JPH0561876B2 - - Google Patents

Info

Publication number
JPH0561876B2
JPH0561876B2 JP19080783A JP19080783A JPH0561876B2 JP H0561876 B2 JPH0561876 B2 JP H0561876B2 JP 19080783 A JP19080783 A JP 19080783A JP 19080783 A JP19080783 A JP 19080783A JP H0561876 B2 JPH0561876 B2 JP H0561876B2
Authority
JP
Japan
Prior art keywords
command value
current
current component
axis voltage
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19080783A
Other languages
Japanese (ja)
Other versions
JPS6084992A (en
Inventor
Toshiaki Okuyama
Noboru Azusazawa
Yuzuru Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58190807A priority Critical patent/JPS6084992A/en
Publication of JPS6084992A publication Critical patent/JPS6084992A/en
Publication of JPH0561876B2 publication Critical patent/JPH0561876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は速度検出器を用いることなく誘導電動
機を高速応答高精度に速度制御する誘導電動機の
ベクトル制御装置に関する。 〔発明の背景〕 誘導電動機を周波数変換器あるいはインバータ
を用いて速度制御する装置において、高速応答高
精度な制御を可能にするベクトル制御は周知であ
る。しかし、従来からのものは、すべり周波数制
御方式を基本として電動機のすべり周波数及び電
動機電流の大きさと位相を制御する方式であるた
め、変換器出力周波数を制御するに際して、電動
機の速度検出信号(または回転角検出信号)が必
要であり、そのため、速度検出器(または回転位
置検出器)並びに検出器と変換装置間の信号ケー
ブルが必要であつて装置が複雑になる欠点があつ
た。この不具合を解決するため、電動機磁束を検
出し、電動機の電流と周波数を制御する方法が提
案されているが、磁束検出のための積分器(電動
機電圧信号を積分する)にドリフトの問題があ
り、そのため、特に、低周波運転時に、十分な検
出精度が得られず、安定な運転が行なえないとい
う不具合があつた。また、たとえ磁束検出の問題
がないとしても、提案された方法はトルク変化時
に、磁束変動が大となる特性をもち、そのため、
磁束減少時に磁束検出精度が下りやはり安定した
運転が行えないという不具合があつた。 さらに従来方法は、正弦波の電流指令パターン
信号と実電流検出信号(交流)との偏差に応じて
インバータのPWM(パルス幅変調)信号を発生
する方式のため、その電流制御ループに非常に高
速の演算制御が要求され、それをマイクロコンピ
ユータで実行しようとすれば、その負荷率が増大
し、経済性に欠ける問題があつた。 〔発明の目的〕 本発明の目的は、速度検出器を用いることなく
高速応答高精度な速度制御が行える誘動電動機の
ベクトル制御装置を提供するにある。 〔発明の概要〕 本発明の特徴は、電力変換器の出力電圧基準位
相に対して90度位相差の励磁電流成分演算値と励
磁電流成分指令値により直交2軸のd軸電圧指令
値を求めると共に電圧位相基準に対して同相のト
ルク電流成分演算値とトルク電流成分指令値によ
りq軸電圧指令値を求め、q軸電圧指令値と回転
速度指令との偏差に応じて電力変換器の出力電流
を制御し、d軸電圧指令値に応じて電力変換器の
出力周波数を制御するようにしたことにある。 〔発明の実施例〕 まず、本発明の理解を容易にするために、本発
明の基礎となる速度検出器を用いないでベクトル
制御を行う例を第1図、第2図を用いて説明す
る。 第1図において、1はGTO(Gate Turn−off
Thyristor)あるいは、トランジスタ等の自己消
弧素子及びダイオードなどで構成されるPWMイ
ンバータ、2は誘導電動機、3は回転速度指令回
路、4は速度指令信号の変化率を制限するための
変化率制限器、5は速度指令信号と速度検出信号
の偏差を増幅する速度偏差増幅器、6は電動機電
圧の検出用変圧器、7は電力変換器(PWMイン
バータ)1の出力電圧基準位相に対して同相(又
は逆相)のq軸電圧成分を検出するための電圧成
分検出器、8は前述の電圧基準位相に対して90度
位相差のd軸電圧成分を検出するための電圧成分
検出器、9は電圧成分検出器8及び変化率制限器
4の出力信号を加算し周波数指令信号を出力する
加算器、10は周波数指令信号に比例した周波数
の二相正弦波信号を出力する発振器、11は電動
機の励磁電流を指令する励磁電流指令回路、12
はインバータ出力電流を検出するための電流検出
器、13は電圧基準位相に対して90度位相差の電
動機各相電流成分(励磁電流成分)i1dを検出す
るための電流成分検出器、14は電圧基準位相に
対して同相(又は逆相)の電動機各相電流の成分
(トルク電流成分)i1qを検出するための電流成分
検出器、15は励磁電流指令in *と電流成分検出
器13の出力信号i1dの偏差を増幅する電流偏差
増幅器、16は増幅器5からのトルク電流成分指
令it *と電流成分検出器14の出力信号i1qの偏差
を増幅する電流偏差増幅器、17は増幅器15及
び16からの電圧成分指令信号ed *,eq *及び発振
器10の出力信号に基づいて三相の電圧指令パタ
ーン信号eU *,eV *,eW *を出力する座標変換器、
18はインバータ1をPWM制御するための三角
波の搬送波信号を出力する発振器、19は電圧指
令パターン信号と搬送波信号を比較し、インバー
タのGTOをオン、オフ制御するためのPWM信
号を出力する比較器、20はGTOにゲート信号
を供給するためのゲートアンプである。なお、1
9,20はU相に対応した回路であり、V相及び
W相のそれぞれに対応しては同様の回路がある
が、それらは図示を省略してある。 次に、第1図の動作を説明する前に誘導電動機
のベクトル制御について説明する。 直交回転磁界座標系の1つの軸をd軸、それに
直交する軸をq軸と仮定し、1次電流のd、q軸
成分i1d,i1qを次式の関係に制御すれば、i1dは励
磁電流inに、またi1qはトルク成分電流itに対応さ
せて制御することができる。 |i1|=√1d 2+11q 2 (1) ωS=1/T2・i1q/i1d …(2) θ=tan-1=i1q/i1d …(3) ここに、i1:1次電流 ωS:すべり角周波数 T2:電動機2次時定数 θ :d軸に対する1次電流の位相 すなわち、電動機1次電流の大きさを(1)式に従
い制御し、電動機周波数をすべり周波数(2)式を満
足するように制御し、かつ、1次電流の位相を(3)
式に関係して制御するならば、i1dに応じて磁束
φを、また、i1qに応じてトルクTを、それぞれ、
独立に制御することができる。このとき、トルク
Tは次式のようにi1qに対して応答遅れなしに制
御される。 T=kφ・i1q …(4) ここに、k:比例定数 第1図においては(1)〜(3)式の制御条件を速度検
出器を用いることなしに実現している。 先ず、1次電流が(1)及び(3)式に従い制御される
動作について述べる。発振器10は加算器9から
の周波数指令信号に比例した周波数の二相正弦波
信号を出力する。これらの信号は互いに90度の位
相差をもち、cosω1t,sinω1tで示される。 座標変換器17で、これらの信号と電圧指令信
号ed *及びeq *に基づいて、次式の演算を行い、三
相の電圧指令パターン信号eU *〜eW *が取り出され
る。 e〓* e〓*=cosω1t−sinω1t sinω1t cosω1ted * eq * …(5)
[Field of Application of the Invention] The present invention relates to a vector control device for an induction motor that controls the speed of an induction motor with high speed response and high precision without using a speed detector. [Background of the Invention] Vector control, which enables high-speed response and highly accurate control, is well known in devices that control the speed of induction motors using frequency converters or inverters. However, since the conventional method is based on a slip frequency control method and controls the slip frequency of the motor and the magnitude and phase of the motor current, when controlling the converter output frequency, the motor speed detection signal (or Therefore, a speed detector (or rotational position detector) and a signal cable between the detector and the converter are required, making the device complicated. To solve this problem, a method has been proposed to detect the motor magnetic flux and control the motor current and frequency, but there is a problem of drift in the integrator (which integrates the motor voltage signal) for detecting the magnetic flux. Therefore, there was a problem that sufficient detection accuracy could not be obtained, especially during low frequency operation, and stable operation could not be performed. Furthermore, even if there is no problem with magnetic flux detection, the proposed method has the characteristic that the magnetic flux fluctuation becomes large when the torque changes, and therefore,
There was a problem in that when the magnetic flux decreased, the magnetic flux detection accuracy decreased and stable operation could not be performed. Furthermore, the conventional method generates the inverter's PWM (pulse width modulation) signal according to the deviation between the sine wave current command pattern signal and the actual current detection signal (alternating current). Arithmetic control is required, and if it were attempted to be executed by a microcomputer, the load factor would increase, making it uneconomical. [Object of the Invention] An object of the present invention is to provide a vector control device for an induction motor that can perform speed control with high speed response and high accuracy without using a speed detector. [Summary of the Invention] The feature of the present invention is to obtain the d-axis voltage command value of two orthogonal axes using the excitation current component calculation value and the excitation current component command value with a 90 degree phase difference with respect to the output voltage reference phase of the power converter. At the same time, the q-axis voltage command value is determined from the torque current component calculation value and the torque current component command value that are in phase with respect to the voltage phase reference, and the output current of the power converter is determined according to the deviation between the q-axis voltage command value and the rotation speed command. is controlled, and the output frequency of the power converter is controlled according to the d-axis voltage command value. [Embodiments of the Invention] First, in order to facilitate understanding of the present invention, an example in which vector control is performed without using a speed detector, which is the basis of the present invention, will be explained using FIGS. 1 and 2. . In Figure 1, 1 is GTO (Gate Turn-off)
2 is an induction motor, 3 is a rotation speed command circuit, and 4 is a rate of change limiter for limiting the rate of change of the speed command signal. , 5 is a speed deviation amplifier that amplifies the deviation between the speed command signal and the speed detection signal, 6 is a transformer for detecting the motor voltage, and 7 is in phase with the output voltage reference phase of the power converter (PWM inverter) 1 (or 8 is a voltage component detector for detecting a d-axis voltage component with a phase difference of 90 degrees with respect to the aforementioned voltage reference phase; 9 is a voltage An adder that adds the output signals of the component detector 8 and the rate of change limiter 4 and outputs a frequency command signal, 10 an oscillator that outputs a two-phase sine wave signal with a frequency proportional to the frequency command signal, and 11 an excitation for the motor. Excitation current command circuit for commanding current, 12
13 is a current detector for detecting the inverter output current; 13 is a current component detector for detecting the motor phase current component (excitation current component) i 1d having a phase difference of 90 degrees with respect to the voltage reference phase; 14 is a current component detector for detecting the motor phase current component (excitation current component) i 1d A current component detector for detecting the component (torque current component) i 1q of the motor phase current that is in phase (or opposite phase) with respect to the voltage reference phase, 15 is the excitation current command i n * and the current component detector 13 16 is a current deviation amplifier that amplifies the deviation between the torque current component command i t * from the amplifier 5 and the output signal i 1q of the current component detector 14; 17 is an amplifier a coordinate converter that outputs three-phase voltage command pattern signals e U * , e V * , e W * based on the voltage component command signals e d * , e q * from 15 and 16 and the output signal of the oscillator 10;
18 is an oscillator that outputs a triangular carrier wave signal for PWM control of the inverter 1, and 19 is a comparator that compares the voltage command pattern signal and the carrier wave signal and outputs a PWM signal for controlling the GTO of the inverter on and off. , 20 is a gate amplifier for supplying a gate signal to the GTO. In addition, 1
9 and 20 are circuits corresponding to the U phase, and there are similar circuits corresponding to the V phase and W phase, but these are omitted from illustration. Next, before explaining the operation of FIG. 1, vector control of the induction motor will be explained. Assuming that one axis of the orthogonal rotating magnetic field coordinate system is the d-axis and the axis perpendicular to it is the q-axis, if the d- and q-axis components of the primary current i 1d and i 1q are controlled to the following relationship, i 1d can be controlled in accordance with the excitation current i n and i 1q can be controlled in correspondence with the torque component current i t . |i 1 |=√ 1d 2 +1 1q 2 (1) ω S = 1/T 2・i 1q /i 1d …(2) θ=tan -1 =i 1q /i 1d …(3) Here, i 1 : Primary current ω S : Slip angular frequency T 2 : Motor secondary time constant θ : Phase of primary current with respect to the d-axis In other words, the magnitude of the motor primary current is controlled according to equation (1), and the motor frequency is The slip frequency is controlled to satisfy equation (2), and the phase of the primary current is controlled as shown in (3).
If controlled according to the formula, the magnetic flux φ will be controlled according to i 1d , and the torque T will be controlled according to i 1q , respectively.
Can be controlled independently. At this time, the torque T is controlled with respect to i 1q without any response delay as shown in the following equation. T=kφ·i 1q (4) where k: proportionality constant In FIG. 1, the control conditions of equations (1) to (3) are realized without using a speed detector. First, the operation in which the primary current is controlled according to equations (1) and (3) will be described. Oscillator 10 outputs a two-phase sine wave signal with a frequency proportional to the frequency command signal from adder 9. These signals have a phase difference of 90 degrees from each other and are denoted by cosω 1 t, sinω 1 t. The coordinate converter 17 calculates the following equation based on these signals and voltage command signals e d * and e q * , and three-phase voltage command pattern signals e U * to e W * are extracted. e〓 * e〓 * =cosω 1 t−sinω 1 t sinω 1 t cosω 1 te d * e q * …(5)

【表】 〓 〓 〓 2 2 〓〓 〓
このとき、eU *〜eW *は次式のように表せる。
[Table] 〓 〓 〓 2 2 〓〓 〓
At this time, e U * to e W * can be expressed as in the following equation.

【表】 ω1:発振器10の出力信号の角周波数 なお、信号eU *〜eW *は(5)、(6)式の関係(直交座
標変換)によらずとも(7)、(8)式に基づいて極座標
変換により直接取り出すこともできる。 (7)式で、δ=0(ed *=0)における各相電圧位
相−sinω1t,−sin(ω1t−2/3π)及び−sin(ω1
t+ 2/3π)は前述の発振器10の出力信号cosω1t及 びsinω1tと一定した関係にあるが、これら各相電
圧位相をここで改めて変換器の出力電圧基準位相
と定義する。 インバータ1の各相出力電圧(基本波分)は比
較器19の動作に従い、各電圧指令パターン信号
eU *〜eW *に比例するように制御される。 この結果、電動機2には次式の電流iU〜iWが流
れる。
[Table] ω 1 : Angular frequency of the output signal of the oscillator 10 Note that the signals e U * to e W * are expressed as (7) and (8 ) can also be extracted directly by polar coordinate transformation. In equation (7), each phase voltage phase at δ = 0 ( ed * = 0) is −sinω 1 t, −sin (ω 1 t−2/3π) and −sin (ω 1
t+2/3π) has a constant relationship with the output signals cosω 1 t and sinω 1 t of the oscillator 10 described above, and the voltage phases of these phases are defined here again as the output voltage reference phase of the converter. Each phase output voltage (fundamental wave component) of the inverter 1 is determined by each voltage command pattern signal according to the operation of the comparator 19.
It is controlled to be proportional to e U * ~ e W * . As a result, currents i U to i W of the following equations flow through the motor 2.

【表】 iu=−Bsin(ωt−δ−〓) 〓
[Table] iu=−Bsin(ω 1 t−δ−〓) 〓

Claims (1)

【特許請求の範囲】[Claims] 1 誘導電動機に可変周波数の交流を供給する電
力変換器と、前記誘導電動機の一次電流を検出す
る電流検出手段と、該電流検出手段で検出した一
次電流から前記電力変換器の出力電圧基準位相に
対して90度位相差の励磁電流成分と前記電圧基準
位相と同相のトルク電流成分を演算する電流成分
演算手段と、回転速度指令とq軸電圧指令値を入
力してトルク電流指令値を出力する速度制御手段
と、前記トルク電流成分指令値とトルク電流成分
演算値を入力して直交二軸のq軸電圧指令値を求
めるq軸電圧指令演算手段と、励磁電流成分指令
値と励磁電流成分演算値を入力して直交二軸のd
軸電圧指令値を求めるd軸電圧指令演算手段と、
前記d軸電圧指令値を入力して一次周波数指令値
を求める周波数制御手段と、前記d軸電圧指令
値、q軸電圧指令値および一次周波数指令値を入
力して前記電力変換器の出力電圧を制御する出力
電圧制御手段とを具備した誘導電動機のベクトル
制御装置。
1 A power converter that supplies variable frequency alternating current to an induction motor, a current detection means for detecting a primary current of the induction motor, and a current detection means for detecting a primary current detected by the current detection means to a reference phase of an output voltage of the power converter. current component calculating means for calculating an excitation current component having a phase difference of 90 degrees and a torque current component having the same phase as the voltage reference phase; inputting a rotational speed command and a q-axis voltage command value and outputting a torque current command value; a speed control means, a q-axis voltage command calculation means for inputting the torque current component command value and the torque current component calculation value to obtain a q-axis voltage command value of two orthogonal axes, and an excitation current component command value and an excitation current component calculation Enter the value and set the d of the two orthogonal axes.
d-axis voltage command calculation means for calculating an axis voltage command value;
a frequency control means inputting the d-axis voltage command value to obtain a primary frequency command value; and a frequency control means inputting the d-axis voltage command value, the q-axis voltage command value, and the primary frequency command value to determine the output voltage of the power converter. A vector control device for an induction motor, comprising output voltage control means for controlling the output voltage.
JP58190807A 1983-10-14 1983-10-14 Controlling method for induction motor Granted JPS6084992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190807A JPS6084992A (en) 1983-10-14 1983-10-14 Controlling method for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190807A JPS6084992A (en) 1983-10-14 1983-10-14 Controlling method for induction motor

Publications (2)

Publication Number Publication Date
JPS6084992A JPS6084992A (en) 1985-05-14
JPH0561876B2 true JPH0561876B2 (en) 1993-09-07

Family

ID=16264070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190807A Granted JPS6084992A (en) 1983-10-14 1983-10-14 Controlling method for induction motor

Country Status (1)

Country Link
JP (1) JPS6084992A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732640B2 (en) * 1986-12-29 1995-04-10 富士電機株式会社 Variable speed drive of induction motor
JPH0753469B2 (en) * 1987-12-29 1995-06-07 新王子製紙株式会社 Inkjet recording sheet and manufacturing method thereof
JP2010273400A (en) * 2009-05-19 2010-12-02 Nippon Reliance Kk Device for control of induction motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121921A (en) * 1978-03-14 1979-09-21 Toshiba Corp Induction motor controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121921A (en) * 1978-03-14 1979-09-21 Toshiba Corp Induction motor controller

Also Published As

Publication number Publication date
JPS6084992A (en) 1985-05-14

Similar Documents

Publication Publication Date Title
KR100354775B1 (en) Speed control apparatus of a synchronous reluctance motor
US4484128A (en) Vector control system for AC motor drives
US7671558B2 (en) Induction motor controller
KR920000730B1 (en) Control method for induction motors
JPH0334313B2 (en)
JPH05308793A (en) Control circuit for power conversion device
JPH07250500A (en) Variable speed controller for induction motor
JPH0561876B2 (en)
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
JPH0344509B2 (en)
JP3124019B2 (en) Induction motor control device
JP3118940B2 (en) Induction motor vector control device
JPH03135389A (en) Method and device for controlling voltage type inverter
JPS6332032B2 (en)
JPS6330236Y2 (en)
JPH0793839B2 (en) Induction motor controller
JPH0670571A (en) Controller for inverter device
JPH04322191A (en) Controller for synchronous motor
JPH08191600A (en) Device for controlling inverter current
JP2523504B2 (en) Power converter controller
JP2738721B2 (en) Induction motor speed control device
JPH0634724A (en) Motor constant identifying method in vector control device for induction motor
JPH083199Y2 (en) Power converter
JPS6295987A (en) Controller for ac motor
JPH04127893A (en) Controller for synchronous motor