JPS6192186A - Controller of induction motor - Google Patents

Controller of induction motor

Info

Publication number
JPS6192186A
JPS6192186A JP59211372A JP21137284A JPS6192186A JP S6192186 A JPS6192186 A JP S6192186A JP 59211372 A JP59211372 A JP 59211372A JP 21137284 A JP21137284 A JP 21137284A JP S6192186 A JPS6192186 A JP S6192186A
Authority
JP
Japan
Prior art keywords
component
speed
frequency
voltage
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211372A
Other languages
Japanese (ja)
Inventor
Takayuki Matsui
孝行 松井
Toshiaki Okuyama
俊昭 奥山
Noboru Fujimoto
登 藤本
Yuzuru Kubota
久保田 譲
Junichi Takahashi
潤一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59211372A priority Critical patent/JPS6192186A/en
Publication of JPS6192186A publication Critical patent/JPS6192186A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To control to response at a high speed without using a speed detector by obtaining 2-phase components from a detected voltage for exciting current phase reference, and providing the primary delay time corresponding to the control delay of a speed control system for the speed command signal. CONSTITUTION:A voltage component detector 7 detects a 90 deg. phase difference component with respect to the exciting current component determined by a control system to be the basic wave component of a motor voltage. A voltage component detector 8 detects the same phase component for the exciting current phase reference signal of the motor voltage. A torque current i*t is controlled in response to a deviation between the speed command signal omega*r and the addition of 90 deg. phase difference component and a slip frequency. The primary delay circuit 4 outputs a 2-phase sinusoidal wave signal having a frequency proportional to the frequency command signal of a frequency converter from an oscillator 10 in response to the deviation between a signal having the primary delay time corresponding to the control delay of a speed control system to a speed command signal and the same phase voltage component.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は誘導電動機の1次電流をトルク電流と励磁電流
に分けそれぞれを独立に制御するいわゆるベクトル制御
を速度検出器を用いることなく行うようにした誘導電動
機の制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is designed to perform so-called vector control in which the primary current of an induction motor is divided into a torque current and an excitation current and each is controlled independently without using a speed detector. The present invention relates to a control device for an induction motor.

〔発明の背景〕[Background of the invention]

誘導電動機を周波数変換器を用いて速度制御する装置に
おいて、高速応答高精度な制御を可能にするベクトル制
御が周知である。しかし従来からのものは、すべり周波
数制御方式を基本として電動機のすべり周波数及び電動
機を流の大きさと位相を制御する方式であるため、変換
器出力周波数を制御するに際して電動機の速度検出信号
(または回転角検出信号)が必要であった。そこで、こ
れらの機械的な検出器を用いずに変換器の出力周波数を
制御するために、電動機の電圧や電流を検出し、これら
の検出信号より電動機のすべり周波数を演算検出してこ
れと速度設定器の指令信号を力旧算して変換器出力周波
数とする装置が知られている。(特開昭58−1824
88号公報、特開昭58−186399号公報など) しかし、このような速度検出器をもたない速度制御シス
テムでは電動機駆動系の慣性モーメント(GD2)のた
めに、速度指令の急変に対して電動機の回転速度が追従
できず、その差により、すべり周波数が過大となり電動
機のプルアウトを生じる。そのだめ、速度指令値の変化
率を制限したり、すべり周波数の過大を検出して指令値
の変化を制限する方法が知られている。(特開昭58−
182488号公報) しかし、これらの方法では過渡時にすべり周波数の検出
遅れがあるためにトルクあるいは速度が変動する間魂が
あった。
Vector control, which enables high-speed response and highly accurate control, is well known in devices that control the speed of an induction motor using a frequency converter. However, the conventional method is based on a slip frequency control method that controls the slip frequency of the motor and the magnitude and phase of the motor flow, so when controlling the converter output frequency, the motor speed detection signal (or rotation angle detection signal) was required. Therefore, in order to control the output frequency of the converter without using these mechanical detectors, the voltage and current of the motor are detected, the slip frequency of the motor is calculated and detected from these detection signals, and this and the speed are calculated. A device is known that calculates the force of a command signal from a setter to obtain a converter output frequency. (Unexamined Japanese Patent Publication No. 58-1824
(No. 88, Japanese Patent Application Laid-Open No. 186399/1988, etc.) However, in speed control systems without such speed detectors, due to the moment of inertia (GD2) of the motor drive system, it is difficult to respond to sudden changes in the speed command. The rotational speed of the electric motor cannot follow the rotational speed, and the slip frequency becomes excessive due to the difference, causing pullout of the electric motor. Therefore, methods are known in which the rate of change of the speed command value is limited or the change in the command value is limited by detecting an excessive slip frequency. (Unexamined Japanese Patent Publication No. 58-
(Japanese Patent Publication No. 182488) However, in these methods, there is a delay in detecting the slip frequency during a transient period, so there is a problem while the torque or speed fluctuates.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、この問題を解決することにあり、速度
検出器を用いることなく過渡時にも高速応答高精度な速
度制御が行える制御装置を提供することにある。
An object of the present invention is to solve this problem, and to provide a control device that can perform speed control with high speed response and high accuracy even during transients without using a speed detector.

〔発明の概保〕[Overview of the invention]

本発明の特徴とするところは誘導電動機の電動機電圧を
検出し、その電圧成分であって、励磁電流位相基準に7
1 して同位相成分と90度位相差成分をそれぞれ求め
、速度指令1ぎ号と該90度位相差成分の偏差に応じて
トルク電流を制御すると共に速度指令信号に速度制御系
の制御遅れ相当の1次遅れ時間を持たせた信号と同位相
電圧成分の偏差に応じて周波数変換器の出力周波数を制
御するようにしたことにある。
The present invention is characterized by detecting the motor voltage of an induction motor, and detecting the voltage component, which is based on the excitation current phase reference.
1 to obtain the in-phase component and the 90-degree phase difference component, and control the torque current according to the deviation between the speed command No. 1 and the 90-degree phase difference component, and add the speed command signal equivalent to the control delay of the speed control system. The output frequency of the frequency converter is controlled according to the deviation between the signal having the first-order delay time and the in-phase voltage component.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

第1図において、1はゲートターンオフサイリスタなど
のスイッチング素子とタイオードなどで構成されるPW
Mインバータ、2は誘導電動機、3は速度指令回路、4
は速度指令信号に速度制御系の制御遅れ相当の1次遅れ
時間を持たせる1次遅れ回路、5は速度指令信号と後述
する回転速度の演算回路18の出力信号の偏差を増幅す
る速度ゐ励磁電流成分(励磁電流位相基準信号)に対し
て90度位相差成分を検出するための電圧成分検出器、
8は前記電圧の励磁電流位相基準信号に対して同位相成
分を検出するための電圧成分検出器、9は電圧成分検出
器8.後述するすベシ周波数演算回路及び、1次遅れ回
路4の出力信号を加算し、周波数指令信号を出力する加
算器、10は周波数指令信号に比例した周波数をもつ2
相正弦波信号を出力する見振器、11は電動機2の励磁
電流を指令する励磁電流指令回路、12は励磁電流指令
i:及び増幅器5からのトルク電流指令信号i:と発撮
器10の出力信号を乗算し、2相の電流指令パターン信
号i:及びIiを出力する座標変換器、13は信号i:
及びiiに基づいて3相の電流指令パターン信号i:〜
iJを出力する相数変換器、14はインバータlの出力
電流の瞬時値を検出するだめの電流検出器、15は′電
流指令パターン信号ltと電流検出信号を比較し、イン
バータlのスイッチング素子をオン、オフ制御するため
のPWM信号を出力する比較器、16はスイッチング素
子にグー2=号を与えるためのゲート回路である。なお
、送流検出器14、比較器15、ゲート回路16はU相
分のみを示し、V相及びW相分については図示を省略し
ている。17は速度偏差増幅器5の出力信号からすべり
周波数を演算する回路、18は電圧成分検出器7及びす
べり周波数演算回路17の出力信号を加算し、回転速度
を演算出力する加算器である。
In Figure 1, 1 is a PW consisting of a switching element such as a gate turn-off thyristor, a diode, etc.
M inverter, 2 is induction motor, 3 is speed command circuit, 4
5 is a first-order delay circuit that makes the speed command signal have a first-order delay time equivalent to the control delay of the speed control system, and 5 is a speed excitation circuit that amplifies the deviation between the speed command signal and the output signal of the rotational speed calculation circuit 18, which will be described later. a voltage component detector for detecting a 90 degree phase difference component with respect to a current component (excitation current phase reference signal);
8 is a voltage component detector for detecting the in-phase component of the voltage with respect to the excitation current phase reference signal; 9 is a voltage component detector 8. An adder 10 which adds the output signals of a frequency calculation circuit and a first-order delay circuit 4, which will be described later, and outputs a frequency command signal;
11 is an excitation current command circuit that commands the excitation current of the motor 2; 12 is an excitation current command i: and a torque current command signal i from the amplifier 5; A coordinate converter that multiplies output signals and outputs two-phase current command pattern signals i: and Ii, 13 is a signal i:
and ii, three-phase current command pattern signal i: ~
14 is a current detector for detecting the instantaneous value of the output current of inverter l; 15 is a current detector that compares the current command pattern signal lt with the current detection signal, A comparator outputs a PWM signal for on/off control, and 16 is a gate circuit for applying a signal to the switching element. Note that the flow detector 14, the comparator 15, and the gate circuit 16 are shown only for the U phase, and the illustrations for the V and W phases are omitted. 17 is a circuit that calculates the slip frequency from the output signal of the speed deviation amplifier 5, and 18 is an adder that adds the output signals of the voltage component detector 7 and the slip frequency calculation circuit 17 to calculate and output the rotation speed.

次に動作を説明する。本特許の基本的な動作の詳細は特
開昭58−29143号公報に記述されている。ここで
は本発明に関連するところを述べる。
Next, the operation will be explained. Details of the basic operation of this patent are described in Japanese Patent Application Laid-Open No. 58-29143. Here, the points related to the present invention will be described.

第2図は各電流指令信号i、″、t 、+(=0)が一
定と仮定した場合における、すべり角周波数ω、に対す
る電動機磁束の変化を示す。φ4及びφ、はd+ q軸
の各磁束成分である。
Figure 2 shows the change in motor magnetic flux with respect to slip angular frequency ω, assuming that each current command signal i, ″, t, + (=0) is constant. φ4 and φ are each of the d+ and q axes. It is a magnetic flux component.

第2図においてX印のX点がφ櫨=φ! (基準値)及
びφ、=0を満足する基準状態動作点である。この動作
点よりすベシ角周波数ω1が変動するとφ−が変動し、
この結果、トルクも低下する。
In Figure 2, the point X marked with X is φ櫨=φ! (reference value) and φ,=0. When the angular frequency ω1 changes from this operating point, φ- changes,
As a result, the torque also decreases.

一方、このときφ、はφ、キ0となり、基準状態動作点
を境界にして極性が変化する。そこで、φ、〉0のとき
は1欠周波数f、を上げ、φ、く0のときは下けるよう
にしてφ、に応じてω、を修正制御すれは動作点は正規
の状態に還る。この磁束の変化は電動+A電圧の変化と
して検出できるため、それに応じて1次周波数を制御す
ることができる。次に第1図の動作を説明する。
On the other hand, at this time, φ becomes φ, Ki 0, and the polarity changes with the reference state operating point as the boundary. Therefore, if ω is corrected and controlled according to φ, by increasing the one-miss frequency f when φ>0 and decreasing it when φ is 0, the operating point returns to the normal state. Since this change in magnetic flux can be detected as a change in the electric +A voltage, the primary frequency can be controlled accordingly. Next, the operation shown in FIG. 1 will be explained.

電圧成分検出器7及び8において、次式に従い電動機電
圧の2@成分すなわち励磁電流位相基準信号に対して9
0度位相差の成分e、及び同位相の成分e4を各々検出
する。
In the voltage component detectors 7 and 8, the 2@component of the motor voltage, that is, the excitation current phase reference signal,
A component e with a 0 degree phase difference and a component e4 with the same phase are detected.

ここに、v、=v。Here, v, = v.

e−:検出器8の出力信号 e、:検出器7の出力信号 ■、〜vW:電動機各相電圧 電圧検出信号e4.e、は電動機2の漏れインビーダン
ス降下の影響を無視すれば磁束成分φ41φ、と次式の
関係がある。
e-: Output signal e of the detector 8, : Output signal ■ of the detector 7, ~vW: Voltage detection signal of each phase of the motor e4. If the influence of leakage impedance drop of the motor 2 is ignored, e has a relationship with the magnetic flux component φ41φ as shown in the following equation.

e4=−ωl φ。e4=-ωl φ.

・・・・・・・・・(2) e、=ωl φ− d軸電圧信号e7によりq軸磁末成分φ、が検出される
。電圧信号e4は一次遅れ回路4及びすべり周波数演算
回路17の出力信号と共に加算器9に加えられる。この
とき、d@電圧成Oedが負(φ、〉0に相当)の場合
は加算器9の出力信号が大、すなわちインバータlの出
力周波数が上昇する極性にて加算される。このようにし
て常にd、jll電圧成分e4がei=o(φ、二〇)
となるよう1次局波数f、が制御されるのですべり角周
波数ω、は基準状態動作点Xの値に制御される。
(2) e,=ωl φ− The q-axis magnetic tail component φ is detected by the d-axis voltage signal e7. The voltage signal e4 is applied to the adder 9 together with the output signals of the first-order lag circuit 4 and the slip frequency calculation circuit 17. At this time, when the d@voltage component Oed is negative (corresponds to φ, >0), the output signal of the adder 9 is large, that is, the output signal of the inverter 1 is added with a polarity that increases. In this way, d, jll voltage component e4 is always ei = o (φ, 20)
The primary station wave number f is controlled so that the slip angle frequency ω is controlled to the value of the reference state operating point X.

一方、q軸電圧成分(誘導起電力)e、は(2)式に示
すようにd軸磁束成分φ1及び角周波数ω。
On the other hand, the q-axis voltage component (induced electromotive force) e is the d-axis magnetic flux component φ1 and the angular frequency ω, as shown in equation (2).

に比例する。基準状態動作点Xにおけるd軸磁束成分φ
−は励磁醒流指令借号i、′に比例することから、励磁
を流指令信号i:が一定であればd軸磁束成分φ−は一
定値に保たれる。したがって、q軸電圧成分e、は角周
波数ωlに比例する。
is proportional to. d-axis magnetic flux component φ at reference state operating point X
Since - is proportional to the excitation flow command signal i,', if the excitation flow command signal i: is constant, the d-axis magnetic flux component φ- is kept at a constant value. Therefore, the q-axis voltage component e is proportional to the angular frequency ωl.

また、すべり角周波数推定値ω、はトルク電流指令+ 
、*及び励磁7M、&指令i、″から次式によシ演算す
ることができる。
In addition, the estimated slip angle frequency value ω is the torque current command +
, * and excitation 7M, & command i,'' can be calculated according to the following equation.

ここに、T2 :2次時定数 ところで、ωl と電気的回転角速度ω1には(4)式
の関係があり、回転速度の推定値ω、はω1−ω、より
イ尋られる。したがってω−とω、を突き合わせ、その
偏差に応じてトルク電流指令i−を変えることにより、
回転速度を指令値ω−に応じて制御することができる。
Here, T2: second-order time constant By the way, there is a relationship between ωl and the electrical rotational angular velocity ω1 as shown in equation (4), and the estimated value ω of the rotational speed can be expressed as ω1−ω. Therefore, by comparing ω- and ω and changing the torque current command i- according to the deviation,
The rotation speed can be controlled according to the command value ω-.

なお、ω、は前述したように1−に基づいて推定できる
ので、q軸電圧信号e、(−のI )からその推定1直
ω、を差し引き高精度に回転速度を制御できる。
Note that since ω can be estimated based on 1- as described above, the rotational speed can be controlled with high precision by subtracting the estimated 1-axis ω from the q-axis voltage signal e, (-I).

ω1 :ωr+ω畠        ・・・・・・ (
4)以上が定常状態における動作である。次に1次遅れ
回路4の動作を速朋指令が急変する場合について述べる
ω1: ωr + ω Hatake ・・・・・・ (
4) The above is the operation in a steady state. Next, the operation of the primary delay circuit 4 will be described in the case where the speed command suddenly changes.

速4[指令ω、1が急変した場合の1次角周波数指令ω
l“は、1次遅れ回路が無い場合には次式である。
Speed 4 [command ω, primary angular frequency command ω when 1 suddenly changes
l'' is the following equation when there is no first-order lag circuit.

ω14′=ω−+ωt+Δω、     ・・・・・・
・・・(5)ここに、Δω、はd軸電圧成分e−に応じ
た角周波数である。
ω14′=ω−+ωt+Δω, ・・・・・・
(5) Here, Δω is the angular frequency according to the d-axis voltage component e-.

ところで、ω1とω、には(4)式の関係があり、ω−
とωrVc差が生じるとω8がその変化を負担するため
に、ω、が不適正となり第2図に示すように、この時磁
束φ−が減少し、それによυトルクが低下する。本特許
の装置では第1図及び(5)式に示すように、これを防
ぐためにe−を検出して1次周波数を制御する系を設け
て、ω、が不適正となることをΔω、によって補償して
いる。しかしながら、Δω、が大きくなればやはり前述
の問題が生じるため、周波数制御系の応答を速くするの
が良い。しかし、周波数制御系の応答は、マイクロプロ
セッサなどを用いたディジタル制御においては演算処理
時間の点から速くすることに限界があり、速くした場合
にはノイズに対して過敏となり制御の安定性が損われる
場合がある。
By the way, there is a relationship between ω1 and ω as shown in equation (4), and ω−
When a difference between and ωrVc occurs, ω8 bears the burden of the change, so ω becomes inappropriate, and as shown in FIG. 2, at this time, the magnetic flux φ- decreases, and thereby the υ torque decreases. In the device of this patent, as shown in FIG. 1 and equation (5), in order to prevent this, a system for detecting e- and controlling the primary frequency is provided, and when ω becomes inappropriate, Δω, is compensated by. However, if Δω becomes large, the above-mentioned problem will still occur, so it is better to speed up the response of the frequency control system. However, in digital control using a microprocessor, there is a limit to how fast the response of the frequency control system can be made due to the calculation processing time, and if it is made too fast, it becomes sensitive to noise and the stability of the control is compromised. There may be cases where

そこで、ω/として実速度ω2に近い信号を与えるよう
にして、Δω、を小さく抑え周e、数制御系の応答を速
くすることなく、前述した問題の解決を図るようにした
のが本発明の内容である。すなわち、速度制御系は第3
図で表わすことができる。これエリ、ω−とω、には次
式の関係が成立する。
Therefore, the present invention attempts to solve the above-mentioned problem by giving a signal close to the actual speed ω2 as ω/, thereby keeping Δω small and without increasing the response of the frequency control system. This is the content. In other words, the speed control system
It can be represented graphically. In this case, the following relationship holds true between ω- and ω.

ここに、k:速度調節器と電動機の伝達関数J:駆動系
の慣性モーメント S:微分演算子 α:フィードバックゲイン ここで、k、J、αは既知の量でありあらかじめω、“
に対するω1の応答を推定することができる。これより
、第1図に示すように1次遅れ回路4を設けて、1次角
周波数ωlゝを制御することによって、Δω、の変動量
を少なくでき、従来の問題点を解決できる。
Here, k: Transfer function between the speed regulator and motor J: Moment of inertia of the drive system S: Differential operator α: Feedback gain Here, k, J, and α are known quantities, and ω, “
The response of ω1 to can be estimated. Therefore, by providing the first-order lag circuit 4 as shown in FIG. 1 and controlling the first-order angular frequency ωl, the amount of variation in Δω can be reduced, and the conventional problems can be solved.

したがって、本発明によれば、速度検出器を用いるこ迭
なく過渡時にも高速応答高精度な速度制御が行えるので
、トルク及び速度の変動を生じることがない。
Therefore, according to the present invention, high-speed response and highly accurate speed control can be performed even during transients without using the speed detector, so fluctuations in torque and speed do not occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば速1り検出器を設
けることなく過渡時においてもトルク電流と励磁電流を
確実に制御するベクトル制御を実現でき、トルク及び速
度の変4IJJをなくすことができる。
As explained above, according to the present invention, it is possible to realize vector control that reliably controls the torque current and excitation current even during transient times without providing a speed 1 detector, and it is possible to eliminate 4IJJ changes in torque and speed. can.

なお、以上の実施例においては、PWMインバータへの
適用列について述べたが、他の種類のインバータであっ
ても、その出力周波数及び出力電圧(電流)が制御可能
なものであれば本発明を適用することができる。
In the above embodiments, the application to PWM inverters has been described, but the present invention can be applied to other types of inverters as long as their output frequency and output voltage (current) can be controlled. Can be applied.

また、マイクロプロセツサなどを用いてディジタル制御
を行うものであっても本発明を採用できるのは勿論であ
る。
It goes without saying that the present invention can also be applied to devices that perform digital control using a microprocessor or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図、第3
図は本発明の詳細な説明するだめの特性図及びブロック
線図である。 1・・・インバータ、2・・・誘導電動機、3・・・速
度指令回路、4・・・1次遅れ回路、5・・・速度偏差
増幅器、7.8・・・紙圧成分検出器、10・・・発振
器。
Fig. 1 is a configuration diagram showing one embodiment of the present invention, Fig. 2, Fig. 3
The figures are characteristic diagrams and block diagrams for detailed explanation of the present invention. DESCRIPTION OF SYMBOLS 1... Inverter, 2... Induction motor, 3... Speed command circuit, 4... First-order lag circuit, 5... Speed deviation amplifier, 7.8... Paper pressure component detector, 10... Oscillator.

Claims (1)

【特許請求の範囲】 1、誘導電動機の1次電流の大きさと周波数を制御して
トルク電流と励磁電流を独立に制御する誘導電動機の制
御装置において、前記誘導電動機の電動機電圧を検出し
、その電圧成分であって、制御系で決定した励磁電流成
分に対して同位相成分と90度位相差成分をそれぞれ求
め、該90度位相差成分あるいはそれと比例する周波数
指令信号と速度指令信号の偏差に応じて前記トルク電流
を制御すると共に、前記同位相成分と前記速度指令信号
に1次遅れ時間を持たせた信号の偏差に応じて前記誘導
電動機の1次周波数を制御するようにしたことを特徴と
する誘導電動機の制御装置。 2、特許請求の範囲第1項記載の1次遅れ時間はトルク
電流を制御する速度制御系の制御遅れ時間を用いたこと
を特徴とする誘導電動機の制御装置。
[Scope of Claims] 1. In an induction motor control device that independently controls torque current and excitation current by controlling the magnitude and frequency of the primary current of the induction motor, the motor voltage of the induction motor is detected, and the motor voltage of the induction motor is detected. The in-phase component and the 90-degree phase difference component are determined for the excitation current component determined by the control system, which is a voltage component, and the deviation between the frequency command signal and the speed command signal proportional to the 90-degree phase difference component or the 90-degree phase difference component is determined. The torque current is controlled accordingly, and the primary frequency of the induction motor is controlled in accordance with a deviation between the in-phase component and a signal obtained by adding a primary delay time to the speed command signal. A control device for an induction motor. 2. A control device for an induction motor, characterized in that the primary delay time set forth in claim 1 is a control delay time of a speed control system that controls torque current.
JP59211372A 1984-10-11 1984-10-11 Controller of induction motor Pending JPS6192186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211372A JPS6192186A (en) 1984-10-11 1984-10-11 Controller of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211372A JPS6192186A (en) 1984-10-11 1984-10-11 Controller of induction motor

Publications (1)

Publication Number Publication Date
JPS6192186A true JPS6192186A (en) 1986-05-10

Family

ID=16604870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211372A Pending JPS6192186A (en) 1984-10-11 1984-10-11 Controller of induction motor

Country Status (1)

Country Link
JP (1) JPS6192186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142269A (en) * 1986-12-04 1988-06-14 Meidensha Electric Mfg Co Ltd Speed detector in vector controller for induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142269A (en) * 1986-12-04 1988-06-14 Meidensha Electric Mfg Co Ltd Speed detector in vector controller for induction motor

Similar Documents

Publication Publication Date Title
KR100354775B1 (en) Speed control apparatus of a synchronous reluctance motor
KR920000730B1 (en) Control method for induction motors
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
JPH02254987A (en) Method and apparatus for control of induction motor
JPH08275599A (en) Control method for permanent magnet synchronous motor
US4458193A (en) Method and apparatus for controlling an AC induction motor
JP2000166278A (en) Control device of synchronous motor
JPH05308793A (en) Control circuit for power conversion device
EP1255348B1 (en) Method of controlling induction motor
US6242882B1 (en) Motor control apparatus
JPH0923700A (en) Servo motor current control
EP0616417B1 (en) Method for control of ac motor
JPS6192186A (en) Controller of induction motor
JP3682543B2 (en) Control method of permanent magnet type synchronous motor
JPH06335278A (en) Tuning of vector control inverter for induction motor
JPH0344509B2 (en)
JP2000341983A (en) Controller for embedded magnet type synchronous motor
JP3124019B2 (en) Induction motor control device
JPS6192185A (en) Vector controller for automatic regulation
JPH0561876B2 (en)
JP2897373B2 (en) DC brushless motor controller
JPH1118498A (en) Controller for servo motor
JPH0254039B2 (en)
JPH04127893A (en) Controller for synchronous motor
JPH11206200A (en) Induction motor control equipment