JPS6194001A - Optical element and its production - Google Patents

Optical element and its production

Info

Publication number
JPS6194001A
JPS6194001A JP21535284A JP21535284A JPS6194001A JP S6194001 A JPS6194001 A JP S6194001A JP 21535284 A JP21535284 A JP 21535284A JP 21535284 A JP21535284 A JP 21535284A JP S6194001 A JPS6194001 A JP S6194001A
Authority
JP
Japan
Prior art keywords
ions
refractive index
light
optical element
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21535284A
Other languages
Japanese (ja)
Inventor
Takao Sawada
隆夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21535284A priority Critical patent/JPS6194001A/en
Publication of JPS6194001A publication Critical patent/JPS6194001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To constitute an optical element which can focus or expand two-dimensionally and linearly expanded light or light source into a parallel plane shape by forming an isoconcentration face of ions so as to parallel with one plane of a rectangular parallelepiped and the opposite face thereof to provide an inclination to the concn. of the ions from the central region thereof toward both side faces. CONSTITUTION:The isoconcentration face of the ions which can change refractive index is constituted parallel respectively with the one face of the optical element 1 and the opposite face, for example, parallel with the side face formed of a side 1a and side 1b. There is further the inclination in the ion concn. respectively from the central regions of both sidefaces toward both side faces. The effect of the element 1 is therefore similar to the effect of a cylindrical lens consisting of a refractive index isotropic medium and the light having the two-dimensional spread in the direction C can be focused or expanded when said light is made incident from the side face formed of the side 1b and side 1c. The element makes the effect similar to the effect of a convex cylindrical lens in the case of the element in which the divergent ions can change the refractive index to a low level and conversely the element makes the effect similar to the effect of a concave cylindrical lens in the case of the element in which the divergent ions can change the refractive index to a high level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光又は画像の集光、拡大などを行う光学素
子、およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical element that condenses and magnifies light or an image, and a method for manufacturing the same.

[従来の技術] 従来、屈折率不均質媒体、すなわち屈折率分布を有する
ものより成り、平行平面形状を有するレンズとして、セ
ルフォックレンズ(日本板ガラス社商標)が知られてい
る。このセルフォックレンズを用いて光結合を行った場
合を第3図に基いて説明する。図において、(3)は円
形状の光または点状の光を発生するレーデダイオード、
(4)はセル7オツクレンズ、(5)は結合した光を入
射する光ファイバーである。
[Prior Art] Selfoc lens (trademark of Nippon Sheet Glass Co., Ltd.) has been known as a lens made of a non-uniform refractive index medium, that is, one having a refractive index distribution, and having a parallel plane shape. A case in which optical coupling is performed using this SELFOC lens will be explained based on FIG. 3. In the figure, (3) is a radar diode that generates circular or dotted light;
(4) is a cell 7 lens, and (5) is an optical fiber into which the combined light is input.

レーザダイオード(3)から出射された光は、レーザダ
イオード(3)と空気との光屈折率の差により、急角度
で拡がる。この広がった光をセルフォックレンズ(4)
を通して点光源に収束し、光ファイノ(−(5)の光を
伝えるコア部に入射する。このセルフォックレンズ(4
)は媒質内に屈折率分布を有し、両端が平行形状なので
、光ファイバー(5)とのセツテイングが容易であり、
調整もしやすい。
The light emitted from the laser diode (3) spreads at a steep angle due to the difference in optical refractive index between the laser diode (3) and air. Selfoc lens (4) captures this spread light.
The light converges into a point source through the lens, and enters the core that transmits the light of the optical fin (-(5).
) has a refractive index distribution in the medium and both ends are parallel, so it is easy to set up with the optical fiber (5).
Easy to adjust.

屈折率不均質媒体で形成されるセルフォックレンズの作
成方法を以下に述べる。!、ずガラス棒中、電子分極率
が大きく、高温でガラス中を移uJシやすいm個イオン
をドープしておく。例えば、酸化ケイ素(Si02.6
00モル%、酸化ホウ素(B203.200モル%、酸
化ナトリウム(Na20.10モ/l/%)、酸化タリ
ウム(T120.10モル%)の組成で形成されるガラ
ス捧を硝酸カリウム(KNO3)溶融塩浴中に入れ、例
えば550℃で、約50時間保持するL1ガラス捧中の
タリウムイオン(T 1” )、およびナトリウムイオ
ン(Na”)が融液中に移動し、代って融液中のカリウ
ムイオン(K+)がガラス棒中に移動する。このイオン
交換によってガラス棒中に、半径方向に光屈折率の異方
性分布が生じる。
A method for producing a SELFOC lens formed from a medium with a non-uniform refractive index will be described below. ! The glass rod is doped with m ions that have a large electronic polarizability and are easily transferred through the glass at high temperatures. For example, silicon oxide (Si02.6
Potassium nitrate (KNO3) molten salt is formed by a glass tube formed with a composition of 00 mol%, boron oxide (B203.200 mol%), sodium oxide (Na20.10 mo/l/%), and thallium oxide (T120.10 mol%). Thallium ions (T 1'') and sodium ions (Na'') in the L1 glass bath, which is placed in a bath and maintained at, for example, 550°C for about 50 hours, move into the melt, and instead Potassium ions (K+) migrate into the glass rod.This ion exchange creates an anisotropic distribution of optical refractive index in the radial direction within the glass rod.

このガラス捧を適当な長さに切り出してw1磨すること
により、屈折率等方媒質型凸レンズと同様の作用をし、
両端面が平行なレンズが得られる。
By cutting this glass piece to an appropriate length and polishing it with W1 polishing, it has the same effect as an isotropic medium type convex lens,
A lens with parallel end surfaces can be obtained.

また、2次元的に直線状に広がった光ないし光源の集光
または拡大を行なう場合の、屈折率等方性媒質による円
筒面レンズを第4図に示す。第4図(a)は凸型円筒レ
ンズであり、第4図(b)は凹型円筒レンズである。B
1 Cは辺の方向を示1〜ている。
Further, FIG. 4 shows a cylindrical surface lens made of an isotropic refractive index medium for condensing or expanding light or a light source that spreads linearly in two dimensions. FIG. 4(a) shows a convex cylindrical lens, and FIG. 4(b) shows a concave cylindrical lens. B
1 C indicates the direction of the side.

[発明が解決しようとする問題点] 従来の平行平面形状を有し、屈折率不均質媒体によるレ
ンズでは、光が円形状の光源、又は点光源には有効であ
るが、光が2次元的広がりを有する線状の光源、又は線
状の光像からの光を受光する場合などは使用できない。
[Problems to be Solved by the Invention] A conventional lens having a parallel plane shape and using a medium with a non-uniform refractive index is effective for a circular light source or a point light source, but it is effective for a two-dimensional light source. It cannot be used when receiving light from a linear light source with a spread or a linear optical image.

また、屈折率等方性媒質による円筒面レンズでは、平行
平面形状ではないので光学部品とのセツティングなどが
なじみに<<、レンズの装材が困難である。従って、平
行平面型の屈折率不均質媒体レンズを非常に細くして集
束し、線状に並べて使用したり、上記レンズを媒質内に
微少化して、線状に並べたものを使用しなければならな
いという問題点があった。
In addition, since a cylindrical lens made of an isotropic refractive index medium does not have a parallel plane shape, it is difficult to set it up with an optical component, and it is difficult to mount the lens. Therefore, it is necessary to use parallel plane type non-uniform refractive index medium lenses that are very thin and focused and arranged in a line, or to miniaturize the lenses in the medium and arrange them in a line. There was a problem that it was not possible.

この発明は、かかる問題点を解決するためになされたも
ので、2次元的に線状に広がった光ないし光源の集束又
は拡大を行うことのできる光学素子を、屈折率異方性媒
体により平行平面形状で構成することを目的とする。
The present invention was made in order to solve this problem, and an optical element capable of converging or expanding two-dimensionally linearly spread light or a light source is parallelized by a refractive index anisotropic medium. The purpose is to configure it in a planar shape.

また、この発明の別の発明は、上記光学素子の製造方法
を得ることを目的とする。
Another object of the present invention is to obtain a method for manufacturing the above-mentioned optical element.

[問題点を解決するための手段] この発明に係る光学素子は、ガラスで形成された光透過
性直方体を有し、屈折率を変えうるイオンの等濃度向が
直方体の一面とこれに向い合う対向とにそれぞれ平行で
あり、上記一面と対面の中心領域から上記−而と対面に
向って、イオンの濃度にそれぞれ傾斜を持たせたもので
ある。
[Means for Solving the Problems] An optical element according to the present invention has a light-transmitting rectangular parallelepiped made of glass, and the isoconcentration direction of ions whose refractive index can be changed faces one surface of the rectangular parallelepiped. The ion concentration is parallel to the opposing surfaces, and the concentration of ions is sloped from the center region of the one surface and the opposing surface toward the opposing surface.

また、この発明の別の発明に係る光学素子の製造方法は
、−向とこれに平行な対向を有し、上記一面と対向はそ
の二辺がそれぞれ実質的拡散長の2倍より少なくとも長
く、ガラスで形成された光透過性立方体を備え、この立
方体の少なくとも上記二面から屈折率を変えうるイオン
を実質的拡散長にわたって拡散し、これを上記一面の一
辺より実質的拡散長へだてだ中央部分を上記−向に直角
に切断して製造するようにしたものである。
Further, the method for manufacturing an optical element according to another aspect of the present invention has a − direction and an opposing surface parallel to the negative direction, and the two sides of the one surface and the opposing surface are each longer than twice the substantial diffusion length, A central portion comprising a light-transmissive cube formed of glass, which diffuses ions whose refractive index can be changed from at least the two surfaces of the cube over a substantial diffusion length, and extends the ions from one side of the one surface to the substantial diffusion length. It is manufactured by cutting at right angles to the above-mentioned - direction.

L作用] この発明においては、光透過性直方体の一面から対面に
向って屈折率分布が存在し、このため、2次元的拡がり
を有する光ないし光源の集光または拡大を行うことがで
きる。また平行平面形状の光学素子であるため、他の光
学部品とのセツティングが容易となる。
L Effect] In the present invention, a refractive index distribution exists from one side of the light-transmitting rectangular parallelepiped to the opposite side, and therefore, light or a light source having a two-dimensional spread can be focused or expanded. Furthermore, since it is an optical element having a parallel plane shape, it is easy to set it up with other optical parts.

また、この発明の別の発明においては、光透過性立方体
に屈折率を変えうるイオンを拡散して、上記光学素子を
製造する。
In another aspect of the present invention, the optical element is manufactured by diffusing ions capable of changing the refractive index into a light-transmitting cube.

[実施例] 第1図はこの発明の一実施例による光学素子を示す斜視
図である。図にあ・いて、(1)はガラスで形成された
光透過性直方体を有する光学素子であり、(la) 、
(lb) 、(lc)はそれぞれこの光学素子(1)の
各辺を示している。また、A、B、Cはそれぞれ各辺の
方向を示している。この光学素子(1)は、屈折率を変
えうるイオンの等濃度向が、光学素子(1)の一面とこ
れに向い合う対面とにそれぞれ平行、例えば、辺(1a
)と辺(lb)とで形成される側面に平行に構成されて
いる。さらに両側面の中心領域から両側面に向ってそれ
ぞれイオン濃度に傾斜がある。
[Embodiment] FIG. 1 is a perspective view showing an optical element according to an embodiment of the present invention. In the figure, (1) is an optical element having a light-transmitting rectangular parallelepiped made of glass, (la),
(lb) and (lc) respectively indicate each side of this optical element (1). Further, A, B, and C each indicate the direction of each side. In this optical element (1), the direction of equal concentration of ions that can change the refractive index is parallel to one surface of the optical element (1) and the opposite surface, for example, the side (1a
) and the side (lb). Furthermore, there is a gradient in ion concentration from the center region of both sides toward both sides.

このため、光学素子(1)の作用は、第4図(a)また
は(b)に示す屈折率等方性媒質による円筒レンズと同
様になり、C方向に2次元的広がりを有する光が、辺(
i b)と辺(1c)とで形成される側面から入射した
時、その光を集束または拡大することができる。
Therefore, the action of the optical element (1) is similar to that of a cylindrical lens using an isotropic refractive index medium shown in FIG. Side (
When incident from the side formed by i b) and side (1c), the light can be focused or expanded.

拡散したイオン濃度は、一般に、側面(la) (lb
)とこれに対向する側面から成る両側面の中心領域から
両側面に向って高くなり、拡散するイオンが屈折率を低
く変えうるものの場合は、第4図(a)に示す凸型円筒
レンズと同様の作用を行い、逆に拡散するイオンが屈折
率を高く変えうるものの場合は、第4図(b)に示す凹
型円筒レンズと同様の作用を行う。
The diffused ion concentration is generally lateral (la) (lb
) and opposite side surfaces, the height increases from the center region of both sides toward both sides, and the diffusing ions can change the refractive index to a lower value. It performs the same function, and conversely, in the case where the diffusing ions can change the refractive index to a high value, the concave cylindrical lens performs the same function as shown in FIG. 4(b).

また、この発明の別の発明における一実施例を説明する
。まず、凸型円筒レンズと等価な平行平面型の光学素子
の製造方法について述べる。例えば、酸化ケイ素(5i
02.60モルチ)、酸化ホウ素(B2oa、20モル
%)、酸化ナトリウム(Na 20.10モ/L/%)
、酸化タリウム(Tl2O、l 0モル%)より成るガ
ラスで形成され、一面とこれに平行な対面を有する光透
過性立方体で、一面と対面は、その二辺がそれぞれ実質
的拡散長の2倍より少なくとも長いものを材料とする。
Further, an embodiment of another invention of this invention will be described. First, a method for manufacturing a parallel plane optical element equivalent to a convex cylindrical lens will be described. For example, silicon oxide (5i
02.60 mole), boron oxide (B2oa, 20 mole%), sodium oxide (Na 20.10 mole/L/%)
, a light-transmitting cube made of glass made of thallium oxide (Tl2O, 0 mol %) and having one face and a parallel face, each of which has two sides twice the effective diffusion length. The material should be at least longer than the above.

第2図において、(2)Id 、例えば上記材料のガラ
スで形成された光透過性立方体であり、(2a) 、C
2b) 、(2c)は各辺を示す。
In FIG. 2, (2) Id is a light-transmitting cube made of, for example, glass of the above-mentioned material, and (2a), C
2b) and (2c) indicate each side.

辺(2a)が105w以上、辺(2b)が20s+g以
上、辺(2c)が5M以上の大きさを有している。この
時の拡散イオンの実質的拡散長は3.、程度である。こ
のガラス(2)は、内部に気泡などを含まない光学材料
品質のガラスであることが必要である。このガラスを、
白金ルツボ中に入れた硝酸カリウム浴中に入れ、550
℃程度で約50時間イオン拡散を行う。これにより、ガ
ラス(2)中のタリウムイオン(T1+)、ナトリウム
イオン(Na”)が硝酸カリウム浴中にイオン拡散し、
硝酸カリウム浴中から、カリウムイオン(K+)がガラ
ス(2)Kイオン拡散してイオン交換が行なわれる。こ
のイオン交換は、ガラス(2)の各側面から行なわれる
ため、ガラス(2)中にはイオンの濃度に分布ができ、
このため光の屈折率分布が側面から中心領域に向って生
じる。拡散後のガラス(2)は溶融塩中から収り出し、
水洗する。
Side (2a) has a size of 105w or more, side (2b) has a size of 20s+g or more, and side (2c) has a size of 5M or more. The effective diffusion length of the diffused ions at this time is 3. , to a certain extent. This glass (2) needs to be of optical material quality and does not contain any air bubbles or the like inside. This glass
Placed in a potassium nitrate bath in a platinum crucible,
Ion diffusion is performed at about 50°C for about 50 hours. As a result, thallium ions (T1+) and sodium ions (Na'') in the glass (2) diffuse into the potassium nitrate bath,
Potassium ions (K+) diffuse into the glass (2) from the potassium nitrate bath, and ion exchange takes place. Since this ion exchange is performed from each side of the glass (2), the concentration of ions is distributed in the glass (2).
Therefore, a refractive index distribution of light occurs from the side surfaces toward the center region. The glass (2) after diffusion is extracted from the molten salt,
Wash with water.

このガラス(2)の実質的拡散長の2倍以上の長さの一
辺から実質的拡散長へだてだ中央部分を、辺(2a) 
(!:辺(2b)とで形成される而に直角に切断し、光
学的鏡面研磨を行って、光学素子(1)を製造する。
The central part of the glass (2) extending from one side of the glass (2) whose length is more than twice the effective diffusion length to the effective diffusion length is defined as the side (2a).
(!: cut at a right angle to the edge formed by the side (2b), and perform optical mirror polishing to manufacture the optical element (1).

得られた光学素子(1)はC方向にイオンの拡散による
屈折率分布が生じ、ナトリウムイオン(Na”)および
タリウムイオン(Tl”)とカリウムイオン(K+)を
イオン交換することにより、屈折率が低くなるため、凸
型円筒レンズと同等な平行平面型の光学素子(1)が得
ら九る。B方向の屈折率変化をさけるために、B方向の
両端から3酊程度ずつ切り捨ててもよい。
The obtained optical element (1) has a refractive index distribution due to ion diffusion in the C direction, and the refractive index is changed by ion-exchanging potassium ions (K+) with sodium ions (Na") and thallium ions (Tl"). Since this decreases, a plane-parallel optical element (1) equivalent to a convex cylindrical lens can be obtained. In order to avoid a change in the refractive index in the B direction, it is also possible to cut off about 3 degrees from both ends in the B direction.

次に凹型円筒レンズと等価な平行平面型の光学素子の製
造方法について述べる。ガラス材料としては、通常のソ
ーダガラスを用い、その形状は第2図に示すようなと記
−実施例と同様に構成する。
Next, a method for manufacturing a parallel plane optical element equivalent to a concave cylindrical lens will be described. As the glass material, ordinary soda glass is used, and its shape is as shown in FIG. 2 and is constructed in the same manner as in the embodiment.

このガラス(2)を硝酸銀(AgNO3)の300 ’
C程度の溶融塩浴中に入れ、約120分保持する。イオ
ン拡散後、浴中から収り出したガラス(2)を切断して
光学的鏡面研磨する。得られた光学素子(1)はガラス
中のナトリウムイオン(Na+)と銀イオン(Ag”)
がイオン交換しており、屈折率が高くなるため、凹型円
筒レンズと同等な平行平面型の光学素子(1)が得られ
る。
This glass (2) is coated with 300' of silver nitrate (AgNO3).
Place in a molten salt bath of about C and hold for about 120 minutes. After ion diffusion, the glass (2) taken out of the bath is cut and optically mirror polished. The obtained optical element (1) contains sodium ions (Na+) and silver ions (Ag'') in the glass.
is ion-exchanged and has a high refractive index, so that a parallel plane optical element (1) equivalent to a concave cylindrical lens can be obtained.

〔発明の効果] この発明は以上説明したとおり、 ガラスで形成された光透過性直方体を有し、屈折率を変
えうるイオンの等濃度面が直方体の一面とこれに向い合
う対面とにそれぞれ平行であり、上記一面と対面の中心
領域から上記一面と対面に向ってイオンの濃度にそれぞ
れ傾斜を持たせることにより、2次元的に線状に広がっ
た光ないし光源の集束または拡大を行うことができる光
学素子を、平行平面形状で構成することができ、他の部
品との密着性が良く、装着が容易であるという効果があ
る。
[Effects of the Invention] As explained above, the present invention has a light-transmitting rectangular parallelepiped made of glass, and isoconcentration surfaces of ions that can change the refractive index are parallel to one surface of the rectangular parallelepiped and the opposite surface. By giving a gradient in the concentration of ions from the central region facing the one surface to the opposite surface, it is possible to focus or expand the light or light source that spreads linearly in two dimensions. The resulting optical element can be configured in a parallel plane shape, has good adhesion to other parts, and is easy to mount.

また、この発明の別の発明は、 (lO) 一面とこれに平行な対面を有し、上記一面と対面はその
二辺がそれぞれ実質的拡散長の2倍より少なくとも長く
、ガラスで形成された光透過性立方体を備え、この立方
体の少なくとも上記二面から屈折率を変えうるイオンを
実質的拡散長にわたって拡赦し、これを上記一面の一辺
より実質的拡散長へだてた中央部分を上記一面に直角に
切断して製造することにより、上記光学素子の製造方法
が得られる効果がある。
Another invention of the present invention provides: (lO) having one surface and a facing surface parallel to the surface, the one surface and the facing surface each having two sides longer than twice the substantial diffusion length, and formed of glass. A light-transmitting cube is provided, and the ions whose refractive index can be changed are spread over a substantial diffusion length from at least the two surfaces of the cube, and the central portion extending from one side of the one surface to the substantial diffusion length is perpendicular to the one surface. By cutting and manufacturing the optical element, the above-mentioned method for manufacturing an optical element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す斜視図、第2図は
、この発明の一実施例による光学素子の製造途中の状態
を示す斜視図、第3図は従来の光学素子の動作を示す説
明図、第4図は従来の光学素子を示す斜視図である。 (1)・・・光学素子、(2)・・・光透過性立方体。
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a perspective view showing a state in the process of manufacturing an optical element according to an embodiment of the invention, and FIG. 3 is an operation of a conventional optical element. FIG. 4 is a perspective view showing a conventional optical element. (1)...Optical element, (2)...Light-transmitting cube.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスで形成された光透過性直方体を有し、屈折
率を変えうるイオンの等濃度面が上記直方体の一面とこ
れに向い合う対面とにそれぞれ平行であり、上記一面と
対面の中心領域から上記一面と対面に向つて上記イオン
の濃度にそれぞれ傾斜を持たせた光学素子。
(1) It has a light-transmitting rectangular parallelepiped made of glass, and isoconcentration surfaces of ions whose refractive index can be changed are parallel to one surface of the rectangular parallelepiped and the opposite surface, respectively, and the centers of the one surface and the opposite surface are parallel to each other. An optical element in which the concentration of the ions is sloped from the region toward the one surface and the opposite surface.
(2)一面とこれに平行な対面を有し、上記一面と対面
はその二辺がそれぞれ実質的拡散長の2倍より少なくと
も長く、ガラスで形成された光透過性立方体を備え、こ
の立方体の少なくとも上記二面から屈折率を変えうるイ
オンを上記実質的拡散長にわたつて拡散し、これを上記
一面の一辺より上記実質的拡散長へだてた中央部分を上
記一面に直角に切断して製造する光学素子の製造方法。
(2) having a light-transmissive cube formed of glass, having one face and a facing face parallel thereto, each of which has two sides longer than twice the effective diffusion length; Ions whose refractive index can be changed from at least the two surfaces are diffused over the substantial diffusion length, and the central portion extending from one side of the one surface to the substantial diffusion length is cut at right angles to the one surface. A method for manufacturing an optical element.
JP21535284A 1984-10-15 1984-10-15 Optical element and its production Pending JPS6194001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21535284A JPS6194001A (en) 1984-10-15 1984-10-15 Optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21535284A JPS6194001A (en) 1984-10-15 1984-10-15 Optical element and its production

Publications (1)

Publication Number Publication Date
JPS6194001A true JPS6194001A (en) 1986-05-12

Family

ID=16670873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21535284A Pending JPS6194001A (en) 1984-10-15 1984-10-15 Optical element and its production

Country Status (1)

Country Link
JP (1) JPS6194001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
CN103941314A (en) * 2014-04-30 2014-07-23 深圳市易飞扬通信技术有限公司 Linear beam expanding lens and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
CN103941314A (en) * 2014-04-30 2014-07-23 深圳市易飞扬通信技术有限公司 Linear beam expanding lens and manufacturing method thereof
CN103941314B (en) * 2014-04-30 2016-03-30 深圳市易飞扬通信技术有限公司 Linear extender lens and preparation method thereof

Similar Documents

Publication Publication Date Title
US4637681A (en) Optical plane circuit with an optical coupler and a method for manufacturing the same
US4844724A (en) Method of adjusting refractive index distribution lenses
EP0163540B1 (en) Anamorphic lenses
JP2002196181A (en) Optical fiber attached with lens function and its manufacturing method
US6535655B1 (en) Fiberoptic polarizer and method of making the same
JPH04274201A (en) Lens array
JPS6194001A (en) Optical element and its production
CN215067386U (en) Self-focusing lens for LD
JPS58198001A (en) Refractive index distributed type flat plate microlens array
JP2005250183A (en) Microlens, microlens array and optical apparatus
CN111487718A (en) Ion exchange glass-based buried sectional type spot size converter
JPH04223412A (en) Receptacle-type semiconductor laser module
CN212846019U (en) Ion exchange glass-based surface type sectional type spot size converter
JPS57172309A (en) Coupling method of optical fiber and optical waveguide
CN201194029Y (en) Construction of self-focusing lens glass array
JPS60235102A (en) Transmission type light scattering element
JPH0442641B2 (en)
JPH01187502A (en) Plate lens array and liquid crystal display element equipped with plate lens array
JP2505416B2 (en) Optical circuit and manufacturing method thereof
JPH02311801A (en) Distributed index type circular columnar lens of quartz glass system and production thereof
JPH06167627A (en) Production of glass waveguide with lens function and ld array module using this waveguide
JPS571289A (en) Semiconductor light emitting device
JP3271312B2 (en) Cylindrical flat plate microlens and method of manufacturing the same
JPH06118283A (en) Manufacture of optical module and its lens array
CN111487717A (en) Ion exchange glass-based surface type sectional type spot size converter