CN212846019U - Ion exchange glass-based surface type sectional type spot size converter - Google Patents

Ion exchange glass-based surface type sectional type spot size converter Download PDF

Info

Publication number
CN212846019U
CN212846019U CN202020752784.4U CN202020752784U CN212846019U CN 212846019 U CN212846019 U CN 212846019U CN 202020752784 U CN202020752784 U CN 202020752784U CN 212846019 U CN212846019 U CN 212846019U
Authority
CN
China
Prior art keywords
glass
section
conical
surface type
waveguide chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020752784.4U
Other languages
Chinese (zh)
Inventor
郝寅雷
蒋建光
邓鑫宸
牛梦华
周柯江
车录锋
杨建义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoxing Technology Venture Capital Co ltd
Shaoxing Microelectronics Research Center Of Zhejiang University
Zhejiang University ZJU
Original Assignee
Shaoxing Technology Venture Capital Co ltd
Shaoxing Microelectronics Research Center Of Zhejiang University
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoxing Technology Venture Capital Co ltd, Shaoxing Microelectronics Research Center Of Zhejiang University, Zhejiang University ZJU filed Critical Shaoxing Technology Venture Capital Co ltd
Priority to CN202020752784.4U priority Critical patent/CN212846019U/en
Application granted granted Critical
Publication of CN212846019U publication Critical patent/CN212846019U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

An ion exchange glass-based surface type sectional type spot size converter is formed by sequentially cascading n sections (n is more than or equal to 2) of glass-based tapered waveguide chips; each section of the glass-based tapered waveguide chip is composed of a glass substrate (100) and a surface type tapered ion doped region (102) inside the glass substrate; the cross section size of the thick end of the surface type conical ion doping region (102) in the nth section of glass-based conical waveguide chip is matched with the cross section size of the thin end of the surface type conical ion doping region (102) in the nth-1 section of glass-based conical waveguide chip, and the thin end of the surface type conical ion doping region (102) in the nth section of glass-based conical waveguide chip is used as the output end of the mode spot converter. The utility model discloses can realize the spot size conversion by a larger margin, improve the device performance to further reduce the degree of difficulty of design and preparation.

Description

Ion exchange glass-based surface type sectional type spot size converter
Technical Field
The utility model relates to an ion exchange glass base surface type sectional type spot size converter belongs to integrated optics, optoelectronics field.
Background
The theory and technology of integrated optics has evolved rapidly since the concept of "integrated optics" was proposed by Miller, belle laboratories, usa in 1969. Some integrated optical devices, such as semiconductor lasers, optical splitters, optical modulators and optical switches, have been widely used in many fields such as optical communication, optical sensing, optical computing and optical interconnection, and especially the application of such devices in optical interconnection has advanced the rapid development of microelectronic technology.
The refractive index difference between the core layer and the cladding layer of the SOI (silicon On insulator) material is large, and the optical confinement capability is strong, so that the SOI material can realize smaller device size and large-scale optical device integration. Therefore, silicon-based integrated optoelectronic devices have become one of the research hotspots in the current fields of microelectronics and integrated optics.
The problem of coupling optical fibers to SOI waveguides is a key issue affecting the development and application of silicon-based photonics. The core diameter of the single-mode fiber is generally 8-10 μm, and the size of the SOI waveguide is generally 450nm × 220nm, so that the size of the mode spot when light is transmitted in the fiber is greatly different from the size of the mode spot when light is transmitted in the SOI waveguide, and the large mode field mismatch causes the end face coupling loss from the fiber to the SOI waveguide to be more than 20 dB. Although the coupling between the optical fiber and the silicon photonic chip can be realized by adopting a grating coupling mode, the operating bandwidth of the coupling mode is limited and the coupling mode is sensitive to the polarization direction of input light. In contrast, end-coupling can achieve higher coupling efficiency and is more advantageous in terms of operating bandwidth and polarization sensitivity, and is considered by researchers to be a potential solution to the problem of efficient coupling between optical fibers and silicon photonics. In order to reduce the end-coupling loss between the optical fiber and the SOI waveguide, many researchers have conducted extensive research on end-coupling techniques.
End-coupling of the fiber to the SOI waveguide requires that coupling losses be reduced by means of Spot Size Converters (SSCs). A spot-size converter is a device that can achieve mode field shape conversion and/or size scaling. The common mode spot converter generally needs to realize smooth transition of a mode field through a section of tapered waveguide to reduce loss, and the structure of the tapered waveguide needs to meet an adiabatic transition condition. Researchers have proposed silicon-based spot size converters of various configurations, including: three-dimensional tapered spot converters (Holly R, hinderl K et al, 2006), two-layer tapered spot converters (Daoxin Dai, Sailing He et al, 2006), reverse tapered spot converters (Pavel Cheben et al, 2010), gradient index lens type spot converters (Qian Wang, Yingyan Huang et al, 2010), etc., and some studies have been made in the design and fabrication of ion-exchange glass-based spot converters.
A product of ion-exchange glass-based spot size converters (https:// www.teemphotonics.com/integrated-optics/wax-interface-products /) was introduced by Teem Photonics, France, as shown in FIG. 1. The spot-size converter is made of glassThe ion exchange optical waveguide has the unique advantages of simple process and low cost. By controlling the shape of the ion exchange window in the waveguide forming process, a buried conical ion doped region (101) is obtained in the glass substrate (100), and the mode spot conversion function is realized. The spot size converter can convert spot size from 10.8 × 10 μm at input end2Down to 4.1 x 3.1 μm at the output2And the insertion loss is less than 1.0dB, so that the coupling difficulty of the optical fiber and the SOI waveguide can be obviously reduced.
The size of the spot at the output end of the spot-size converter is an important performance index of the spot-size converter, but the spot-size reduction is very difficult to realize to a greater extent based on the existing glass-based spot-size converter manufacturing technology. The reason is that in the process of forming the spot size converter by diffusion of the dopant ions, the size difference of the waveguide core layers at the input end and the output end of the spot size converter is controlled by the width of the ion exchange window, but is limited by the characteristics of the glass-based ion exchange technology, the diffusion depth and the lateral broadening of the dopant ions in the glass substrate (100) are mainly determined by the diffusion coefficient (related to the temperature and the ion concentration) and the diffusion time, and the prior art has difficulty in realizing large-scale change from the spot size at the input end of the spot size converter to the spot size at the output end. Therefore, further reduction of the spot size at the output (e.g., 3 μm or less) using existing spot-size converter fabrication techniques presents design and fabrication challenges.
SUMMERY OF THE UTILITY MODEL
The utility model provides an ion exchange glass base surface type sectional type spot size converter, this kind of spot size converter realize the reduction by a greater margin of spot size through the structure of surface type sectional type, improve the device performance, reduce the degree of difficulty of design and preparation simultaneously.
The utility model provides an ion exchange glass base surface type sectional type spot size converter is cascaded in proper order by n section (n is more than or equal to 2) glass base tapered waveguide chip and is formed. Each glass-based tapered waveguide chip is composed of a glass substrate (100) and a surface type tapered ion doping area (102) inside the glass substrate. The cross section size of the thick end of a surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip is matched with the optical fiber core part and used as the input end of the spot size converter; the cross section size of the thick end of the surface type conical ion doping region (102) in the 2 nd section of glass-based conical waveguide chip is matched with the cross section size of the thin end of the surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip; and so on; the cross section size of the thick end of the surface type conical ion doping region (102) in the nth section of glass-based conical waveguide chip is matched with the cross section size of the thin end of the surface type conical ion doping region (102) in the nth-1 section of glass-based conical waveguide chip, and the thin end of the surface type conical ion doping region (102) in the nth section of glass-based conical waveguide chip is used as the output end of the mode spot converter. The relative position between the adjacent glass-based tapered waveguide chips is fixed by ultraviolet curing glue with the refractive index matched with the glass substrate (100).
The basic structure unit of the ion exchange glass-based surface type sectional mode spot size converter is a glass-based tapered waveguide chip. The size difference between the thick end and the thin end of the surface type conical ion doping region (102) in the glass-based conical waveguide chip is controlled by the shape of an ion exchange window formed by a mask (200) on the surface of a glass substrate (100). The shape of the ion exchange window formed by the mask (200) on the surface of the glass substrate (100) is realized by the waveguide pattern on the mask. As shown in FIG. 3, the light-transmitting region on the mask is a cone-shaped structure with a width W of the thick end1Width of tip is W2And the length is L.
Each glass-based tapered waveguide chip is fabricated by a thermionic exchange technique, which specifically includes 4 steps as shown in fig. 4. The first step is coating, a mask (200) is manufactured on the surface of a clean glass substrate (100) by adopting a sputtering or thermal evaporation technology; the second step is photoetching, the waveguide pattern on the mask is transferred to the mask (200) on the surface of the glass substrate (100) by adopting the micro-processing technologies of standard photoetching, corrosion and the like to form an ion exchange window; the third step is heat ion exchange, the glass substrate (100) is immersed into fused salt containing doping ions at high temperature, and the doping ions in the fused salt enter the glass substrate (100) through an ion exchange window formed by a mask (200) on the surface of the glass substrate (100) and are diffused to form a surface type conical ion doping area (102); the fourth step is to remove the mask, remove the mask (200) on the surface of the glass substrate (100) with the chemical corrosion method; the glass substrate (100) and the surface type conical ion doped region (102) form a glass-based conical waveguide chip.
By controlling the width W of the thick end on each segment of the glass-based tapered waveguide chip1And a narrow end width W2And the matching of the sizes of the optical waveguide mode spots at the connection part of the adjacent glass-based tapered waveguide chips is realized by the process parameters of the heat ion exchange.
And finally, aligning the glass-based tapered waveguide chips in sequence, and fixing the relative positions of the adjacent glass-based tapered waveguide chips by using ultraviolet curing adhesive with the refractive index matched with the glass substrate (100).
The material of the glass substrate (100) in the spot-size converter can be a silicate glass material, a borate glass material or a phosphate glass material; wherein the doped ions in the surface-type conical ion doped region (102) can be Ag+,Tl+,K+,Rb+Or Cs+
Ion exchange glass base surface type sectional type spot size converter's advantage lie in: compare in current glass base spot size converter, this kind of glass base surface type sectional type spot size converter through the cascaded mode of n section glass base toper waveguide chip, can realize the spot size conversion by a larger margin, improve the device performance to further reduce the degree of difficulty of design and preparation.
Drawings
FIG. 1 is a schematic diagram of the structure of an ion-exchange glass-based spot-size converter from Teem Photonics.
Fig. 2 is a schematic structural view of an ion-exchanged glass-based surface segmented spot-size converter according to the present invention.
FIG. 3 is a schematic diagram of a reticle pattern for use in glass-based tapered waveguide chip fabrication.
FIG. 4 is a flow chart of a process for fabricating a glass-based tapered waveguide chip.
Fig. 5 is a schematic structural view of the ion-exchanged glass-based surface type two-stage spot size converter according to the present invention.
Fig. 6 is a schematic structural diagram of an ion-exchanged glass-based surface three-stage spot size converter according to the present invention.
100: a glass substrate.
101: and a buried conical ion doped region.
102: surface type conical ion doping area.
200: and (5) masking.
Detailed Description
The present invention will be further explained with reference to the drawings and examples.
Example 1: design and manufacture of ion exchange glass base surface type two-section type spot size converter
The ion-exchange glass-based surface type two-section spot size converter is formed by cascading two sections of glass-based tapered waveguide chips, as shown in fig. 5. Each glass-based tapered waveguide chip is composed of a glass substrate (100) and a surface type tapered ion doping area (102) inside the glass substrate. The cross section size of the thick end of a surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip is matched with the optical fiber core part and used as the input end of the spot size converter; the size of the cross section of the thick end of the surface type conical ion doping region (102) in the 2 nd section of glass-based conical waveguide chip is matched with the size of the cross section of the thin end of the surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip, and the thin end of the surface type conical ion doping region (102) in the 2 nd section of glass-based conical waveguide chip is used as the output end of the mode spot converter. The relative position between the two sections of glass-based tapered waveguide chips is fixed by ultraviolet curing glue with the refractive index matched with the glass substrate (100).
Each section of the glass-based tapered waveguide chip of the ion exchange glass-based surface type two-section spot size converter is manufactured by adopting a thermal ion exchange technology, the used glass substrate (100) is soda-lime glass, and the material is processed into a wafer with the diameter of 100mm and the thickness of 1.5 mm. The process for manufacturing the glass-based tapered waveguide chip specifically comprises 4 steps as shown in fig. 4. The first step is coating, adopting thermal evaporation technologyManufacturing an aluminum mask (200) with the thickness of 100-300nm on the surface of the clean glass substrate (100); the second step is photoetching, the waveguide pattern on the mask is transferred to the aluminum mask (200) on the surface of the glass substrate (100) by adopting the micro-processing technologies of standard photoetching, corrosion and the like to form an ion exchange window; the third step is Ag+-Na+Heat ion exchange, immersing the glass substrate (100) in NaNO at high temperature3、Ca(NO3)2、AgNO3Mixed molten salts of composition, in the course of which Ag is in the molten salt+Ions enter the glass substrate (100) through an ion exchange window formed by an aluminum mask (200) on the surface of the glass substrate (100) and are diffused to form a surface type conical ion doped region (102); the fourth step is to remove the mask, remove the aluminium mask (200) on the surface of the glass substrate (100) with the acid corrosion method, wash the glass substrate (100); the glass substrate (100) and the surface type conical ion doped region (102) form a glass-based conical waveguide chip. Specific design and manufacturing parameters of each section of the glass-based tapered waveguide chip of the ion-exchange glass-based surface type two-section spot size converter are shown in table 1.
TABLE 1 design and fabrication parameters for ion-exchanged glass-based surface type two-stage speckle converter
Figure BDA0002484013470000081
And finally, slicing the glass substrate (100), and grinding and polishing the end face to obtain two sections of glass-based tapered waveguide chips. The two sections of glass-based tapered waveguide chips are aligned according to the mode shown in fig. 5, the thick end of the surface type tapered ion doping region (102) in the 2 nd section of glass-based tapered waveguide chip is aligned with the thin end of the surface type tapered ion doping region (102) in the 1 st section of glass-based tapered waveguide chip, and the relative position between the two sections of glass-based tapered waveguide chips is fixed by ultraviolet curing adhesive with the refractive index matched with the glass substrate (100).
The ion-exchange glass-based surface type two-stage spot size converter manufactured by the above method has a spot size of about 10.8 × 10 μm at the input end2Mode field size of output endCan be reduced to 3.4 (+ -0.2) × 2.4 (+ -0.2) μm2
Example 2: design and manufacture of ion exchange glass base surface type three-section type spot size converter
The ion-exchange glass-based surface type three-section mode spot converter is formed by cascading three sections of glass-based tapered waveguide chips, as shown in fig. 6. Each glass-based tapered waveguide chip is composed of a glass substrate (100) and a surface type tapered ion doping area (102) inside the glass substrate. The cross section size of the thick end of a surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip is matched with the optical fiber core part and used as the input end of the spot size converter; the cross section size of the thick end of the surface type conical ion doping region (102) in the 2 nd section of glass-based conical waveguide chip is matched with the cross section size of the thin end of the surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip; the size of the cross section of the thick end of the surface type conical ion doping region (102) in the 3 rd section of glass-based conical waveguide chip is matched with the size of the cross section of the thin end of the surface type conical ion doping region (102) in the 2 nd section of glass-based conical waveguide chip, and the thin end of the surface type conical ion doping region (102) in the 3 rd section of glass-based conical waveguide chip is used as the output end of the spot size converter. The relative position between two adjacent sections of glass-based tapered waveguide chips is fixed by ultraviolet curing glue with the refractive index matched with the glass substrate (100).
Each section of the glass-based tapered waveguide chip of the ion exchange glass-based surface type three-section mode spot converter is manufactured by adopting a heat ion exchange technology, the used glass substrate (100) is soda-lime glass, and the material is processed into a wafer with the diameter of 100mm and the thickness of 1.5 mm. The process for manufacturing the glass-based tapered waveguide chip specifically comprises 4 steps as shown in fig. 4. The first step is coating, adopting thermal evaporation technology to manufacture an aluminum mask (200) with the thickness of 100-300nm on the surface of a clean glass substrate (100); the second step is photoetching, the waveguide pattern on the mask is transferred to the aluminum mask (200) on the surface of the glass substrate (100) by adopting the micro-processing technologies of standard photoetching, corrosion and the like to form an ion exchange window; the third step is Ag+-Na+Heat ion exchange, immersing the glass substrate (100) at high temperatureInto NaNO3、Ca(NO3)2、AgNO3Mixed molten salts of composition, in the course of which Ag is in the molten salt+Ions enter the glass substrate (100) through an ion exchange window formed by an aluminum mask (200) on the surface of the glass substrate (100) and are diffused to form a surface type conical ion doped region (102); the fourth step is to remove the mask, remove the aluminium mask (200) on the surface of the glass substrate (100) with the acid corrosion method, wash the glass substrate (100); the glass substrate (100) and the surface type conical ion doped region (102) form a glass-based conical waveguide chip. Specific design and manufacturing parameters of each glass-based tapered waveguide chip of the ion-exchange glass-based surface type three-section spot size converter are shown in table 2.
TABLE 2 design and fabrication parameters for ion-exchange glass-based surface type three-stage spot-size converter
Figure BDA0002484013470000101
And finally, slicing the glass substrate (100), and grinding and polishing the end face to obtain three sections of glass-based tapered waveguide chips. The three sections of glass-based tapered waveguide chips are aligned according to the mode shown in fig. 6, the thick end of the surface-type tapered ion doping region (102) in the 2 nd section of glass-based tapered waveguide chip is aligned with the thin end of the surface-type tapered ion doping region (102) in the 1 st section of glass-based tapered waveguide chip, the thick end of the surface-type tapered ion doping region (102) in the 3 rd section of glass-based tapered waveguide chip is aligned with the thin end of the surface-type tapered ion doping region (102) in the 2 nd section of glass-based tapered waveguide chip, and the relative position between the two adjacent sections of glass-based tapered waveguide chips is fixed by ultraviolet curing adhesive with the refractive index matched with the glass substrate (100).
The ion-exchange glass-based surface type three-stage spot size converter manufactured by the above method has a spot size of about 10.8X 10 μm at the input end2The mode field size of the output end can be reduced to 3.0 (+ -0.2) multiplied by 2.0 (+ -0.2) mu m2
The above detailed description is provided for illustrative purposes, and is not intended to limit the present invention, which is intended to cover any modifications and variations within the spirit and scope of the appended claims.

Claims (3)

1. An ion-exchanged glass-based surface-type segmented speckle converter, characterized by: the spot size converter is formed by sequentially cascading n sections of glass-based tapered waveguide chips, wherein n is more than or equal to 2; each section of the glass-based tapered waveguide chip is composed of a glass substrate (100) and a surface type tapered ion doped region (102) inside the glass substrate; the cross section size of the thick end of a surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip is matched with the optical fiber core part and used as the input end of the spot size converter; the cross section size of the thick end of the surface type conical ion doping region (102) in the 2 nd section of glass-based conical waveguide chip is matched with the cross section size of the thin end of the surface type conical ion doping region (102) in the 1 st section of glass-based conical waveguide chip; and so on; the cross section size of the thick end of the surface type conical ion doping region (102) in the nth section of glass-based conical waveguide chip is matched with the cross section size of the thin end of the surface type conical ion doping region (102) in the nth-1 section of glass-based conical waveguide chip, and the thin end of the surface type conical ion doping region (102) in the nth section of glass-based conical waveguide chip is used as the output end of the spot-size converter; the relative position between the adjacent glass-based tapered waveguide chips is fixed by ultraviolet curing glue with the refractive index matched with the glass substrate (100).
2. The glass-based surface-type segmented speckle converter of claim 1, wherein: the glass substrate (100) is a silicate glass material, a borate glass material or a phosphate glass material.
3. The glass-based surface-type segmented speckle converter of claim 1, wherein: the doped ions in the surface type conical ion doped region (102) are Ag+,Tl+,K+,Rb+Or Cs+
CN202020752784.4U 2020-05-09 2020-05-09 Ion exchange glass-based surface type sectional type spot size converter Active CN212846019U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020752784.4U CN212846019U (en) 2020-05-09 2020-05-09 Ion exchange glass-based surface type sectional type spot size converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020752784.4U CN212846019U (en) 2020-05-09 2020-05-09 Ion exchange glass-based surface type sectional type spot size converter

Publications (1)

Publication Number Publication Date
CN212846019U true CN212846019U (en) 2021-03-30

Family

ID=75159758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020752784.4U Active CN212846019U (en) 2020-05-09 2020-05-09 Ion exchange glass-based surface type sectional type spot size converter

Country Status (1)

Country Link
CN (1) CN212846019U (en)

Similar Documents

Publication Publication Date Title
KR0137125B1 (en) An optical wave guide device and a method for fabricating the same
US10007061B2 (en) Three-dimensional (3D) photonic chip-to-fiber interposer
KR20030012940A (en) Method for manufacturing a planar type waveguide using an ion exchange method
CN204302526U (en) Polarization beam splitting circulator
CN108535807A (en) With the optical fiber-silicon optical chip coupler and preparation method for tilting Waveguide end face
CN105607185B (en) Improve the structure of sub-micron silicon waveguide and general single mode fiber coupling efficiency
JPH06342110A (en) Preparation of glass base material for planar optical waveguide and planar optical waveguide
US20160306117A1 (en) Tapered polymer waveguide
CN101308230A (en) Isolator silicon based three-dimensional wedge-shaped spot-size converter and method for making same
CN113534337B (en) Processing method and structure of silicon photonic chip optical coupling structure
JP2008521051A (en) Method and process for tapering a waveguide and forming an optimized waveguide structure
CN113640913A (en) LNOI-based spot-size converter directly coupled with single-mode fiber
CN111522096B (en) Method for preparing silicon waveguide and silicon oxide waveguide mode converter
Fijol et al. Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices
CN111487718A (en) Ion exchange glass-based buried sectional type spot size converter
CN212846019U (en) Ion exchange glass-based surface type sectional type spot size converter
CN212846018U (en) Ion exchange glass-based buried sectional type spot size converter
CN113376743A (en) Spot-size converter based on long-period grating
CN102193146B (en) Method for manufacturing glass substrate all buried strip-type optical waveguide stack
CN111487717A (en) Ion exchange glass-based surface type sectional type spot size converter
CN114355507A (en) Micro-ring resonator based on inverted ridge type silicon dioxide/polymer mixed waveguide and preparation method thereof
WO2005045491A1 (en) Optical waveguide and production method therefor
JP2010085564A (en) Optical waveguide circuit and optical circuit device
CN115308839B (en) Multi-port waveguide crossing device based on silica/polymer embedded waveguide platform and preparation method thereof
CN111158084A (en) Manufacturing method of ion-exchange glass-based surface waveguide spot size converter

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant