JPS6189677A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6189677A
JPS6189677A JP21044584A JP21044584A JPS6189677A JP S6189677 A JPS6189677 A JP S6189677A JP 21044584 A JP21044584 A JP 21044584A JP 21044584 A JP21044584 A JP 21044584A JP S6189677 A JPS6189677 A JP S6189677A
Authority
JP
Japan
Prior art keywords
active layer
schottky metal
field effect
metal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21044584A
Other languages
Japanese (ja)
Inventor
Masaru Kazumura
数村 勝
Masahiro Hagio
萩尾 正博
Masahiro Nishiuma
西馬 正博
Kazunari Oota
一成 太田
Kunihiko Kanazawa
邦彦 金澤
Kazuhide Goda
郷田 和秀
Koji Tsukada
浩司 塚田
Shinichi Katsu
勝 新一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21044584A priority Critical patent/JPS6189677A/en
Publication of JPS6189677A publication Critical patent/JPS6189677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a field effect transistor realizing high mutual conductance even at a deep gate bias near its pinch off and allowing low noise operation by realizing a structure having a Schottky metal at an active layer surface opposite to a gate electrode of an active layer. CONSTITUTION:ASchottky metal 7 attached to the back of an FET forms a depletion layer 8 just under the said metal. Since an active layer 2 obtained by removing a substrate 1 is contacted with the Schottky metal 7 just under thereof, the depletion layer 8 eaches the inside of the active layer 2. Accordingly, a carrier dnsity varying region 3 existing in an interface beween the substrate 1 and the active layer 2 enters into the depletion layer 8 caused by the Schottky metal in this part and is not used as a channel. Although a gate bias is applied up to near the pinch off, the carrier density in the channel does not drop, there by to allow abrupt drop in its mutual conductance to be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高周波・高周波電子機器等に用いられる電
界効果トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a field effect transistor used in ultra-high frequency/high frequency electronic equipment and the like.

(従来例の構成とその問題点) 近年、10数GH,z程度に至るマイクロ波・超高周波
領域においても半導体デバイスが使用される様になって
きている。
(Structure of conventional example and its problems) In recent years, semiconductor devices have come to be used even in the microwave/ultra-high frequency region up to about 10-odd GHz, z.

この周波数帯域に使用されるトランジスタには低雑音・
高利得が要求されている。これらトランジスタとしては
、通常、電界効果型のトランジスタが用いられ、とりわ
けGaAsを用いた電界効果トランジスタ(FET)が
、低雑音特性を持つとされている。
Transistors used in this frequency band have low noise and
High profits are required. As these transistors, field effect transistors are usually used, and in particular, field effect transistors (FETs) using GaAs are said to have low noise characteristics.

この電界効果トランジスタにおいて、雑音・利得を左右
するデバイス・パラメータの一つに相互コンダクタンス
Gmがある。低雑音動作を得るためにはGmを出来るだ
け大きくしなければならない。
In this field effect transistor, one of the device parameters that influences noise and gain is mutual conductance Gm. Gm must be made as large as possible to obtain low noise operation.

このGmは、ゲート長等のジオメトリを一定とすると、
活性層のキャリア濃度と移動度によってきまる。
This Gm is, assuming that the geometry such as gate length is constant,
It depends on the carrier concentration and mobility of the active layer.

ところで、FETを低雑音動作させるには、通常、ピン
チオフぎりぎりにゲートバイアスを掛けた状態で用いる
。従って、そのバイアス時のゲート空乏層先端、即ち、
活性層の下側(ゲート電極の反対側)の界面付近におけ
るキャリア濃度と移動濃度が問題となる。
By the way, in order to operate an FET with low noise, it is usually used in a state where a gate bias is applied to the edge of pinch-off. Therefore, the tip of the gate depletion layer at that bias, ie,
The carrier concentration and mobile concentration near the interface below the active layer (on the opposite side of the gate electrode) are problematic.

移動濃度は制御困難なパラメータであるので。Since the mobile concentration is a difficult parameter to control.

キャリア濃度を考えると以下のようになる。 ゛第1図
はFETに使用される半導体結晶の活性層近傍のキャリ
ア濃度プロファイルを示すもので、aは理想的プロファ
イル、bは現実のプロファイルをそれぞれ示す。
Considering the carrier concentration, it is as follows. 1 shows the carrier concentration profile near the active layer of a semiconductor crystal used in an FET, where a shows an ideal profile and b shows an actual profile.

適当なピンチオフと高Gmを実現するためには、第1−
aに示すような界面での急峻なキャリア濃度プロファイ
ルが理想的である。ところが、現実に得られるエピタキ
シャル活性層のキャリア濃度プロファイルは、第1図す
に示すように有限の立上り幅が出来てしまう。
In order to achieve appropriate pinch-off and high Gm, the first
A steep carrier concentration profile at the interface as shown in a is ideal. However, the carrier concentration profile of the epitaxial active layer actually obtained has a finite rise width as shown in FIG.

この立上り幅は、出来得る限り狭くすることが望ましい
が、現在の工業生産設備技術を以ってしては、キャリア
濃度変化10”〜1011017aに対して200人が
限界であり、さらに大きな規格許容値を定めても、エピ
タキシャル成長の歩留りはこれで律せられ七いるのが現
状である。
It is desirable to make this rise width as narrow as possible, but with the current industrial production equipment technology, the limit is 200 people for a carrier concentration change of 10'' to 1011017a, and the standard tolerance is even larger. Even if a value is determined, the current situation is that the yield of epitaxial growth is not determined by this value.

(発明の目的)    ′ 本発明は上記欠点に鑑み、ピンチオフ近くの深いゲート
バイアスにおいても高いGmを実現し、ひいては、低雑
音動作を可能にする電界効果トランジスタを提供するこ
とを目的とするものである。
(Object of the Invention) In view of the above-mentioned drawbacks, the present invention aims to provide a field effect transistor that achieves a high Gm even at a deep gate bias near pinch-off, and that also enables low-noise operation. be.

(発明の構成) 本発明は、活性層のゲート電極と対向する活性層面にシ
ョットキ金属を有する構成としたものであり、この構成
により、活性層の界面におけるキャリア濃度変化領域が
ショットキ電極から伸びた空乏層内に入り、VTf、気
的に不活性となることにより高いGmを実現することが
出来るようにしたものである。
(Structure of the Invention) The present invention has a structure in which a Schottky metal is provided on the active layer surface facing the gate electrode of the active layer, and with this structure, the carrier concentration change region at the interface of the active layer extends from the Schottky electrode. By entering the depletion layer and becoming VTf and gaseously inactive, it is possible to realize a high Gm.

(実施例の説明) 第2図は、本発明の電界効果トランジスタの構成を示す
一実施例の断面概略を示し、1は基板。
(Description of an Embodiment) FIG. 2 shows a schematic cross-section of an embodiment showing the structure of a field effect transistor of the present invention, and 1 indicates a substrate.

2は活性層、3はキャリア濃度変化領域、4はゲート電
極、5はソース電極、6はドレイン電極。
2 is an active layer, 3 is a carrier concentration changing region, 4 is a gate electrode, 5 is a source electrode, and 6 is a drain electrode.

7はショットキ金属、8はショットキ金属によ□る空乏
層、9はグー1−空乏層である。
7 is a Schottky metal, 8 is a depletion layer made of Schottky metal, and 9 is a goo-1 depletion layer.

この例では、半導体としてGaAsを用いている。In this example, GaAs is used as the semiconductor.

基板1としてはCrドープ半絶縁性GaAsを用い、気
相エピタキシャル法で活性層2を成長させる。活性層2
としてはキャリア濃度3 X 10”Cm−3,厚さ1
000人とする。基板1と活性層2との間にはキャリア
濃度変化領域3が必然的に形成される。活性層2の表面
にはゲート電極4.ソース電極5及びドレイン電極6を
形成する。しかる後、ゲート電極下の基板をエツチング
除去し活性層を露出させる。さらに裏面にショットキ金
属7を蒸着する。
Cr-doped semi-insulating GaAs is used as the substrate 1, and the active layer 2 is grown by vapor phase epitaxial method. active layer 2
As for carrier concentration 3 x 10"Cm-3, thickness 1
000 people. A carrier concentration change region 3 is inevitably formed between the substrate 1 and the active layer 2. A gate electrode 4 is provided on the surface of the active layer 2. A source electrode 5 and a drain electrode 6 are formed. Thereafter, the substrate under the gate electrode is removed by etching to expose the active layer. Furthermore, Schottky metal 7 is vapor-deposited on the back surface.

この例においてはAQを5000人蒸着付設した。In this example, 5000 AQs were deposited.

以上の様に構成された電界効果トランジスタについて、
以下その動作について説明する。
Regarding the field effect transistor configured as above,
The operation will be explained below.

裏面に付けたショットキ金属7によって、その直下には
空乏層8が形成される。ゲート部分裏面においては、基
板が除去され活性層2とショットキ金属7が直接接触し
ている分で、この空乏層は活性層内部にまで及ぶ。
Due to the Schottky metal 7 attached to the back surface, a depletion layer 8 is formed directly below it. On the back surface of the gate portion, the substrate is removed and the active layer 2 and Schottky metal 7 are in direct contact with each other, so this depletion layer extends into the active layer.

従って、基板1と活性層2の界面に存在するキャリア濃
度変化領域3は、この部分においては空乏層の内に含ま
れてしまう。この為、表面のゲート電極にバイアス電圧
を印加してゲート空乏層を広げて行くと、基板界面に誉
め先端が達する以前にショットキ金属からの空乏層と接
触し、チャネルを閉じてピンチオフ状態になる。
Therefore, the carrier concentration changing region 3 existing at the interface between the substrate 1 and the active layer 2 is included in the depletion layer in this portion. Therefore, when a bias voltage is applied to the gate electrode on the surface to widen the gate depletion layer, the tip contacts the depletion layer from the Schottky metal before reaching the substrate interface, closing the channel and creating a pinch-off state. .

以上の様に本発明によれば、基板と活性層界面に存在す
るキャリア濃度変化領域は、ショットキ金属による空乏
層内に入り、チャネルとして使用されることが無い。従
って、ゲートバイアスをピンチオフ近くにまで印加して
も、チャネルのキャリア濃度は低下すること無く、相互
コンダクタンスGmの急激な低下は防ぐ事が出来る。
As described above, according to the present invention, the carrier concentration change region existing at the interface between the substrate and the active layer enters the Schottky metal depletion layer and is not used as a channel. Therefore, even if the gate bias is applied close to pinch-off, the carrier concentration in the channel does not decrease, and a sudden decrease in the mutual conductance Gm can be prevented.

なお、上記説明では、裏面の一部をエツチング除去した
場合を説明したが、裏面全部の基板を除去し、ショット
キ金属を付設しても、その効果は変るものではない。
In the above description, a case was explained in which a part of the back surface was removed by etching, but the effect remains the same even if the entire back surface of the substrate is removed and Schottky metal is attached.

(発明の効果) 以上説明したように本発明は、活性層のゲート電極と対
向する面にショットキ金属を付設した構造により、特性
の良い電界効果トランジスタを実現するものであり、そ
の実用的効果は大なるものがある。
(Effects of the Invention) As explained above, the present invention realizes a field effect transistor with good characteristics by using a structure in which Schottky metal is attached to the surface of the active layer facing the gate electrode, and its practical effects are as follows. There is something big.

【図面の簡単な説明】 第1図はFETに使用される半導体結晶の活性層近傍の
キャリア濃度プロファイルを示す可、第2図は本発明の
電界効果トランジスタの構成を示す一実施例の断面概略
を示す図である。 1 ・・基板、2・・・活性層、3 ・・・キャリア濃
度変化領域、4 ・・・ゲート電極、5・・・ソース電
極、6 ・・ トレイン電極、7 ・・・ショットキ金
属、8 ・・ ショットキ金属による空乏層、9 ・・
・ゲート空乏層。 特許出願人 松下電器産業株式会社 第1図 第2図
[Brief Description of the Drawings] Fig. 1 shows a carrier concentration profile near the active layer of a semiconductor crystal used in a FET, and Fig. 2 is a cross-sectional schematic diagram of an embodiment showing the structure of a field effect transistor of the present invention. FIG. 1...Substrate, 2...Active layer, 3...Carrier concentration change region, 4...Gate electrode, 5...Source electrode, 6...Train electrode, 7...Schottky metal, 8...・Depletion layer due to Schottky metal, 9...
・Gate depletion layer. Patent applicant: Matsushita Electric Industrial Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  活性層のゲート電極と対向する活性層面にショットキ
金属を有することを特徴とする電界効果トランジスタ。
A field effect transistor characterized by having a Schottky metal on the surface of the active layer facing the gate electrode of the active layer.
JP21044584A 1984-10-09 1984-10-09 Field effect transistor Pending JPS6189677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21044584A JPS6189677A (en) 1984-10-09 1984-10-09 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21044584A JPS6189677A (en) 1984-10-09 1984-10-09 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6189677A true JPS6189677A (en) 1986-05-07

Family

ID=16589443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21044584A Pending JPS6189677A (en) 1984-10-09 1984-10-09 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6189677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147165A (en) * 2005-11-28 2007-06-14 Yano Giken:Kk Heat storage capsule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147165A (en) * 2005-11-28 2007-06-14 Yano Giken:Kk Heat storage capsule

Similar Documents

Publication Publication Date Title
CA1148272A (en) Vertical field effect transistor with improved gate and channel structure
US5364816A (en) Fabrication method for III-V heterostructure field-effect transistors
JPH03292744A (en) Compound semiconductor device and manufacture thereof
GB1530145A (en) Method of manufacturing field-effect transistors designed for operation at very high frequencies using integrated techniques
US6096587A (en) Manufacturing method of a junction field effect transistor
JPS6189677A (en) Field effect transistor
JPH06204253A (en) Field-effect semiconductor device
US6458675B1 (en) Semiconductor device having a plasma-processed layer and method of manufacturing the same
JP2685026B2 (en) Field effect transistor and manufacturing method
JPS6253953B2 (en)
US4951099A (en) Opposed gate-source transistor
JP2003273130A (en) Semiconductor device and manufacturing method thereof
JPH03181138A (en) Compound semiconductor device
JPH023540B2 (en)
JPS6190469A (en) Field effect transistor
US5994727A (en) High performance gaas field effect transistor structure
JPS6189678A (en) Manufacture of field effect transistor
JP2003059949A (en) Field effect transistor and production method therefor
GB2239557A (en) High electron mobility transistors
JP2861086B2 (en) Field effect transistor and method of manufacturing the same
KR100349368B1 (en) Extremely high frequency semiconductor device and method of manufacturing the same
JPS6129555B2 (en)
JPH05218091A (en) Semiconductor device
JP3002291B2 (en) Semiconductor device
JPH04212428A (en) Manufacture of semiconductor device