JPS6190745A - Manufacture of ion-exchange body - Google Patents

Manufacture of ion-exchange body

Info

Publication number
JPS6190745A
JPS6190745A JP59211746A JP21174684A JPS6190745A JP S6190745 A JPS6190745 A JP S6190745A JP 59211746 A JP59211746 A JP 59211746A JP 21174684 A JP21174684 A JP 21174684A JP S6190745 A JPS6190745 A JP S6190745A
Authority
JP
Japan
Prior art keywords
coal ash
alkali
exchange body
alkaline solution
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211746A
Other languages
Japanese (ja)
Inventor
Kunio Kamiya
神谷 国男
Satoshi Tomizawa
富沢 敏
Mitsutaka Kawamura
河村 光隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59211746A priority Critical patent/JPS6190745A/en
Publication of JPS6190745A publication Critical patent/JPS6190745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PURPOSE:To provide the high maintenability of effective fertilizer components in soil and the exchangeability of cations by treating coal ash with an alkaline soln., and forming zeolite on the surface to obtain the titled cation-exchange body. CONSTITUTION:Coal ash is treated by using an alkaline soln. contg. 0.1-0.6mol alkali per mole SiO2 in coal ash at <=90 deg.C under conditions regulated by equa tion I wherein (t) (hr) is the contact time of a catalyst, T ( deg.C) is the treating temp., and alpha is regulated to >=1.3X10<-11>. Consequently, zeolite is formed on the surface, and an ion-exchange body is manufactured. Sodium hydroxide, potassium hydroxide, etc. are preferably used as an alkali available for the alkaline soln.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微粉炭燃焼石炭灰、火力発電所等から排出され
る石炭灰などをゼオライト型イオン交換体に改質する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for reforming pulverized coal combustion coal ash, coal ash discharged from thermal power plants, etc. into a zeolite type ion exchanger.

(従来の技術) 近年、石炭利用の拡大に伴い、排出される石炭灰も莫大
な量に達しているが、埋め立て地等の確保が年々困難と
なっている実情から、それを再利用する技術の確立が強
く要望されている。
(Conventional technology) In recent years, with the expansion of coal use, the amount of coal ash being discharged has reached an enormous amount, but as it is becoming increasingly difficult to secure landfill sites, etc., technology for reusing it has been developed. There is a strong demand for the establishment of

一方、我が国における水田、畑地は化学肥料の多用によ
り、土壌の酸性化が進行しつつある。酸性化した土壌で
は養分が溶脱すると共に、リン酸肥効が大幅に低下する
。その結果、腐植物質の保持量が低下し、士の団粒構造
が維持できなくなり、微生物生態系が単純化して、土が
痩せてしまう。このような土壌を改良する方法の1つと
して客土の手段がとられる。客土材が具備すべき条件は
、対象とする土壌によって異なり一概にはいえないが化
学的に見れば、その1つの必要条件としては、陽イオン
交換能が高く、しかも、重金属等、有害物質で汚染され
ていないことがあげられる。
On the other hand, the soil in rice paddies and farmlands in Japan is becoming increasingly acidic due to heavy use of chemical fertilizers. In acidified soils, nutrients are leached and the effectiveness of phosphate fertilizers is significantly reduced. As a result, the amount of humic substances retained decreases, the aggregate structure of the humic substances cannot be maintained, the microbial ecosystem becomes simpler, and the soil becomes thinner. One of the ways to improve such soil is to add soil. The conditions that the soil material should meet vary depending on the target soil, but from a chemical perspective, one of the requirements is that it has a high cation exchange ability, and is free from harmful substances such as heavy metals. This means that it is not contaminated with water.

(発明が解決しようとする問題点) 石炭灰は、水に浸漬すれば、pH8〜1oと弱アルカリ
性を示し、我が国の土壌の酸性度を改善する上で効果的
であるが、陽イオン交換能が非常に低い。そのため客土
材として、これまで使用できなかった。
(Problems to be Solved by the Invention) Coal ash exhibits weak alkalinity with a pH of 8 to 1o when soaked in water, and is effective in improving the acidity of soil in Japan, but it does not have cation exchange capacity. is very low. For this reason, it could not be used as a substitute soil material until now.

(問題点を解決するための手段) 本発明者らは、このような石炭灰の難点を克服し、イオ
ン交換体の一つである土壌改良材としての有効利用を計
るための種々研究を重ねた結果、石炭灰をアルカリ溶液
で処理することにより、石炭灰の表面にゼオライトを生
成させることができ、それを良質なイオン交換体に改質
、転化しうろことを見出し、この知見に基づいて本発明
を完成するに至った。
(Means for Solving the Problems) The present inventors have repeatedly conducted various studies in order to overcome these difficulties with coal ash and plan its effective use as a soil improvement material, which is one of the ion exchangers. As a result, we discovered that by treating coal ash with an alkaline solution, it was possible to generate zeolite on the surface of coal ash, which was then modified and converted into a high-quality ion exchanger. Based on this knowledge, we The present invention has now been completed.

すなわち本発明は、石炭灰をアルカリ溶液で処理し、石
炭灰表面にゼオライトを生成させることを特徴とする陽
イオン交換体の製造方法を提供するものである。
That is, the present invention provides a method for producing a cation exchanger characterized by treating coal ash with an alkaline solution to generate zeolite on the surface of the coal ash.

石炭灰は酸又は、アルカリ溶液で処理すると溶出成分が
処理液側に移行する。この場合、酸処理では、可溶した
成分の再析出は殆どなく、したがって陽イオン交換能は
改善されない。しかし、本発明によるアルカリ処理では
、アルカリと溶出したS iO2とが反応して、石炭灰
表面にゼオライトを生成し、その結果、陽イオン交換能
が大幅に改善されるのである。
When coal ash is treated with an acid or alkaline solution, eluted components migrate to the treatment liquid side. In this case, the acid treatment causes almost no reprecipitation of soluble components, and therefore the cation exchange capacity is not improved. However, in the alkali treatment according to the present invention, the alkali and the eluted SiO2 react to form zeolite on the surface of the coal ash, and as a result, the cation exchange capacity is significantly improved.

本発明において、アルカリ溶液に使用するアルカリとし
ては水酸化ナトリウム、水酸化カリウムなどが好ましく
、使用量は、石炭灰中のS z 021モルに対し、好
ましくは0.1〜0.6モルの範囲であり、より好まし
くは約(12モルである。アルカリの添加量が多すぎる
と余分のアルカリは陽イオン交換能の改善に使用されず
無駄となる。しかし、アルカリとして水酸化カリウムを
使用した場合肥効成分であるカリウムが石炭灰中にも移
行し、得られる石炭灰はカリ肥料として使用することが
できる。
In the present invention, the alkali used in the alkaline solution is preferably sodium hydroxide, potassium hydroxide, etc., and the amount used is preferably in the range of 0.1 to 0.6 mol per 21 mol of Sz02 in the coal ash. and more preferably about (12 mol). If the amount of alkali added is too large, the excess alkali will not be used to improve the cation exchange ability and will be wasted. However, when potassium hydroxide is used as the alkali Potassium, which is a fertilizer component, also migrates into the coal ash, and the resulting coal ash can be used as a potassium fertilizer.

石炭灰のアルカリ溶液による接触処理はどのような方法
で行ってもよいが、通常まわりを不透水性土手で囲んだ
中に、石炭灰を堆積し、その上から上述のアルカリ水溶
液を散布するか又は石炭灰を容器に入れ石炭灰スラ、リ
ーにして、アルカリ水溶液を添加混合して行う。前者の
場合、堆積期間は約1ケ月以上必要である。後者の場合
は、温度を上昇すると処理時間を大幅に短縮できて、約
90℃では24時間処理すれば十分である。
Contact treatment of coal ash with an alkaline solution may be carried out in any method, but usually the coal ash is piled up in an area surrounded by an impermeable bank, and the above-mentioned alkaline aqueous solution is sprinkled on top of it. Alternatively, coal ash may be put into a container and made into a coal ash slurry, and then an aqueous alkali solution is added and mixed. In the former case, a deposition period of about one month or more is required. In the latter case, increasing the temperature can significantly shorten the treatment time; at about 90° C., 24 hours is sufficient.

本発明において、アルカリ溶液による接触処理の温度は
特に制限はないが、温度を上昇させる程反応が促進され
るので、昇温下で行うのが望ましい。
In the present invention, the temperature of the contact treatment with the alkaline solution is not particularly limited, but the reaction is accelerated as the temperature is raised, so it is desirable to carry out the contact treatment at an elevated temperature.

本発明においてアルカリ溶液による接触処理は好ましく
は、処理温度が90℃以下で、接触処理時間t (時間
)と処理温度T (’O)が式%式%(1) で示される関係で規定されるもので、αが1.3XIO
−”以上となる条件下で行われる。
In the present invention, the contact treatment with an alkaline solution is preferably performed at a treatment temperature of 90°C or lower, and where the contact treatment time t (hours) and the treatment temperature T ('O) are defined by the relationship expressed by the formula % formula % (1). and α is 1.3XIO
−” is carried out under the following conditions.

(発明の効果) 本発明によって、石炭灰から陽イオン交換能を大幅に向
上させた良質なイオン交換体を得ることができ、このイ
オン交換体は土壌中における肥効成分の保持能力を増大
させるので、水田、畑地への客土源として特に有効であ
り、石炭灰の利用拡大をはかる目的に合致する。
(Effects of the Invention) According to the present invention, a high-quality ion exchanger with significantly improved cation exchange ability can be obtained from coal ash, and this ion exchanger increases the ability to retain fertilizer components in soil. Therefore, it is particularly effective as a source of soil for paddy fields and farmland, and meets the purpose of expanding the use of coal ash.

また、本発明によって得られるイオン交換体は、アルカ
リ性を呈するため、石炭燃焼炉から発生するS02の脱
硫剤として脱硫装置の中に組み込むことも可能である。
Moreover, since the ion exchanger obtained by the present invention exhibits alkalinity, it can also be incorporated into a desulfurization apparatus as a desulfurization agent for S02 generated from a coal combustion furnace.

あるいは、石炭灰のアルカリ処理と脱硫処理とを一体化
して、石炭燃焼装置付属装置として設備することもでき
る。
Alternatively, the alkali treatment and desulfurization treatment of coal ash can be integrated and installed as an auxiliary device for a coal combustion device.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 磯子火力発電所の石炭灰を16.7重量%含むスラリー
に水酸化カリウムを試料中のSio2に対するに20モ
ル比として、所定のモル比量で水で溶かして加え、25
°Cで500時間浸漬後、ミクロフィルターを用いてろ
過し、水で洗浄後、110℃で乾燥して処理物(イオン
交換体)を得た。このものの陽イオン交換能(C,E、
C)を測定した結果を第1図に示した。同図はC,E。
Example 1 Potassium hydroxide was added to a slurry containing 16.7% by weight of coal ash from the Isogo Thermal Power Plant at a molar ratio of 20 to Sio2 in the sample, dissolved in water at a predetermined molar ratio of 25% by weight.
After 500 hours of immersion at °C, it was filtered using a microfilter, washed with water, and dried at 110 °C to obtain a treated product (ion exchanger). Cation exchange capacity (C, E,
The results of measuring C) are shown in FIG. The same figure shows C and E.

Cをアルカリのモル比に対して、示したものである。同
図から明らかなようにモル比に20/S iO2が0.
1から0.6の間でC,E、Cが最大となる。
C is shown in relation to the molar ratio of alkali. As is clear from the figure, the molar ratio is 20/SiO2 and 0.
C, E, and C are maximum between 1 and 0.6.

実施例2 磯子火力発電所の石炭灰を16.7重量%含むスラリー
に試料中のSiOに対するに20モル比として、C,E
、Cが最大となるモル比の水酸化カリウムを加えて、温
度と時間を変えて処理した。処理終了後、ミクロフィル
ターを用いてろ過し、水で洗浄後、110℃で乾燥して
処理物(イオン交換体)を得た。このもののC,E、C
をPeech法で測定しこの結果を第2図に示した。同
図から明らかなように、温度が高くなる程反応は早くな
り短時間で、C,E、Cが向上する。
Example 2 In a slurry containing 16.7% by weight of coal ash from Isogo Thermal Power Station, C and E were added at a molar ratio of 20 to SiO in the sample.
Potassium hydroxide was added in a molar ratio that maximized . After the treatment was completed, it was filtered using a microfilter, washed with water, and dried at 110°C to obtain a treated product (ion exchanger). C, E, C of this
was measured by the Peach method and the results are shown in FIG. As is clear from the figure, the higher the temperature, the faster the reaction, and the C, E, and C values improve in a short time.

次に、C,E、Cの実験値と前記式(1)に従って算出
した推定値の関係を次表に示す。下記表に示すように、
αの値によって処理時間が変化する。α=1.3X10
−11以上は石炭灰イオン交換容量の90%を持つまで
に改質された場合に対応する。
Next, the relationship between the experimental values of C, E, and C and the estimated values calculated according to the above equation (1) is shown in the following table. As shown in the table below,
The processing time changes depending on the value of α. α=1.3X10
-11 or more corresponds to the case where the coal ash has been modified to have 90% of the ion exchange capacity.

C,E、Cの実験値と推定値との比較Comparison of experimental and estimated values of C, E, and C

【図面の簡単な説明】[Brief explanation of drawings]

第1図は石炭灰のアルカリ溶液処理物のC9E、CをK
  O/ S iO2との関係で示したグラフ、第2図
は、石炭灰のアルカリ溶液処理物のC,E、Cを処理時
間及び温度との関係で示したグラフである。 特許出願人 工業技術院長 等々力 達第1図 に20/Si02
Figure 1 shows C9E, C and K of coal ash treated with alkaline solution.
FIG. 2 is a graph showing the relationship between O/SiO2 and C, E, and C of coal ash treated with an alkaline solution as a function of treatment time and temperature. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 1 20/Si02

Claims (3)

【特許請求の範囲】[Claims] (1)石炭灰をアルカリ溶液で処理し、その表面にゼオ
ライトを生成させることを特徴とする陽イオン交換体の
製造方法。
(1) A method for producing a cation exchanger, which comprises treating coal ash with an alkaline solution to generate zeolite on its surface.
(2)アルカリ溶液中のアルカリの量が、石炭灰中のS
iO_21モルに対して0.1〜0.6モルの範囲であ
る特許請求の範囲第1項記載の陽イオン交換体の製造方
法。
(2) The amount of alkali in the alkaline solution is
The method for producing a cation exchanger according to claim 1, wherein the amount is in the range of 0.1 to 0.6 mol per mol of iO_2.
(3)アルカリ溶液による処理温度が90℃以下で、接
触処理時間t(時間)と処理温度T(℃)が式 EXP(−9800/(T+273))t=αの関係で
規定され、αが1.3×10^−^1^1以上である特
許請求の範囲第1項記載の陽イオン交換体の製造方法。
(3) When the treatment temperature with the alkaline solution is 90℃ or less, the contact treatment time t (hours) and the treatment temperature T (℃) are defined by the relationship of the formula EXP (-9800/(T+273))t=α, and α is The method for producing a cation exchanger according to claim 1, wherein the cation exchanger is 1.3×10^-^1^1 or more.
JP59211746A 1984-10-09 1984-10-09 Manufacture of ion-exchange body Pending JPS6190745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211746A JPS6190745A (en) 1984-10-09 1984-10-09 Manufacture of ion-exchange body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211746A JPS6190745A (en) 1984-10-09 1984-10-09 Manufacture of ion-exchange body

Publications (1)

Publication Number Publication Date
JPS6190745A true JPS6190745A (en) 1986-05-08

Family

ID=16610895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211746A Pending JPS6190745A (en) 1984-10-09 1984-10-09 Manufacture of ion-exchange body

Country Status (1)

Country Link
JP (1) JPS6190745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100273736B1 (en) * 1998-04-16 2001-04-02 구용회 Granulation method of coal ash at low temperature and its usage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986687A (en) * 1982-11-08 1984-05-18 Akio Henmi Preparation of zeolite-based soil conditioner from coal ash

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986687A (en) * 1982-11-08 1984-05-18 Akio Henmi Preparation of zeolite-based soil conditioner from coal ash

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100273736B1 (en) * 1998-04-16 2001-04-02 구용회 Granulation method of coal ash at low temperature and its usage

Similar Documents

Publication Publication Date Title
Honer et al. Mechanosynthesis of magnesium and calcium salt–urea ionic cocrystal fertilizer materials for improved nitrogen management
US3850835A (en) Method of making granular zirconium hydrous oxide ion exchangers, such as zirconium phosphate and hydrous zirconium oxide, particularly for column use
Nabi et al. Synthesis, characterization and analytical applications of a new composite cation exchange material poly-o-toluidine stannic molybdate for the separation of toxic metal ions
JPS5819606B2 (en) Manufacturing method of zirconium phosphate
JPS5817556B2 (en) Method for increasing deodorizing strength of hydrated soft soil with bad odor
CN110498494A (en) A kind of Zero-valent Iron-mineral composite of high reduction activation and preparation method thereof
JPH0631850B2 (en) How to dispose of radioactive liquid waste
JPS61240199A (en) Method and device for manufacturing radioactive waste solidified body
JPS5815030A (en) Slaked lime and utilizing method for it
JPS6190745A (en) Manufacture of ion-exchange body
US4892685A (en) Process for the immobilization of ion exchange resins originating from radioactive product reprocessing plants
CN112371077A (en) Simplified synchronous denitrification and dephosphorization adsorbent and preparation method thereof
US3728442A (en) Method of producing vanadium pentoxide
JPS6245394A (en) Simultaneous removal of arsenic and silicon
Lucena et al. A test to evaluate the efficacy of commercial Fe‐chelates
Thomas et al. A method of estimating the reacting rate of different particle sizes of limestone
US3582312A (en) Micronutrient fertilizer and method for its preparation
JPS5986687A (en) Preparation of zeolite-based soil conditioner from coal ash
Ohashi et al. Long-chain Phosphates. I. Reactions of Solid Potassium Kurrol Salt with Solutions of Various Metal Salts
JPS58167426A (en) Preparation of oxysulfate from rare earth element
KR100375785B1 (en) Manufacturing method of zeolite
JPS54118399A (en) Preparation of silica
JPS61258198A (en) Method and device for encapsulating low-level and intermediate-level radioactive waste with hydraulic cement
Xiong et al. Phosphorus Removal Performance and Resource Utilization of Ceramic Adsorbent Materials
Kandil et al. Synthesis of Amorphous Titanium Phosphate using Dihydrate Wet-Process Phosphoric Acid