JPS6190469A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6190469A
JPS6190469A JP21236784A JP21236784A JPS6190469A JP S6190469 A JPS6190469 A JP S6190469A JP 21236784 A JP21236784 A JP 21236784A JP 21236784 A JP21236784 A JP 21236784A JP S6190469 A JPS6190469 A JP S6190469A
Authority
JP
Japan
Prior art keywords
layer
active layer
substrate
pinch
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21236784A
Other languages
Japanese (ja)
Inventor
Masaru Kazumura
数村 勝
Masahiro Hagio
萩尾 正博
Masahiro Nishiuma
西馬 正博
Kazunari Oota
一成 太田
Kunihiko Kanazawa
邦彦 金澤
Kazuhide Goda
郷田 和秀
Koji Tsukada
浩司 塚田
Shinichi Katsu
勝 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21236784A priority Critical patent/JPS6190469A/en
Publication of JPS6190469A publication Critical patent/JPS6190469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To realize high value of Gm even in a deep gate bias close to pinch- OFF, and finally to enable low-noise action, by interposing a metallic layer between the active layer and the substrate. CONSTITUTION:The metallic layer 2 interposed between the substrate 1 and the active layer 3 depletes the contacting active layer 3 to a fixed depth. An interface modified layer 7 the carrier concentration of which varies by any crystal growth exists in the neighborhood of the interface between the active layer 3. This modified layer 7 is contained inside a depletion layer 8 of interposed metal but does not serve as the FET acting channel. Therefore, when a gate depletion layer 9 is kept on spreading by impressing bias voltage on a gate electrode 5 of the surface, this layer closes the channel by contacting the depletion layer of interposed metal and comes into the state of pinch-OFF before its tip reaches the substrate surface. Therefore, an extra decrease in Gm is not caused in the state just before pinch-OFF, and the FET excellent in noise characteristic can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高周波・高周波電子機器等に用いられる電
界効果トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a field effect transistor used in ultra-high frequency/high frequency electronic equipment and the like.

(従来例の構成とその問題点) 近年、10数GHz程度に至るマイクロ波・超高周波領
域においても半導体デバイスが使用される様になってき
ている。
(Structure of conventional example and its problems) In recent years, semiconductor devices have come to be used even in the microwave and ultra-high frequency range up to about 10-odd GHz.

この周波数帯域に使用されるトランジスタには低雑音・
高利得が要求されている。これらトランジスタとしては
、通常、電界効果型のトランジスタが用いられ、とりわ
けGaAsを用いた電界効果トランジスタ(FET)が
、低雑音特性を持つとされている。
Transistors used in this frequency band have low noise and
High profits are required. As these transistors, field effect transistors are usually used, and in particular, field effect transistors (FETs) using GaAs are said to have low noise characteristics.

この電界効果トランジスタにおいて、雑音・利得を左右
するデバイス・パラメータの一つに相互コンダクタンス
G■がある。低雑音動作を得るためにはGIllを出来
るだけ大きくしなければならない。
In this field effect transistor, one of the device parameters that influences noise and gain is mutual conductance G. GIll must be made as large as possible to obtain low noise operation.

このG+oは、ゲート長等のジオメトリを一定とすると
、活性層のキャリア濃度と移動度によってきまる。
This G+o is determined by the carrier concentration and mobility of the active layer, assuming that the geometry such as the gate length is constant.

ところで、FETを低雑音動作させるには、通常、ピン
チオフぎりぎりにゲートバイアスを掛けた状態で用いる
。従って、そのバイアス時のゲート空乏層先端、即ち、
活性層の下側(ゲート電極の反対側)の界面付近におけ
るキャリア濃度と移動濃度が問題となる。
By the way, in order to operate an FET with low noise, it is usually used in a state where a gate bias is applied to the edge of pinch-off. Therefore, the tip of the gate depletion layer at that bias, ie,
The carrier concentration and mobile concentration near the interface below the active layer (on the opposite side of the gate electrode) are problematic.

移動濃度は制御困難なパラメータであるので、キャリア
濃度を考えると以下のようになる。
Since the mobile concentration is a parameter that is difficult to control, considering the carrier concentration, the following results are obtained.

第1図はFETに使用される半導体結晶の活性層近傍の
キャリア濃度プロファイルを示すもので、aは理想的プ
ロファイル、bは現実のプロファイルをそれぞれ示す。
FIG. 1 shows a carrier concentration profile near the active layer of a semiconductor crystal used in an FET, where a shows an ideal profile and b shows an actual profile.

適当なピンチオフと高Gmを実現するためには、第1図
aに示すような界面での急峻なキャリア濃度プロファイ
ルが理想的である。ところが、現実に得られるエピタキ
シャル活性層のキャリア濃度プロファイルは、第1図す
に示すように有限の立上り幅が出来てしまう。
In order to realize appropriate pinch-off and high Gm, a steep carrier concentration profile at the interface as shown in FIG. 1a is ideal. However, the carrier concentration profile of the epitaxial active layer actually obtained has a finite rise width as shown in FIG.

この立上り幅は、出来得る限り狭くすることが望ましい
が、@在の工業生産設備技術を以ってしては、キャリア
濃度変化1016〜10”c+w−”に対して200人
が限界であり、さらに大きな規格許容値を定めても、エ
ピタキシャル成長の歩留りはどれで律せられているのが
現状である。
It is desirable to make this rise width as narrow as possible, but with the current industrial production equipment technology, the limit is 200 people for a carrier concentration change of 1016~10"c+w-". Even if larger standard tolerance values are established, the current situation is that the yield of epitaxial growth is still limited.

(発明の目的) 本発明は上記欠点に鑑み、ピンチオフ近くの深いゲート
バイアスにおいても高いGw+を実現し、ひいては、低
雑音動作を可能にする電界効果トランジスタを提供する
ことを目的とするものである。
(Object of the Invention) In view of the above drawbacks, it is an object of the present invention to provide a field effect transistor that achieves high Gw+ even at a deep gate bias near pinch-off, and furthermore enables low-noise operation. .

(発明の構成) この目的を達成するために本発明の電界効果トランジス
タは、活性層と基板との間に金属層が介在した構成とし
たものであり、この構成により、活性層界面のキャリア
濃度変化層が、介在金属から伸びた空乏層内に入り、F
ETのチャネルはキャリア濃度一定となる。従って、ピ
ンチオフ直前の状態においても6膳の余分な低下を引き
起こさず、雑音特性も優れた電界効果トランジスタが実
現されるものである。
(Structure of the Invention) In order to achieve this object, the field effect transistor of the present invention has a structure in which a metal layer is interposed between the active layer and the substrate, and this structure reduces the carrier concentration at the interface of the active layer. The change layer enters the depletion layer extending from the intervening metal, and F
The carrier concentration in the ET channel is constant. Therefore, it is possible to realize a field-effect transistor that does not cause an excessive drop in noise even in the state immediately before pinch-off and has excellent noise characteristics.

(実施例の説明) 第2図は、本発明の電界効果トランジスタの構成を示す
一実施例の断面概略を示し、1は基板、2は金属層、3
は活性層、4はゲート電極、5はソース電極、6はドレ
イン電極、7は界面変性層、8は介在金属による空乏層
、9はゲート空乏層である。
(Description of an embodiment) FIG. 2 shows a schematic cross-section of an embodiment showing the structure of a field effect transistor of the present invention, in which 1 is a substrate, 2 is a metal layer, and 3
4 is an active layer, 4 is a gate electrode, 5 is a source electrode, 6 is a drain electrode, 7 is an interface modified layer, 8 is a depletion layer formed by an intervening metal, and 9 is a gate depletion layer.

この例では、半導体としてGaAgを用いている。In this example, GaAg is used as the semiconductor.

基板1としてはCrドープ半絶縁性GaAsを用い、分
子線エピタキシャル法によって基板1上にまず金属層2
として1層を成長させる。 GaAs(100)面上へ
A#はエピタキシャル成長し、単結晶層が得られる。厚
さは500人とした。
Cr-doped semi-insulating GaAs is used as the substrate 1, and a metal layer 2 is first formed on the substrate 1 by molecular beam epitaxial method.
Grow one layer as follows. A# is epitaxially grown on the GaAs (100) plane to obtain a single crystal layer. The thickness was set at 500 people.

引き続き分子線エピタキシャル装置でn−GaAs活性
層3を成長させるa GaAsはA#単単結晶へエピタ
キシャル成長し、やはり単結晶GaAsが得られる。
Subsequently, the n-GaAs active layer 3 is grown using a molecular beam epitaxial device.a GaAs is epitaxially grown into an A# single crystal, and single crystal GaAs is also obtained.

ドーピングはSiを用い3×10″7CI+−3とした
。厚さは1000人である。活性層表面にゲート電極4
、ソース電極5.ドレイン電極6を付設してFETとし
た。
The doping was done using Si at 3×10″7CI+-3.The thickness was 1000mm.A gate electrode 4 was placed on the surface of the active layer.
, source electrode5. A drain electrode 6 was attached to form an FET.

以上の様に構成された電界効果トランジスタについて、
以下その動作について説明する。
Regarding the field effect transistor configured as above,
The operation will be explained below.

基板1と活性層3の間に介在する金属層2は、接する活
性層3を一定深さに空乏化する。活性層3の界面付近に
は、どの様な結晶成長方法によってもキャリア濃度が変
化したりする界面変性層7が存在する。ところが本発明
によれば、この変性層7は、介在金属による空乏層8の
内側に含まれてしまい、FETの動作チャネルとはなら
ない。
The metal layer 2 interposed between the substrate 1 and the active layer 3 depletes the adjacent active layer 3 to a certain depth. Near the interface of the active layer 3, there is an interface-modified layer 7 whose carrier concentration changes depending on any crystal growth method. However, according to the present invention, this modified layer 7 is included inside the depletion layer 8 formed by the intervening metal, and does not become an operating channel of the FET.

従って1表面のゲート電極5にバイアス電圧を印加し、
ゲート空乏層9を広げて行くと、基板界面にその先端が
達する以前に、介在金属による空乏層に接してチャネル
を閉じピンチオフ状態となる。
Therefore, applying a bias voltage to the gate electrode 5 on one surface,
When the gate depletion layer 9 is widened, before its tip reaches the substrate interface, it comes into contact with the intervening metal depletion layer and closes the channel, resulting in a pinch-off state.

以上の様に本発明によれば、基板界面の変性層は、介在
金属より延びた空乏層内に入り、チャネルとして使用さ
れないので、ピンチオフ直前に至るまで相互コンダクタ
ンスGmは、急激には低下しない。
As described above, according to the present invention, the modified layer at the substrate interface enters the depletion layer extending from the intervening metal and is not used as a channel, so the mutual conductance Gm does not drop sharply until just before pinch-off.

(発明の効果) 以上説明したように本発明は、活性層と基板の間に金属
層を介在させる構造により、特性の優れた電界効果トラ
ンジスタを実現するものであり、その実用的効果は大な
るものがある。
(Effects of the Invention) As explained above, the present invention realizes a field effect transistor with excellent characteristics by using a structure in which a metal layer is interposed between an active layer and a substrate, and its practical effects are great. There is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFETに使用される半導体結晶の活性層近傍の
キャリア濃度プロファイルを示す図、第2図は本発明の
電界効果トランジスタの構成を示す一実施例の断面概略
を示す図である。 1 ・・・基板、2・・・金属層、3 ・・・活、他層
、4 ・・・ゲート電極、5・・・ソース電極。 6 ・・・ ドレイン電極、7 ・・・界面変性層。 8・・・介在金属による空乏層、9 ・・・ゲート空乏
層。
FIG. 1 is a diagram showing a carrier concentration profile in the vicinity of an active layer of a semiconductor crystal used in a FET, and FIG. 2 is a diagram showing a schematic cross-section of an embodiment showing the structure of a field effect transistor of the present invention. 1...substrate, 2...metal layer, 3...active, other layer, 4...gate electrode, 5...source electrode. 6...Drain electrode, 7...Interfacial modification layer. 8... Depletion layer due to intervening metal, 9... Gate depletion layer.

Claims (1)

【特許請求の範囲】[Claims] 活性層と基板の間に金属層が介在していることを特徴と
する電界効果トランジスタ。
A field effect transistor characterized by a metal layer interposed between an active layer and a substrate.
JP21236784A 1984-10-09 1984-10-09 Field effect transistor Pending JPS6190469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21236784A JPS6190469A (en) 1984-10-09 1984-10-09 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21236784A JPS6190469A (en) 1984-10-09 1984-10-09 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6190469A true JPS6190469A (en) 1986-05-08

Family

ID=16621381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21236784A Pending JPS6190469A (en) 1984-10-09 1984-10-09 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6190469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155664A (en) * 1987-12-12 1989-06-19 Agency Of Ind Science & Technol Field effect type transistor
KR102538966B1 (en) * 2023-02-22 2023-06-01 대우공업 (주) press forming apparatus having burr cutting unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587492A (en) * 1978-12-26 1980-07-02 Fujitsu Ltd Field effect type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587492A (en) * 1978-12-26 1980-07-02 Fujitsu Ltd Field effect type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155664A (en) * 1987-12-12 1989-06-19 Agency Of Ind Science & Technol Field effect type transistor
KR102538966B1 (en) * 2023-02-22 2023-06-01 대우공업 (주) press forming apparatus having burr cutting unit

Similar Documents

Publication Publication Date Title
EP0484968B1 (en) Field effect transistor
JPS63204650A (en) Field effect transistor
US5153682A (en) HEMT device with doped active layer
US4942438A (en) Compound semiconductor field-effect transistor
US6653667B2 (en) GaAs-based semiconductor field-effect transistor
JPS6190469A (en) Field effect transistor
US5900641A (en) Field effect semiconductor device having a reduced leakage current
JPS6253953B2 (en)
JP2549206B2 (en) Field effect transistor
JPS6189677A (en) Field effect transistor
JPH07153780A (en) Linear field-effect transistor
JP2689960B2 (en) Semiconductor device
JPH0715018A (en) Field-effect transistor
JPS6189678A (en) Manufacture of field effect transistor
JPS6228593B2 (en)
JP3074836B2 (en) Compound semiconductor field effect transistor
JPH0536723A (en) Compound semiconductor field effect transistor
KR920009896B1 (en) Ga-as fet and its manufacturing method
JPH039340Y2 (en)
JP3493205B2 (en) Field effect transistor and method of manufacturing the same
JPH1079395A (en) Field-effect type transistor and manufacture thereof
JPS60137071A (en) Schottky gate field effect transistor
JPH05218091A (en) Semiconductor device
JPS6068661A (en) Semiconductor device
JPH05102192A (en) Field-effect transistor