 1350 to 1400°C. Therefore, when using this in multilayer capacitors, it is necessary to use expensive precious metals such as platinum and palladium that can withstand this high sintering temperature as the internal electrode material, which is the biggest cause of cost increase. was. Therefore, in order to manufacture multilayer capacitors at low cost, there is a desire for a porcelain composition that can be sintered at a low temperature of about 1200°C, which allows the use of inexpensive metals mainly composed of silver for the internal electrodes. .

現在までに低温で焼結できる磁器組成物として、BaT
rO,にビスマス化合物を添加した組成物が知られてい
るが、それらは焼成時に成分の蒸発が著しく安定した性
能が得られにくいこと、さらに、高周波特性における誘
電損失が大きいこと等の欠点があり、積層形コンデンサ
ー用の磁器組成物として未だ満足できるものではない。
BaT is currently available as a porcelain composition that can be sintered at low temperatures.
Compositions in which a bismuth compound is added to rO, are known, but these have drawbacks such as significant evaporation of the components during firing, making it difficult to obtain stable performance, and a large dielectric loss in high frequency characteristics. , is still not satisfactory as a ceramic composition for multilayer capacitors.

また、ビスマス化合物を含有せずに比較的低温で焼結で
きる組成物として、BaTrO,にNd2O3、Nbz
OsSrOz、MnO,、CoOを添加したものが知ら
れている(特開昭57−92575)。しかし、該組成
物の焼結温度は1250℃であり、さらに、得られる磁
器の誘電損失(tan δ)の値は1%と大きく、特性
的にも満足できるものではない。
In addition, BaTrO, Nd2O3, Nbz
Those to which OsSrOz, MnO, and CoO are added are known (Japanese Unexamined Patent Publication No. 57-92575). However, the sintering temperature of the composition is 1250° C., and the dielectric loss (tan δ) of the resulting porcelain is as large as 1%, which is not satisfactory in terms of characteristics.

(発明が解決しようとする問題点) 本発明者らは、ビスマス化合物を含有することなく低温
で焼結でき、なおかつ誘電率が高(、誘明。
(Problems to be Solved by the Invention) The present inventors have discovered that they can be sintered at low temperatures without containing bismuth compounds, and have a high dielectric constant.

電率の温度変化率が、JISの特級YのB特あるいはE
IAのX7R特性のように小さく、誘電損失の小さい誘
電体磁器組成物を得ることを目的とし、以下の発明に至
った。
The temperature change rate of electrical conductivity is B special or E of JIS special grade Y.
With the aim of obtaining a dielectric ceramic composition having a small dielectric loss similar to the X7R characteristics of IA, the following invention was achieved.

(問題点を解決するための手段) BaTiOxにNbtOs /MgOのモル比を2.3
〜4の範囲になるようにNbz05とMgOを加え、こ
れに希土類を0.1〜0.5重量%添加した組成物が特
公昭55−19007に示され、実施例において、焼結
の温度は1200〜1380℃と記載されている。しか
し、該発明の組成を用いても、1200℃では焼結は不
十分で1、絶縁抵抗値も小さいものであった。該発明の
組成で希土類酸化物を0.5重量%以上に増やすことに
より、1200℃で十分焼結し、絶縁抵抗値も大きくな
る。しかし、誘電率の温度変化率は大きくなり、望まし
い温度特性のものは得られない。
(Means for solving the problem) The molar ratio of NbtOs/MgO to BaTiOx is 2.3.
A composition in which Nbz05 and MgO are added so that the sintering temperature is in the range of It is described as 1200-1380°C. However, even when the composition of the invention was used, sintering was insufficient at 1200° C.1, and the insulation resistance value was low. By increasing the rare earth oxide to 0.5% by weight or more in the composition of the invention, sufficient sintering can be achieved at 1200° C., and the insulation resistance value can also be increased. However, the temperature change rate of the dielectric constant becomes large, and desirable temperature characteristics cannot be obtained.

そこで、本発明者らは、低温焼結性を保ち、なおかつ高
い誘電率と良好な温度特性、低いtan δ値を持つ組
成について鋭意研究を重ねた結果、本発明0組成物を見
出l−7・す5ち・本発明″1     、器組成物は
、チタン酸バリウム95.20〜98.58重量%、酸
化プラセオジウム、酸化ネオジム、酸化サマリウム、酸
化ジスプロシウムのうち少なくとも1種を0.52〜1
.50重量%、酸化ニオブ0.85〜3.00重量%、
酸化マグネシウム0.05〜0.35重量%を含み、か
つ酸化マグネシウムに対する酸化ニオブのモル比が10
.4ないし1:2.2の範囲にああることを特徴とする
Therefore, the present inventors conducted extensive research on compositions that maintain low-temperature sinterability, yet have a high dielectric constant, good temperature characteristics, and low tan δ value, and as a result, they discovered the composition of the present invention. 7. The present invention"1. The container composition contains 95.20 to 98.58% by weight of barium titanate, and 0.52 to 98.58% of at least one of praseodymium oxide, neodymium oxide, samarium oxide, and dysprosium oxide. 1
.. 50% by weight, 0.85-3.00% by weight of niobium oxide,
Contains 0.05 to 0.35% by weight of magnesium oxide, and the molar ratio of niobium oxide to magnesium oxide is 10
.. It is characterized by a ratio of 4 to 1:2.2.

本発明の組成範囲および組成比のものは、1200°C
程度の低温で焼結が可能となり、比誘電率も2000程
度と高(、広い温度範囲で誘電率の温度変化率も小さい
。さらに驚くべきことには、誘電損失(tan δ)も
0.7%以下と小さく、従来報告されているものに比べ
著しく改善されたものである。
The composition range and composition ratio of the present invention is 1200°C.
It is possible to sinter at a low temperature of about 2,000 yen, and the dielectric constant is as high as about 2000 (and the temperature change rate of the dielectric constant is small over a wide temperature range.More surprisingly, the dielectric loss (tan δ) is also 0.7 %, which is a significant improvement compared to what has been previously reported.

積層コンデンサーの場合には、tari δのとくに小
さい組成物が望まれており、その点においても、本発明
の磁器組成物は工業的価値の大きいものである。
In the case of multilayer capacitors, compositions with particularly small tari δ are desired, and in this respect as well, the ceramic composition of the present invention has great industrial value.

本発明で使用されるチタン酸バリウムは、固相法、液相
法、蓚酸塩法、アルコキシド法等のいずれの製法より得
られるものでもよい。平均粒径が0.07〜0.5 μ
mで粒径のそろったものを用いた場合、均一な微構造の
磁器が得られ、絶縁抵抗値がさらに大きくなり、その値
のばらつきも小さいものになる。また、本発明では、酸
化プラセオジウム、酸化ネオジム、酸化サマリウム、酸
化ジスプロシウム、酸化ニオブ、酸化マグネシウムとし
て酸化物をそのまま用いることができるが、水酸化物、
炭酸塩、硝酸塩、蓚酸塩、アルコキシド等、焼結温度以
下で分解し酸化物となるものであれば、いずれのものも
使用できる。酸化物となった時の平均粒系が3μm以下
であるものが、より好適に使用できる。
The barium titanate used in the present invention may be obtained by any production method such as a solid phase method, a liquid phase method, an oxalate method, or an alkoxide method. Average particle size is 0.07~0.5μ
When using particles with uniform particle size m, a porcelain with a uniform microstructure is obtained, the insulation resistance value becomes even larger, and the variation in the value becomes smaller. Further, in the present invention, oxides can be used as they are as praseodymium oxide, neodymium oxide, samarium oxide, dysprosium oxide, niobium oxide, and magnesium oxide, but hydroxide,
Any substance, such as carbonate, nitrate, oxalate, alkoxide, etc., can be used as long as it decomposes to form an oxide below the sintering temperature. Those having an average grain size of 3 μm or less when converted into oxides can be used more preferably.

本発明における磁器組成物中のチタン酸バリウムの割合
は、BaTiOxとじて95.20〜98.58重量%
であり、その割合が98.5’8重景%を超えると焼結
困難で、さらに、誘電率の温度変化率も大きくなる。9
5.20重量%未満では誘電率が小さく、実用的でない
。酸化プラセオジウム、酸化ネオジム、酸化サマリウム
、酸化ジスプロシウムの割合は、PrbO1イNdz0
3 、SmzO,,0y203として合計0.52〜1
.50重量%であり、その割合が0.52重量%未満で
は焼結困難で、絶縁抵抗値が低くなる。1.50重量%
を超えると誘電率の温度変化率が大きくなる。
The proportion of barium titanate in the porcelain composition of the present invention is 95.20 to 98.58% by weight as BaTiOx.
If the ratio exceeds 98.5'8%, sintering becomes difficult and the temperature change rate of the dielectric constant becomes large. 9
If it is less than 5.20% by weight, the dielectric constant is too small to be practical. The proportions of praseodymium oxide, neodymium oxide, samarium oxide, and dysprosium oxide are PrbO1 and Ndz0.
3, SmzO,,0y203 in total 0.52 to 1
.. If the proportion is less than 0.52% by weight, sintering becomes difficult and the insulation resistance value becomes low. 1.50% by weight
If it exceeds , the rate of change in dielectric constant with temperature increases.

酸化ニオブの割合は、NbzOsとして0.85〜3.
00重量%であり、その割合が0.85重量%未満では
焼結結困難となり、3.00重量%を超えると誘電率が
小さく、温度変化率も大きくなる。酸化マグネシウムの
割合は、MgOとして0.05〜0.35重量%であり
、その割合が0.05重量%未満では温度変化率が大き
く 、0.35重量%を超えると誘電率が小さい。Mg
OとNb2O,tのモル比は0.4〜2.2の範囲であ
り、そのモル比が0.4未満では誘電率が小さく、2.
2を超えると誘電率の温度変化率が大きく、tan δ
も大きくなる。また1、 PraO+ r、NdzOs
 、Sm2O3、D、31zO:+の合計当量とMgO
の当量の比が473〜415の場合、得られる磁器組成
物は高誘電率で、温度特性も良好になり好ましい。
The ratio of niobium oxide is 0.85 to 3.0 as NbzOs.
If the proportion is less than 0.85% by weight, sintering becomes difficult, and if it exceeds 3.00% by weight, the dielectric constant becomes small and the rate of temperature change becomes large. The proportion of magnesium oxide is 0.05 to 0.35% by weight as MgO, and if the proportion is less than 0.05% by weight, the temperature change rate will be large, and if it exceeds 0.35% by weight, the dielectric constant will be small. Mg
The molar ratio of O and Nb2O,t is in the range of 0.4 to 2.2, and when the molar ratio is less than 0.4, the dielectric constant is small;
When tan δ exceeds 2, the temperature change rate of dielectric constant is large, and tan δ
also becomes larger. Also 1, PraO+ r, NdzOs
, Sm2O3, D, 31zO: + total equivalent and MgO
When the ratio of equivalents is 473 to 415, the obtained ceramic composition has a high dielectric constant and good temperature characteristics, which is preferable.

(実施例) 以下、本発明を実施例によっ□て詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

5      出発原料として、SEM粒径の平均粒径
が0.2〜0.3μmで、比表面積が5〜8m/gであ
るチタン酸バリウムに、酸化プラセオジウム、酸化ネオ
ジム、酸化サマリウム、酸化ジスプロシウムがら選ばれ
た少なくとも1種、酸化ニオブ、および酸化マグネシウ
ムを第1表の割合で添加し、純水を加え混合する。混合
物を乾燥した後に、粘結剤としてポリビニルアルコール
を適当量加え、2t/ailの成形圧力で直径15mm
、厚さ0.6mmの円板状成形物を作成した。次に、こ
れを1220”Cで5時間焼結した。焼結した円板の両
端面に10mmφの銀電極を740℃で焼付け、それぞ
れの電気特性を評価した。ここで、誘電率と誘電損失(
tan δ)をLCRメーターを用いて1kHzで測定
した。絶縁抵抗値は高絶縁抵抗計を用い、500Vの電
圧を印加した場合の読み取り値である。誘電率の変化率
%は20℃を基準とした。
5 As a starting material, barium titanate having an average particle size of SEM particle size of 0.2 to 0.3 μm and a specific surface area of 5 to 8 m/g was selected from praseodymium oxide, neodymium oxide, samarium oxide, and dysprosium oxide. At least one of the above ingredients, niobium oxide, and magnesium oxide are added in the proportions shown in Table 1, and pure water is added and mixed. After drying the mixture, add an appropriate amount of polyvinyl alcohol as a binder, and mold to a diameter of 15 mm at a molding pressure of 2 tons/ail.
A disc-shaped molded product with a thickness of 0.6 mm was prepared. Next, this was sintered at 1220"C for 5 hours. Silver electrodes with a diameter of 10 mm were baked at 740°C on both end faces of the sintered disk, and the electrical properties of each were evaluated. Here, the dielectric constant and dielectric loss were (
tan δ) was measured using an LCR meter at 1 kHz. The insulation resistance value is a value read using a high insulation resistance meter and applying a voltage of 500V. The rate of change in dielectric constant (%) was based on 20°C.

第1表において、試料嵐1.7.8.11.12は本発
明の範囲外のものである。□、:。
In Table 1, sample storm 1.7.8.11.12 is outside the scope of the present invention. □, :.

第1表より明らかなように、本発明の範囲内の    
   1ものは1220℃で焼結可能で、その磁器特性
も比誘電率が2000程度と高い値を示し、誘電率の変
化率も小さく、かつ誘電損失が小さいことがわかる。
As is clear from Table 1, within the scope of the present invention
1 can be sintered at 1220°C, and its ceramic properties show a high relative permittivity of about 2000, a small rate of change in permittivity, and low dielectric loss.

(発明の効果) 以下のように、本発明により次の効果が見出された。(Effect of the invention) As described below, the following effects were discovered by the present invention.

(1)ビスマス化合物を含まず、1200’l:’程度
の低温焼結が可能である。
(1) It does not contain bismuth compounds and can be sintered at a low temperature of about 1200'l:'.

(2)特性面において比誘電率が2000以上と高く、
しかも、その温度による変化率が小さい。
(2) In terms of characteristics, the dielectric constant is high at over 2000,
Moreover, the rate of change due to temperature is small.

(3)誘電損失が小さい。(3) Low dielectric loss.

したがって、本発明の磁器組成物は、電気特性的にもき
わめて優れており、コスト面がらもきわめて有利である
ので、工業上価値の大きいものである。
Therefore, the ceramic composition of the present invention has excellent electrical properties and is extremely advantageous in terms of cost, so it is of great industrial value.

Claims (1)

【特許請求の範囲】[Claims] チタン酸バリウム95.20〜98.58重量%、酸化
プラセオジウム、酸化ネオジム、酸化サマリウム、酸化
ジスプロシウムのうち少なくとも1種を0.52〜1.
50重量%、酸化ニオブ0.85〜3.00重量%、酸
化マグネシウム0.05〜0.35重量%を含み、かつ
酸化マグネシウムに対する酸化ニオブのモル比が1:0
.4ないし1:2.2の範囲にあることを特徴とする磁
器誘電体組成物。
95.20 to 98.58% by weight of barium titanate, 0.52 to 1% of at least one of praseodymium oxide, neodymium oxide, samarium oxide, and dysprosium oxide.
50% by weight, 0.85-3.00% by weight of niobium oxide, 0.05-0.35% by weight of magnesium oxide, and the molar ratio of niobium oxide to magnesium oxide is 1:0.
.. 4 to 1:2.2.
JP59219379A 1984-10-20 1984-10-20 Ceramic dielectric composition Granted JPS6199210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219379A JPS6199210A (en) 1984-10-20 1984-10-20 Ceramic dielectric composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219379A JPS6199210A (en) 1984-10-20 1984-10-20 Ceramic dielectric composition

Publications (2)

Publication Number Publication Date
JPS6199210A true JPS6199210A (en) 1986-05-17
JPH0510762B2 JPH0510762B2 (en) 1993-02-10

Family

ID=16734493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219379A Granted JPS6199210A (en) 1984-10-20 1984-10-20 Ceramic dielectric composition

Country Status (1)

Country Link
JP (1) JPS6199210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278474A (en) * 1988-04-29 1989-11-08 Tdk Corp Porcelain composition of high dielectric constant system
JPH02267166A (en) * 1989-04-07 1990-10-31 Matsushita Electric Ind Co Ltd Dielectric porcelain composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278474A (en) * 1988-04-29 1989-11-08 Tdk Corp Porcelain composition of high dielectric constant system
JPH02267166A (en) * 1989-04-07 1990-10-31 Matsushita Electric Ind Co Ltd Dielectric porcelain composition

Also Published As

Publication number Publication date
JPH0510762B2 (en) 1993-02-10

Similar Documents

Publication Publication Date Title
JPH0583508B2 (en)
JPS6199210A (en) Ceramic dielectric composition
JPS6128619B2 (en)
JPS6199207A (en) High-permeability porcelain composition
JPS6199209A (en) Dielectric porcelain composition
KR100268702B1 (en) compound of dielectric ceramic
JPS6216481B2 (en)
JPS6199208A (en) High-permeability dielectric porcelain composition
JPS6217805B2 (en)
JPS6272557A (en) Dielectric composition and manufacture
JPS6134206B2 (en)
JP2837516B2 (en) Dielectric porcelain capacitors
JPH031264B2 (en)
JPH0238540B2 (en)
JPH0468258B2 (en)
JPS61251565A (en) Ceramic dielectric composition
JPS6211443B2 (en)
JPH0788249B2 (en) Dielectric porcelain composition and method for producing the same
JPS6216482B2 (en)
JPS61251561A (en) Dielectric ceramic composition and manufacture
JPH05330909A (en) Porcelain composition of high dielectric constant
JPS6265971A (en) Dielectric ceramic composition and its production
JPS61256968A (en) Dielectric ceramic composition
JPS61256970A (en) Ceramic dielectric composition
JPS6211442B2 (en)