JPS6189487A - Condensing and deaerating system for power plant - Google Patents

Condensing and deaerating system for power plant

Info

Publication number
JPS6189487A
JPS6189487A JP20822084A JP20822084A JPS6189487A JP S6189487 A JPS6189487 A JP S6189487A JP 20822084 A JP20822084 A JP 20822084A JP 20822084 A JP20822084 A JP 20822084A JP S6189487 A JPS6189487 A JP S6189487A
Authority
JP
Japan
Prior art keywords
condensate
condenser
steam
jet pump
deaerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20822084A
Other languages
Japanese (ja)
Inventor
Kenji Yokosuka
横須賀 健志
Takeshi Ueno
健 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20822084A priority Critical patent/JPS6189487A/en
Publication of JPS6189487A publication Critical patent/JPS6189487A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To largely reduce the time required for deaerating of a condensate in a process of starting a plant by using a steam injection type jet pump in combination with a condensate recirculating device. CONSTITUTION:When starting the system, a condensate containing a large quantity of dissolved oxygen is sucked up by the jet effect of a steam injection type jet pump 21 from a condensate reservoir at the lower part of a condenser 1 through a condensate extraction pipe 20, by sending steam to the steam injec tion type jet pump 21. In an exhaust pipe 24 of the pump 21, the condensate is mixed with steam whereby the condensate is heated. The condensate which has been guided by a flush nozzle 25 provided at a suitable portion within the condenser 1 and the temperature of which has become higher than the saturated steam temperature of the atmospheric pressure within the condenser 1 is flushed and deaerated within the condenser 1. On the other hand, the conven tional condensing and deairing method due to the condensate recirculative opera tion is simultaneously used in combination. For this reason, the deairing method of the present invention greatly curtails the condensing and deaerating time as compared with the conventional deaerating method.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、発電プラントに係り、特にプラントの起動過
程における復水器による復水の脱気方法について好適な
発電プラントの復水脱水系統に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a power generation plant, and particularly to a condensate dehydration system for a power generation plant that is suitable for a method of degassing condensate using a condenser during the startup process of the plant. It is.

〔発明の背景〕[Background of the invention]

第4図に従来技術の復水器周囲系統及び復水脱気系統を
示す。第4図において、起動しようとする復水器1内の
復水は開放大気圧下に存在したため、溶存酸素は700
0〜10000p p b 程度を有している。一方、
ボイラの加熱管の腐食のほとんどは、給水やボイラ水中
の溶存酸素に起因するものであリボイラ給水中の溶存酸
素は5〜10ppb程度に低減する必要がある。
FIG. 4 shows a conventional condenser surrounding system and condensate deaeration system. In Fig. 4, since the condensate in the condenser 1 to be started was under open atmospheric pressure, the dissolved oxygen was 700%
It has about 0 to 10000 p p b . on the other hand,
Most of the corrosion of boiler heating tubes is caused by dissolved oxygen in the feed water and boiler water, and it is necessary to reduce the dissolved oxygen in the reboiler feed water to about 5 to 10 ppb.

通常の発電プラントに於ては、給水から溶存酸素を除去
するために、ボイラ給木管路の途中に別置式の脱気器(
第4図には図示しない)を設置しボイラ給水と他から供
給される蒸気とを混合させて高圧高温下で物理的に溶存
酸素の大部分を取り除いたのち、ヒドラジン等の脱酸素
剤を加えて化学的にも除去する方法がとられている。第
4図に示した発電プラントでは、別置式脱気器を備えて
いないので、復水器1の真空によって気圧は低い程溶存
酸素が少なくなるという性質を利用していわゆる真空脱
気方式としているものである。
In normal power plants, a separate deaerator (
(not shown in Figure 4), the boiler feed water is mixed with steam supplied from other sources, and most of the dissolved oxygen is physically removed under high pressure and high temperature, and then an oxygen scavenger such as hydrazine is added. Chemical removal methods are also being used. The power generation plant shown in Figure 4 does not have a separate deaerator, so it uses a so-called vacuum deaeration method, which takes advantage of the property that the lower the pressure, the less dissolved oxygen there is due to the vacuum in the condenser 1. It is something.

このような従来技術の復水脱気方法は次のような手順で
実施される。まず、起動する復水器内の復水を、復水ポ
ンプ5を運転することにより、グランドコンデンサ6出
口の復水管7から分岐した復水再循環配管8及び復水再
循環弁9を介して復水器1に戻し循環させる。一方、復
水器1内に連゛、   − 通す・冬補助蒸気管15及び補助蒸気調整弁16を介し
て復水器1の内部に蒸気を導入させる。また同時に復水
器1は空気抽出管3を介して空気抽出器4により真空に
保っておく。
Such a conventional condensate deaeration method is carried out in the following steps. First, by operating the condensate pump 5, the condensate in the condenser to be started is transferred via the condensate recirculation pipe 8 branched from the condensate pipe 7 at the outlet of the grand condenser 6 and the condensate recirculation valve 9. It is returned to the condenser 1 and circulated. On the other hand, steam is introduced into the condenser 1 through the winter auxiliary steam pipe 15 and the auxiliary steam regulating valve 16. At the same time, the condenser 1 is maintained in a vacuum by an air extractor 4 via an air extractor pipe 3.

以上の如く、溶存酸素を多く含んで復水を復水器1に循
環させながら、補助蒸気の導入及び真空にすることによ
り復水器1内にて復水の脱気を促進し、復水中の溶存酸
素量を規定値以下とするものである。しかしながら1水
力式では復水中の溶存酸素を規定値以下にまで脱気する
には、約1.5時間を必要としている。
As described above, while condensate containing a large amount of dissolved oxygen is circulated to condenser 1, the deaeration of condensate is promoted in condenser 1 by introducing auxiliary steam and creating a vacuum, and the condensate The amount of dissolved oxygen in the air is kept below the specified value. However, in the 1-hydro type, it takes about 1.5 hours to degas the dissolved oxygen in the condensate to below the specified value.

発電プラントの起動過程における復水の脱気所要時間の
差異は、プラントの運用上極めて重要なことである。す
なわち脱気時間が短かければ、ボイラへの送水がそれだ
け早められる訳であり、発電プラントの起動時間が短縮
できるということである。最近の発電プラントは、電力
需要の少ない夜間に停止し、需要の多い昼間に稼動する
など1日車位で起動・停止を繰返すためプラントの起動
・停止操作が簡単で短時間に出来る機能が要求されてい
る。このためには、復水器に保有する復水をいかに急速
に脱気できるかが課題である。
Differences in the time required for deaeration of condensate during the start-up process of a power plant are extremely important for plant operation. In other words, the shorter the deaeration time, the faster water can be sent to the boiler, which means that the startup time of the power plant can be shortened. Modern power generation plants start and stop repeatedly throughout the day, shutting down at night when electricity demand is low and operating during the day when demand is high, so there is a need for functions that allow the plant to be started and stopped easily and quickly. ing. To this end, the challenge is how quickly the condensate held in the condenser can be degassed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、別置式脱気器を有しない発電プラント
において、プラントの起動過程における復水の脱気所要
時間を大幅に減少させ、プラントの起動時間を短縮する
ための復水脱気系統を提供することにある。
The purpose of the present invention is to provide a condensate deaeration system for significantly reducing the time required for deaeration of condensate during the plant start-up process in a power generation plant that does not have a separate deaerator, thereby shortening the plant start-up time. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、復水の急速脱気のためには復水器保有水の再
循環量を適正に増大させること、及び再循環する復水を
加温して、復水器内における蒸発発散効果を行なわせる
ことが有効であるとの知見の中から、上記両者の機能を
有する蒸気噴射式ジェットポンプを利用するものである
The present invention aims to appropriately increase the amount of recirculated water held in the condenser in order to rapidly degas the condensate, and to heat the recirculated condensate to achieve an evaporation-diffusion effect within the condenser. Based on the knowledge that it is effective to perform the above functions, a steam injection jet pump having both of the above functions is used.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の発電プラントの復水脱気系統の一実施例を
第1図により説明する。復水器1内の管巣2で凝縮した
復水は復水ポンプ5、グランド蒸気コンデンサ6を備え
た復水管7を通じてボイラ(図示せず)に供給されるよ
うになっている。そして復水器1の下部の復水溜から蒸
気噴射式ジェットポンプ21に復水抽出管20が連絡さ
れ、該蒸気噴射式ジェットポンプ21の吐出管24は抽
出した復水を復水器1内に散水するようにその端部が復
水器1内に配設されフラッシュノズル25が設置されて
いる。蒸気噴射式ジェットポンプ、21には駆動蒸気管
22が別置式ボイラ(図示せず)あるいは他の蒸気源か
ら連絡され駆動蒸気調節弁23が設置される。復水器1
には空気抽出管3を介して空気抽出器4が設置されてお
り、復水管7の復水ポンプ5の吐出側からはスピルオー
バ弁11を備えたスピルオーバ管10を介して復水を貯
蔵する補給水タンク12が設置されている。
An embodiment of the condensate deaeration system of a power plant according to the present invention will be described below with reference to FIG. Condensate condensed in a tube nest 2 within the condenser 1 is supplied to a boiler (not shown) through a condensate pipe 7 equipped with a condensate pump 5 and a gland steam condenser 6. A condensate extraction pipe 20 is connected from the condensate reservoir in the lower part of the condenser 1 to a steam injection type jet pump 21, and a discharge pipe 24 of the steam injection type jet pump 21 carries out the extracted condensate into the condenser 1. Its end is disposed within the condenser 1 and a flash nozzle 25 is installed so as to spray water. A steam injection type jet pump 21 is connected to a drive steam pipe 22 from a separate boiler (not shown) or another steam source, and a drive steam control valve 23 is installed therein. Condenser 1
An air extractor 4 is installed through an air extraction pipe 3, and from the discharge side of the condensate pump 5 of the condensate pipe 7, a replenishment system for storing condensate is connected through a spillover pipe 10 equipped with a spillover valve 11. A water tank 12 is installed.

補給水タンク12内の復水は補給水調節弁4を備えた補
給水管13を通じて必要時に復水器内に供給されるよう
になっている。
Condensate in the make-up water tank 12 is supplied into the condenser when necessary through a make-up water pipe 13 equipped with a make-up water regulating valve 4.

上記構成からなる本実施例の発電プラントの復水脱気系
統について、以下に起動時の復水脱気の作用を説明する
。起動時、復水器1内の溶存酸素を多く含んだ復水は、
蒸気噴射式ジェットポンプ21に蒸気を送ることにより
、復水器1の下部の復水溜から復水抽出管2oを介し蒸
気噴射式ジェットポンプ21のジェット効果により吸引
される。
Regarding the condensate deaeration system of the power plant of this embodiment having the above configuration, the action of condensate deaeration at startup will be described below. At startup, condensate containing a large amount of dissolved oxygen in condenser 1,
By sending steam to the steam injection type jet pump 21, steam is sucked from the condensate reservoir in the lower part of the condenser 1 through the condensate extraction pipe 2o by the jet effect of the steam injection type jet pump 21.

蒸気噴射式ジェットポンプ21の吐出管24内において
は復水と蒸気が混合することにより復水は加熱される。
In the discharge pipe 24 of the steam injection type jet pump 21, the condensate and steam are mixed and the condensate is heated.

而して復水器1内の適切な場所に設置されたフラッシュ
ノズル25に導かれ復水器1内の気圧の飽和蒸気温度よ
り高温となった復水は復水器1内にフラッシュされ脱気
される。一方、従来の復水再循環運転による復水脱気法
も同時に併用する。
The condensate, which is led to a flash nozzle 25 installed at an appropriate location in the condenser 1 and has reached a temperature higher than the saturated steam temperature at the pressure inside the condenser 1, is flushed into the condenser 1 and desorbed. It bothers me. On the other hand, a conventional condensate deaeration method using condensate recirculation operation is also used at the same time.

本実施例によれば、従来の復水再循環運転による復水脱
気法と共に、より脱気効果の高い加熱脱気法が併用され
るため、従来の脱気方法に比べ、大幅に復水脱気時間が
短縮される効果がある。尚、蒸気噴射式ジェットポンプ
21での復水の昇温は復水器1内の温度に対し、少なく
とも2℃以上高ければ良く、抽出復水量との見合いに於
いて、蒸気噴射式ジェットポンプ21の容量あるいは台
数を選択すれば良い。
According to this embodiment, in addition to the conventional condensate deaeration method using condensate recirculation operation, the heating deaeration method, which has a higher deaeration effect, is used in combination, so the condensate deaeration method is significantly improved compared to the conventional deaeration method. This has the effect of shortening deaeration time. The temperature of the condensate in the steam injection type jet pump 21 should be at least 2°C higher than the temperature inside the condenser 1, and in consideration of the amount of extracted condensate, the steam injection type jet pump 21 All you have to do is select the capacity or number of units.

第2図は本発明による他の実施例を示すもので第1図の
実施例との相違点はグランド蒸気コンデンサ6の出口の
復水再循環水を蒸気噴射式ジェットポンプ21の吐出管
24に連絡したものである。
FIG. 2 shows another embodiment according to the present invention, and the difference from the embodiment shown in FIG. I have contacted you.

この方法によれば蒸気噴射式ジェットポンプ21による
復水の温度上昇効果を復水再循環水にも与えることが出
来るという効果が得られる。
According to this method, the effect of increasing the temperature of condensate caused by the steam injection jet pump 21 can also be applied to the recirculated condensate water.

第3図は、本発明による更に他の実施例を示し第1図、
第2図の実施例との相違点は、補給水タンク12から復
水器1への補給水管13の管路の途中に、蒸気噴射式ジ
ェットポンプ21を設けたものである。この方法によれ
ば、再循される復水のみならず、起動時における補給水
タンク12から供給される補給水をも蒸気噴射式ジェッ
トポンプ21にて加温することが可能で、フラッシュノ
ズル25でのフラッシュ脱気効果を一層高め、復水脱気
時間の短縮が出来る6尚、第1図または第2図の実施例
と第3図の実施例を同時に併用しても良いことは云うま
でもない。
FIG. 3 shows still another embodiment according to the present invention, and FIG.
The difference from the embodiment shown in FIG. 2 is that a steam injection type jet pump 21 is provided in the middle of the make-up water pipe 13 from the make-up water tank 12 to the condenser 1. According to this method, not only the recirculated condensate water but also the makeup water supplied from the makeup water tank 12 at the time of startup can be heated by the steam injection jet pump 21, and the flash nozzle 25 The flash deaeration effect can be further enhanced and the condensate deaeration time can be shortened.6 It goes without saying that the embodiment shown in Fig. 1 or 2 and the embodiment shown in Fig. 3 may be used in combination at the same time. Nor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蒸気噴射式ジェットポンプを復水再循
環管置に併用することによって、復水を抽出送水するた
めのポンプ機能と、復水を加温するための加熱器の機能
との両機能を同時に発揮することが可能であり、ポンプ
動力費及び設備費が減少出来る。更には復水の脱気時間
を大幅に短縮することが可能で、別置式脱気器を有しな
い発電プラントの運用上の効果がある。
According to the present invention, by using a steam injection jet pump together with a condensate recirculation pipe system, the pump function for extracting and sending condensate water and the function of a heater for heating condensate water can be combined. It is possible to perform both functions at the same time, reducing pump power costs and equipment costs. Furthermore, it is possible to significantly shorten the deaeration time of condensate, which is effective for the operation of power plants that do not have separate deaerators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発電プラントの復水脱気系統の実施例
の系統図、第2図及び第3図はそれぞれ本発明の発電プ
ラントの復水脱気系統の他の実施例の系lR図、第4図
は従来技術の復水脱気を行なう復水器廻りの復水脱気系
統図である。 1・・・復水器、5・・・復水ポンプ、7・・・復水管
、8・・・復水再循環管、12・・・補給水タンク、1
3・・・補給水管、15・・・補助蒸気管、20・・・
復水抽出管。 21・・・蒸気噴射式ジェットポンプ。
FIG. 1 is a system diagram of an embodiment of the condensate deaeration system of the power plant of the present invention, and FIGS. 2 and 3 are system diagrams of other embodiments of the condensate deaeration system of the power plant of the present invention, respectively. FIG. 4 is a condensate deaeration system diagram around a condenser that performs condensate deaeration according to the prior art. 1... Condenser, 5... Condensate pump, 7... Condensate pipe, 8... Condensate recirculation pipe, 12... Make-up water tank, 1
3...Supplementary water pipe, 15...Auxiliary steam pipe, 20...
Condensate extraction tube. 21...Steam injection jet pump.

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気タービンを経た蒸気を凝縮する復水器の復水溜
あるいは復水管から蒸気噴射式ジェットポンプに連絡す
る管路を設け、該蒸気噴射式ジェットポンプの吐出管路
を前記復水器に連絡し、該連絡管路の端部に復水器内に
位置するノズル手段を設けたことを特徴とする発電プラ
ントの復水脱気系統。
1. A condensate reservoir or condensate pipe of a condenser that condenses steam that has passed through a steam turbine is provided with a conduit that connects to a steam injection jet pump, and a discharge conduit of the steam injection jet pump is connected to the condenser. A condensate degassing system for a power generation plant, characterized in that a nozzle means located in a condenser is provided at an end of the connecting pipe.
JP20822084A 1984-10-05 1984-10-05 Condensing and deaerating system for power plant Pending JPS6189487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20822084A JPS6189487A (en) 1984-10-05 1984-10-05 Condensing and deaerating system for power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20822084A JPS6189487A (en) 1984-10-05 1984-10-05 Condensing and deaerating system for power plant

Publications (1)

Publication Number Publication Date
JPS6189487A true JPS6189487A (en) 1986-05-07

Family

ID=16552659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20822084A Pending JPS6189487A (en) 1984-10-05 1984-10-05 Condensing and deaerating system for power plant

Country Status (1)

Country Link
JP (1) JPS6189487A (en)

Similar Documents

Publication Publication Date Title
US4896500A (en) Method and apparatus for operating a combined cycle power plant having a defective deaerator
US4873829A (en) Steam power plant
KR101516941B1 (en) Energy recovery and steam supply for power augmentation in a combined cycle power generation system
US5165237A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
JPH0555761B2 (en)
JPS6189487A (en) Condensing and deaerating system for power plant
CN203443392U (en) Condenser system with deoxygenation function
JPS6242131B2 (en)
JP3085785B2 (en) Boiler feedwater heating device
CN107238072B (en) Regenerative vacuum deaerator
JP2576316B2 (en) Condenser
JPS593106A (en) Condensation and deairing system of power plant
JPH06126270A (en) Feed water deaerator
JPS59193106A (en) Steam condensation and deaeration system
JPH0144883B2 (en)
JPS61168787A (en) Condenser having deaerating function
JPS6132563B2 (en)
JPS5820908A (en) Electric power plant
JP3524691B2 (en) Waste heat recovery boiler
JP3592745B2 (en) Condenser with deaerator
JP3615831B2 (en) Condensate deaerator
JPH03275904A (en) Starting method of steam turbine plant and condenser used therefor
JPS60108508A (en) Device for recovering heat from exhaust gas of internal- combustion engine
SU1650925A1 (en) Steam-turbine plant
JPS58187706A (en) Low dissolved-oxygen water storage system