JPS6245394A - Simultaneous removal of arsenic and silicon - Google Patents

Simultaneous removal of arsenic and silicon

Info

Publication number
JPS6245394A
JPS6245394A JP18533485A JP18533485A JPS6245394A JP S6245394 A JPS6245394 A JP S6245394A JP 18533485 A JP18533485 A JP 18533485A JP 18533485 A JP18533485 A JP 18533485A JP S6245394 A JPS6245394 A JP S6245394A
Authority
JP
Japan
Prior art keywords
arsenic
adsorbent
treated
silicon
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18533485A
Other languages
Japanese (ja)
Other versions
JPH0657354B2 (en
Inventor
Yoshimasa Igari
猪狩 俶将
Koyo Murakami
村上 弘陽
Tatsuo Hirose
広瀬 辰雄
Hideyuki Tokumaru
秀幸 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Steel Chemical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP18533485A priority Critical patent/JPH0657354B2/en
Publication of JPS6245394A publication Critical patent/JPS6245394A/en
Publication of JPH0657354B2 publication Critical patent/JPH0657354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce treatment cost, by using a mixture consisting of alkali treated slag and an magnesia adsorbent as the adsorbent of arsenic and silicon. CONSTITUTION:In treating water to be treated containing arsenic and silicon, as an adsorbent, a mixture consisting of alkali treated slag and a magnesia type adsorbent is used. In this case, said alkali treated slag is prepared by a method wherein an alkali solution is added to granulated slag ground so as to have specific surface area of 3,000cm<2>/g or more and the resulting mixture is heat-treated at 80-105 deg.C to be filtered to separate treated slag which is, in turn, washed and dried while said adsorbent is prepared by a method wherein metal oxide such as iron oxide or aluminum oxide is added to and mixed with magnesia. The mixing ratio of the alkali treated slag and the magnesia type adsorbent is 60-90pts.wt.: 10-40pts.wt. By this method, the removal efficiency of arsenic and silicon can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、種々の排水の高度処理、ボイラー用水の水
質管理、地熱発゛市所の排水処理等に43いて、砒素と
珪素とをlff11時に除去するだめの方法に関する。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is applicable to advanced treatment of various kinds of wastewater, water quality control of boiler water, wastewater treatment of geothermal power plants, etc. Concerning how to sometimes remove dams.

[従来の技術1 被処理水中の砒素の除去に関しては、鉄やj′ルミニウ
ム等の金属酸化物を添加して共沈させる金属酸化物共沈
法(目止、1974、(8) 、P 14B9〜149
3及び目止、1980、(il) 、P 1792〜1
979)が一般に行なわれており、また、活性炭の吸着
によるによる活性炭吸着法(目止、1979、(io)
 、P 1365〜1370)やマグネシア系吸着剤を
使用するマグネシア系吸着剤法(産業公害、Vol、1
9、No、 3、P212〜222)等も提案されてい
る。
[Prior art 1] Regarding the removal of arsenic from the water to be treated, a metal oxide coprecipitation method in which metal oxides such as iron and j'luminium are added and coprecipitated (Metome, 1974, (8), P 14B9) is used. ~149
3 and Metome, 1980, (il), P 1792-1
979) is generally practiced, and the activated carbon adsorption method (Metome, 1979, (io)
, P 1365-1370) and the magnesia-based adsorbent method using a magnesia-based adsorbent (Industrial Pollution, Vol. 1
9, No. 3, P212-222), etc. have also been proposed.

また、被処理水中の珪素の除去に関しては、イオン交換
樹脂を使用するイオン交換樹脂法(化学と工業、4.9
8.1951)やマグネシウム化合物を使用するマグネ
シウム化合物法(工業化学雑誌、56、746.195
3)が知られており、また、マグネシア系吸着剤を使用
づるマグネシア系吸着剤法〈産業公害、Vol、20.
No、4、P 358−363)も検討されている。
In addition, regarding the removal of silicon from the water to be treated, the ion exchange resin method using ion exchange resin (Chemistry and Industry, 4.9
8.1951) and the magnesium compound method using magnesium compounds (Industrial Chemistry Journal, 56, 746.195
3) is known, and the magnesia-based adsorbent method using a magnesia-based adsorbent <Industrial Pollution, Vol. 20.
No. 4, P 358-363) is also being considered.

[発明が解決しようとする問題点] しがし41がら、上記砒素の除去法にJ3Gノる金属酸
化物共沈法においては、地熱発電所の排水(l!1II
I+のように多量の処理を行うとfllli水性の水酸
化物スラッジが多けに発生して(の処理が問題になり、
また、活性炭吸着法においては、除去効率と処理Jス[
への点で問題があり、さらに、マグネシア系吸着剤法に
おいては、除去効率の点では浸れているが吸着剤が高価
であって処理コストが高くつくという問題があった。
[Problems to be Solved by the Invention] However, in the metal oxide co-precipitation method used in the J3G method for removing arsenic, wastewater from geothermal power plants (1!
When processing a large amount like I+, a large amount of aqueous hydroxide sludge is generated, which poses a problem in processing.
In addition, in the activated carbon adsorption method, removal efficiency and treatment
In addition, although the magnesia-based adsorbent method has excellent removal efficiency, there is a problem in that the adsorbent is expensive and the processing cost is high.

まlこ、上記珪素の除去法におけるイオン交換樹脂法に
おいては、特にシリカに対して除去効率が悪いという問
題があり、また、マグネシウム化合物法やマグネシア系
吸着剤法においては、マグネシウム化合物法や吸着剤が
高価であって処理コストが高くつくという問題があった
The ion exchange resin method used in the above silicon removal method has a problem of poor removal efficiency, especially for silica, and the magnesium compound method and magnesia-based adsorbent method There was a problem that the agent was expensive and the processing cost was high.

さらに、砒素と珪素とが共存する被処理水の脱砒系・1
j5(珪素処理に(I3いては、同時に両名を除去リ−
る方法がなく、上記砒素の除去法のいずれかど上記珪素
の除去法のいずれかを組合せて2段階で処理せざるを1
9ないという問題があった。
Furthermore, arsenic removal system for treated water where arsenic and silicon coexist・1
j5 (for silicon processing (for I3, remove both at the same time)
There is no way to remove the arsenic, and the process must be carried out in two stages by combining either the arsenic removal method or the silicon removal method described above.
There was a problem that there was no 9.

[問題点を解決するための手段1 本発明は、かかる観点に鑑みU PIJ案されたちので
、被処理水中に含まれる砒素と珪素とを同時に除去する
方法を捉供するものである。
[Means for Solving the Problems 1] The present invention was devised by UPIJ in view of this point of view, and therefore provides a method for simultaneously removing arsenic and silicon contained in water to be treated.

iJなりち、本発明は、被処理水中に含まれる砒素及び
珪素を同時に除去するに当り、砒素及び珪素の吸着剤と
してアルカリ処理スラグとマグネシア系吸着剤との混合
物を使用する砒素及び珪素の同時除去法である。
In order to simultaneously remove arsenic and silicon contained in water to be treated, the present invention uses a mixture of alkali-treated slag and a magnesia-based adsorbent as an adsorbent for arsenic and silicon. This is a removal method.

本発明方法で使用するアルカリ処理スラブは、微粉末状
の水砕スラグを例えば苛性ソーダ等のアルカリで処理し
て比表面積を増大させ、表面を改質させた水砕スラグで
ある。すなわら、アルカリ処理スラグを調製するに際し
ては、水砕スラグをブレーン比表面積3.0OOci/
’j以」二、好ましくは3,500〜4.5oo=、’
gに破砕し、次いでjUられた微粉末状の水砕スラグ1
00重n部に対して少なくとも0.5N、好ましくtよ
3N以トのアルカリ溶液150〜900重量部、好まし
くは400〜600重Q部を添加し、温度80〜105
°C1好ましくは90〜100℃で少なくとし15分間
、好ましくは60分以F加熱処理し、濾過分離した後水
洗し乾燥する。
The alkali-treated slab used in the method of the present invention is a granulated slag obtained by treating finely powdered granulated slag with an alkali such as caustic soda to increase the specific surface area and modify the surface. In other words, when preparing alkali-treated slag, granulated slag has a Blaine specific surface area of 3.0OOci/
'j or less' 2, preferably 3,500 to 4.5oo=,'
Finely powdered granulated slag crushed into g and then jU
150 to 900 parts by weight, preferably 400 to 600 parts by weight of an alkaline solution of at least 0.5N, preferably 3N or more, are added to n parts by weight, and the temperature is 80 to 105% by weight.
C1, preferably at 90-100 DEG C. for at least 15 minutes, preferably at least 60 minutes, followed by filtration, washing with water, and drying.

また、本発明で使用するマグネシア系吸着剤は、マグネ
シア形成可能なマグネシウム化合物、例えば水酸化マグ
ネシウム、炭酸マグネシウム、塩基性炭酸マグネシウム
、水酸化マグネシウムスラッジ等を焼成して得られるマ
グネシアを主材とし、これに酸化鉄、酸化アルミニウム
等の金属酸化物を0.01〜40重埴%、好ましくは0
.1〜25重(a%の範囲で生検添加し、混合したもの
である。
In addition, the magnesia-based adsorbent used in the present invention is mainly composed of magnesia obtained by firing a magnesium compound capable of forming magnesia, such as magnesium hydroxide, magnesium carbonate, basic magnesium carbonate, magnesium hydroxide sludge, etc. Add metal oxides such as iron oxide and aluminum oxide to this in an amount of 0.01 to 40% by weight, preferably 0.
.. Biopsies were added in a range of 1 to 25 weights (a%) and mixed.

本発明においては、上記アルカリ処理スラグとマグネシ
ア系吸着剤とを混合して(7られた混合物を脱砒系・脱
珪素用の混合吸着剤として使用する。
In the present invention, the alkali-treated slag and the magnesia-based adsorbent are mixed and the resulting mixture is used as a mixed adsorbent for arsenic removal and silicon removal.

これらアルカリ処理スラグとマグネシア系吸着剤との混
合比率は、砒素及び珪素の同時除去性能やコス1〜の点
から、好ましくはアルカリ処理スラグ60へ・00重h
1部とマグネシア系吸着剤10〜40単4部、より好ま
しくはアルカリ処理スラブ70〜80重M部とマグネシ
ア系吸着剤20〜30(F置部である。
The mixing ratio of the alkali-treated slag and the magnesia-based adsorbent is preferably from the viewpoint of the simultaneous removal performance of arsenic and silicon and the cost of 1 to 60%.
1 part and 10-40 parts of magnesia-based adsorbent, more preferably 70-80 parts by weight of the alkali-treated slab and 20-30 parts of magnesia-based adsorbent (F).

このようにして調製された混合吸着剤を使用して除去し
1qる砒素化合物としては、31tlliの廿砒醇とそ
のInや5 G[iの砒酸とその塩を挙げることができ
、また、珪素化合物どしては、Aルト珪酸どその1nや
メタ珪酸どぞの塩を挙げることがでさ″、さらに、本発
明の混合吸着剤は、被処理水中の砒素及び珪素の濃度に
ついては、特に制限はないが、それぞれ数ppmから数
百ppmあるいはそれ以Fの濃度の被処理水に対して適
用することができる。
Arsenic compounds that can be removed using the mixed adsorbent thus prepared include 31tlli arsenic acid and its In, 5G[i arsenic acid and its salts, and silicon Examples of the compound include salts of 1N such as Althosilicic acid and metasilicic acid.Furthermore, the mixed adsorbent of the present invention is particularly suitable for the concentration of arsenic and silicon in the water to be treated. Although there is no limitation, each of these methods can be applied to treated water having a concentration of F ranging from several ppm to several hundred ppm or more.

従って、この脱砒系・脱珪素用の混合吸着剤を使用して
被処理水の処理を行うに当っては、この被処理水の1)
II値や被処理水中に存、存する砒素化合物の原子価等
に応じて好ましくはpH調整や前処理を行うのがよい。
Therefore, when treating water to be treated using this mixed adsorbent for arsenic removal and silicon removal, 1)
It is preferable to perform pH adjustment and pretreatment depending on the II value and the valence of the arsenic compound present in the water to be treated.

すなわち、アルカリ処理スラグやマグネシア系吸着剤は
、これらを水中に懸濁させるとその混合比率にかかわり
なく約al111程度のアルカリ性になる。そして、脱
砒素と脱珪素とを同時に行う場合の最適なp11値はp
lllo、5〜11.5の範囲であり、被処理水のpH
値値が5.8〜8.3程度の弱酸t[ないし弱アルカリ
性の範囲にある場合は本発明の混合吸着剤を添加した際
に被処理水が最適なり It fifjの範囲になり、
特に何等のpH調整を必賞どしない。しかしながら、被
処理水のpH値がDH5,8より低い強酸性である場合
には、本発明の混合吸着剤を添加しても最適なりH値の
範囲にならず、好ましくはVi竹ソーダ、消石灰等の適
当なアルカリを使用して予め被処理水を中和し、混合吸
着剤添加後のpH値が上記最適な範囲10.5〜11.
5になるようにpl+調整を行うのがよい。
That is, when alkali-treated slag and magnesia-based adsorbent are suspended in water, they become alkaline to about al111 regardless of the mixing ratio. The optimal p11 value when arsenic removal and silicon removal are performed at the same time is p
llo, in the range of 5 to 11.5, and the pH of the water to be treated
If the value is in the range of weak acidity or weak alkalinity of about 5.8 to 8.3, the water to be treated will be optimal when the mixed adsorbent of the present invention is added.
In particular, no pH adjustment is required. However, if the pH value of the water to be treated is strongly acidic, lower than DH5.8, even if the mixed adsorbent of the present invention is added, the pH value will not be within the optimum range, and it is preferable to use Vi bamboo soda, slaked lime, etc. The water to be treated is neutralized in advance using an appropriate alkali, such as, and the pH value after adding the mixed adsorbent is within the optimum range of 10.5 to 11.
It is best to adjust pl+ so that it becomes 5.

また、砒素化合物については、3価の砒素化合物に比べ
て511Iの砒素化合物の方が効率良く除去することが
できるので、被処理水中の砒素化合物か31dliであ
る場合、好ましくは過酸化水素、オゾン、次ITII塩
県酸ソーダの酸化剤を(ti独又は2種以上を組合せて
使用し、酸化処理を行って5価の1lit索化合物にし
てから本発明の混合段ン1剤により脱砒水処理を行うの
がよい。
Regarding arsenic compounds, 511I arsenic compounds can be removed more efficiently than trivalent arsenic compounds, so if the arsenic compound in the water to be treated is 31dli, it is preferable to use hydrogen peroxide, ozone, etc. , using an oxidizing agent such as the following ITII salt acid soda (ti alone or in combination of two or more kinds), oxidizing it to a pentavalent 1 liter compound, and then dehydrating it with the mixed stage 1 agent of the present invention. It is better to process it.

本発明方性により砒素及び11木を含有する被処理水を
処理するに際しては、従来公知の手段を採用することが
でき、例えば、混合吸着剤が粉末状である場合には撹拌
n合機(ミキサー)と分離機(セトラー)とを組合ぜた
ミキサー・セトラ一方式やこれを多段に組込んだ多段ミ
キサー・t? l−ラ一方式が適当であり、また、混合
吸着剤が粒状、ベレット状、錠剤状等である場合には移
動床方式、流動層方式、カラム方式等が適当である。
When treating water containing arsenic and 11 wood by the method of the present invention, conventionally known means can be employed. For example, when the mixed adsorbent is in powder form, stirring Mixer/settler type that combines mixer) and separator (settler), and multi-stage mixer/t? An L-RA type is suitable, and when the mixed adsorbent is in the form of granules, pellets, tablets, etc., a moving bed system, a fluidized bed system, a column system, etc. are suitable.

なお、本発明の混合吸着剤は、甲に砒素及び珪素の同時
除去のみならず、砒素化合物のみ又は珪素化合物のみを
含有する被処理水に対しても適用することができる。こ
の場合においても、砒素及び珪素の同時除去の場合と同
様の条件で・同様の除去効率をあげることができる。
The mixed adsorbent of the present invention can be applied not only to the simultaneous removal of arsenic and silicon, but also to treated water containing only arsenic compounds or only silicon compounds. In this case as well, the same removal efficiency can be achieved under the same conditions as in the simultaneous removal of arsenic and silicon.

[実施例1 以下、実施例及び比較例に基づいて、本発明方法を具体
的に説明する。
[Example 1] Hereinafter, the method of the present invention will be specifically explained based on Examples and Comparative Examples.

(脱砒素・脱珪素用の混合吸着剤の調製〕第1表に示す
高炉水砕スラグ(ブレーン比表面積4.0OOci/’
j、嵩比重1.665g/Cm”、比表面積”+7TL
/y以下)10重石部を100重量部の3N−N ao
l−(水溶液中に添加し、90℃で3時間撹拌下に加熱
処理した侵、濾過し水洗して110″Cで12時間乾燥
し、アルカリ処理スラグ粉末を4!また。このアルカリ
処理スラグ粉末は、その嵩比重が0.530 ’;l 
/’ctn3であって、その比表面積が69TIt/!
7T:あった。
(Preparation of mixed adsorbent for dearsenication and desiliconization) Granulated blast furnace slag shown in Table 1 (Blaine specific surface area 4.0OOci/'
j, bulk specific gravity 1.665g/Cm", specific surface area"+7TL
/y or less) 10 weight parts to 100 weight parts of 3N-N ao
The alkali-treated slag powder was added to an aqueous solution, heated at 90°C for 3 hours, filtered, washed with water, and dried at 110°C for 12 hours. has a bulk specific gravity of 0.530';l
/'ctn3, and its specific surface area is 69TIt/!
7T: Yes.

また、第2表に示す組成の水マグスラッジを110℃で
12時間乾燥し、粒度250〜325メツシユの乾燥マ
グネシアを得た。
Further, water magnesia having the composition shown in Table 2 was dried at 110° C. for 12 hours to obtain dried magnesia having a particle size of 250 to 325 mesh.

第  1  表 (注:塩基度はCa O/ S ! 02で示され、ま
た、複合塩基度はCaO+Al2O2+MgO/ S 
i O2で示されるa) 第  2  表 上記アルカリ処理スラグと乾燥マグネシアとを第3表に
示す割合で混合し、400℃で1時間焼成してNo1〜
No、4の粉末状の混合吸着剤を調製した。
Table 1 (Note: Basicity is shown as CaO/S!02, and composite basicity is shown as CaO+Al2O2+MgO/S
a) Table 2 The above alkali-treated slag and dried magnesia were mixed in the proportions shown in Table 3 and fired at 400°C for 1 hour.
A powder mixed adsorbent No. 4 was prepared.

(注:混合吸着剤No、 1はアルカリ処理スラグ単独
であって比較例である。) 実施例1 砒酸す1−リウム及びオルト珪酸ナトリウムを純水中に
溶解し、5価の砒素7.5#j/l及び$110235
rIt/l)の被処理水を調製し、これに上記第3表に
承り各混合吸着剤を第4表に示す濃度(rlpm)で添
加し、60分間撹拌して接触させた後、議過してpH値
を測定すると共に、工場排水試験法(、JIS K 0
102)に従って処理水中の砒素分及び珪素分を定量し
て脱砒水率及び脱珪素率を測定した。
(Note: Mixed adsorbent No. 1 is alkali-treated slag alone and is a comparative example.) Example 1 1-lium arsenate and sodium orthosilicate were dissolved in pure water, and pentavalent arsenic 7.5 #j/l and $110235
rIt/l) of the water to be treated was prepared, and each adsorbent mixture according to Table 3 above was added thereto at the concentration (rlpm) shown in Table 4, and after stirring and contacting for 60 minutes, In addition to measuring the pH value, the factory wastewater test method (JIS K 0
102), the arsenic content and silicon content in the treated water were quantified to measure the arsenic water removal rate and silicon removal rate.

結IJ%を第4表に示す。Table 4 shows the IJ%.

第  4  表 (汀:混合吸着剤の種類NO1のものは比較例ひある。Table 4 (Shield: The mixed adsorbent type No. 1 is shown in the comparative example.

) 実施例2 IIY!砒酸ナトリウム及びメタ珪酸す1〜リウムを純
水中に溶解し、3価の砒素7.8m9/f!及び510
235■/pの被処理水を調製し、この被処理水をその
ままあるいは35%過酸化水素水で酸化処理をして、第
3表に示す混合吸着剤を第5表に承り一濃度(ppm)
で添加し、実施例1と同様にして脱砒素・脱珪索逸理を
行い、実施例1と同様にしてOtl 11n、脱砒水率
及び脱珪素率をそれぞれ測定した。結果を第5表に示す
) Example 2 IIY! Sodium arsenate and mono-lithium metasilicate were dissolved in pure water to produce 7.8 m9/f of trivalent arsenic! and 510
Prepare treated water of 235 μ/p, oxidize the treated water as it is or oxidize it with 35% hydrogen peroxide solution, and use the adsorbent mixture shown in Table 3 as shown in Table 5 to obtain one concentration (ppm). )
Arsenic removal and silicon removal were carried out in the same manner as in Example 1, and Otl 11n, arsenic water removal rate, and silicon removal rate were measured in the same manner as in Example 1. The results are shown in Table 5.

第  5  表 [発明の効果] 本発明方法によれば、アルカリ処理スラグとマグネシア
系吸着剤とを併用することにより、砒素及び11木が共
荏J−る種々の排水の高度処理、ボイラー用水の水質管
理、地熱発電所の排水処理等の被処理水中の砒素と珪素
とを同時にかつ効率良く除去することができる。
Table 5 [Effects of the Invention] According to the method of the present invention, by using alkali-treated slag and a magnesia-based adsorbent, advanced treatment of various wastewaters containing arsenic and 11 wood, and improvement of boiler water. It is possible to simultaneously and efficiently remove arsenic and silicon from water to be treated such as water quality management and wastewater treatment of geothermal power plants.

特許出願人    工業技術院長 同   ト    新日鐵化学株式会社代  理  人
       弁理士  成  瀬   勝  夫(外
2名)
Patent applicant Director of the Agency of Industrial Science and Technology Representative of Nippon Steel Chemical Co., Ltd. Patent attorney Katsuo Naruse (2 others)

Claims (4)

【特許請求の範囲】[Claims] (1)被処理水中に含まれる砒素及び珪素を同時に除去
するに当り、砒素及び珪素の吸着剤としてアルカリ処理
スラグとマグネシア系吸着剤との混合物を使用すること
を特徴とする砒素及び珪素の同時除去法。
(1) In simultaneously removing arsenic and silicon contained in water to be treated, a mixture of alkali-treated slag and a magnesia-based adsorbent is used as an adsorbent for arsenic and silicon. Removal method.
(2)砒素及び珪素の吸着剤がアルカリ処理スラグ10
〜90重量部とマグネシア系吸着剤90〜10重量部の
混合物である特許請求の範囲第1項記載の砒素及び珪素
の同時除去法。
(2) Arsenic and silicon adsorbent is alkali-treated slag 10
The method for simultaneously removing arsenic and silicon according to claim 1, which is a mixture of ~90 parts by weight and 90 to 10 parts by weight of a magnesia-based adsorbent.
(3)被処理水のpH値が10.5〜11.5である特
許請求の範囲第1項又は第2項記載の砒素及び珪素の同
時除去法。
(3) The method for simultaneously removing arsenic and silicon according to claim 1 or 2, wherein the pH value of the water to be treated is 10.5 to 11.5.
(4)被処理水が酸化剤で予備処理されたものである特
許請求の範囲第1項ないし第3項のいずれかに記載の砒
素及び珪素の同時除去法。
(4) The method for simultaneously removing arsenic and silicon according to any one of claims 1 to 3, wherein the water to be treated is pretreated with an oxidizing agent.
JP18533485A 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon Expired - Lifetime JPH0657354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18533485A JPH0657354B2 (en) 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18533485A JPH0657354B2 (en) 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon

Publications (2)

Publication Number Publication Date
JPS6245394A true JPS6245394A (en) 1987-02-27
JPH0657354B2 JPH0657354B2 (en) 1994-08-03

Family

ID=16168988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18533485A Expired - Lifetime JPH0657354B2 (en) 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon

Country Status (1)

Country Link
JP (1) JPH0657354B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170177A (en) * 2001-12-04 2003-06-17 Denki Kagaku Kogyo Kk Agent for decreasing harmful substance
JP2005000823A (en) * 2003-06-12 2005-01-06 Japan Science & Technology Agency Method for treating geothermal water
WO2006080587A1 (en) * 2005-01-31 2006-08-03 Egs Company, Limited Immobilizing agent and immobilization method for harmful component
WO2006118537A1 (en) * 2005-03-04 2006-11-09 Bergsskolan Kompetensutveckling Aktiebolag Method for adsorption of metal and an adsorption material directed thereto and method for re-use of the adsorption material
JP2013031837A (en) * 2011-06-27 2013-02-14 Jfe Steel Corp Reducing agent for harmful element, and method for reducing harmful element
JP2013116465A (en) * 2011-10-31 2013-06-13 Jfe Steel Corp Material for reducing harmful element, and method for reducing harmful element
JP2018126722A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
WO2018168558A1 (en) * 2017-03-14 2018-09-20 オルガノ株式会社 Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
CN114101275A (en) * 2021-11-25 2022-03-01 赛恩斯环保股份有限公司 Mineralization and detoxification treatment method of arsenic alkali residue

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170177A (en) * 2001-12-04 2003-06-17 Denki Kagaku Kogyo Kk Agent for decreasing harmful substance
JP2005000823A (en) * 2003-06-12 2005-01-06 Japan Science & Technology Agency Method for treating geothermal water
WO2006080587A1 (en) * 2005-01-31 2006-08-03 Egs Company, Limited Immobilizing agent and immobilization method for harmful component
WO2006118537A1 (en) * 2005-03-04 2006-11-09 Bergsskolan Kompetensutveckling Aktiebolag Method for adsorption of metal and an adsorption material directed thereto and method for re-use of the adsorption material
JP2013031837A (en) * 2011-06-27 2013-02-14 Jfe Steel Corp Reducing agent for harmful element, and method for reducing harmful element
JP2013116465A (en) * 2011-10-31 2013-06-13 Jfe Steel Corp Material for reducing harmful element, and method for reducing harmful element
JP2018126722A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
WO2018168558A1 (en) * 2017-03-14 2018-09-20 オルガノ株式会社 Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP2018149520A (en) * 2017-03-14 2018-09-27 オルガノ株式会社 Water treatment method, magnesium agen for water treatment, and method for producing magnesium agent for water treatment
CN114101275A (en) * 2021-11-25 2022-03-01 赛恩斯环保股份有限公司 Mineralization and detoxification treatment method of arsenic alkali residue
CN114101275B (en) * 2021-11-25 2023-02-03 赛恩斯环保股份有限公司 Mineralization and detoxification treatment method of arsenic alkali residue

Also Published As

Publication number Publication date
JPH0657354B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
Cheng et al. Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides
Tsunashima et al. Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water
CN108996642B (en) Treatment method of chlorine-containing wastewater
JP5913436B2 (en) Boron remover
US4707270A (en) Process for treating waste water containing phosphorus compounds and/or organic cod substances
JP5831914B2 (en) Water treatment method
JP5451323B2 (en) Water treatment method
CN111498864B (en) Magnetic zeolite material and preparation method and application thereof
JP4607847B2 (en) Treatment method and treatment agent for boron-containing wastewater
JPS6245394A (en) Simultaneous removal of arsenic and silicon
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
WO2010137321A1 (en) Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor
CA2235523C (en) Method of treating sludge containing arsenic
JPS6214984A (en) Method for adsorptive removal of phosphorus
JP2001340872A (en) Method for treating wastewater containing boron and/or fluorine
JPH11221576A (en) Treatment of selenium-containing waste water or selenium-containing sludge
JPH11235595A (en) Treatment of boron-containing waste water
CN114288984A (en) Modified lime nitrogen slag composite particle, preparation method thereof and application thereof in stabilized solidification of beryllium-containing solid waste or polluted soil
JPS591113B2 (en) How to remove phosphorus
JP4696017B2 (en) Treatment method for boron-containing wastewater
JPS62152588A (en) Treatment of water containing phosphate
JP2000233188A (en) Removing agent of selenium ion and arsenic ion, and use thereof
KR101766861B1 (en) A Complex Adsorbent To Treat Ethyanolamine And Preparation Method Of The Same
JP4306917B2 (en) Anion scavenger and method for recovering inorganic anion from waste water
JP2005349349A (en) Material for disposing of heavy metal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term