JPH06126270A - Feed water deaerator - Google Patents

Feed water deaerator

Info

Publication number
JPH06126270A
JPH06126270A JP11473193A JP11473193A JPH06126270A JP H06126270 A JPH06126270 A JP H06126270A JP 11473193 A JP11473193 A JP 11473193A JP 11473193 A JP11473193 A JP 11473193A JP H06126270 A JPH06126270 A JP H06126270A
Authority
JP
Japan
Prior art keywords
water
steam
pipe
feed water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11473193A
Other languages
Japanese (ja)
Other versions
JPH07102349B2 (en
Inventor
Yasuaki Nakamura
泰昭 中村
Katsumi Ura
勝己 浦
Yoshikuni Oshima
義邦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP11473193A priority Critical patent/JPH07102349B2/en
Publication of JPH06126270A publication Critical patent/JPH06126270A/en
Publication of JPH07102349B2 publication Critical patent/JPH07102349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To improve the reliability and durability of a plant by shortening the deaeration time on plant startup, simultaneously saving the quantity of auxiliary steam and improving the quality of feed water. CONSTITUTION:Steam jet nozzles 22 are installed under the surface of the water in a water storage tank 12. Not only a pipe 18 for feeding heating steam to a deaerating chamber 1 but also a pipe 20 for feeding the heating steam to the nozzles 22 are provided. The deaerating chamber 1 and a condenser are connected by a starting vent pipe 16. On boiler startup, a valve 19 is opened and simultaneously a valve 21 is opened to jet and feed heating steam into feed water in the water storage tank 12 and further a valve 17 installed at some midpoint in the starting vent pipe 16 is opened to evacuate the feed water deaerator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電プラントに於
いて給水中に溶存する酸素等の非凝縮ガスを除去する脱
気技術に係り、特にプラント起動時の給水中の溶存酸素
を短時間で低減させるのに好適な給水脱気装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing technique for removing non-condensable gases such as oxygen dissolved in feed water in a thermal power plant, and particularly, to dissolve dissolved oxygen in the feed water at the time of plant startup for a short time. The present invention relates to a feed water deaerator suitable for reducing the amount of water.

【0002】[0002]

【従来の技術】火力発電プラントでは給水脱気装置を設
け、タービン抽気またはボイラ蒸気によりボイラへ供給
する給水を加熱して脱気し、プラント全体の腐食防止を
図るとともに熱効率を向上させている。脱気に関する従
来技術については、米国文献「物理的脱気の理論的展
望」(Theoretical aspects of pkysical de-aeratio
n)ストーク社発行に詳しい。
2. Description of the Related Art In a thermal power plant, a feed water deaerator is provided to heat and deaerate the feed water supplied to a boiler by turbine extraction or boiler steam to prevent corrosion of the entire plant and improve thermal efficiency. For the prior art relating to degassing, see the American literature “Theoretical aspects of pkysical de-aeratio”.
n) Detailed in Stoke Publishing.

【0003】脱気に関する従来技術を、図3を用いて説
明する。脱気装置は、脱気室1と貯水タンク12を備え
ており、脱気室1では給水を加熱して脱気を行い、貯水
タンク12は脱気された給水を貯える。給水は、給水配
管6によって脱気室1に導かれ、脱気室1上部のスプレ
ーバルブ8により噴射され微粒化される。微粒化されて
表面積が急激に増大した給水は、蒸気雰囲気中を高速に
て飛流する間に蒸気と直接接触して熱交換を行ない、脱
気器の運転圧力の飽和温度まで上昇する。このような急
速な熱交換により拡散脱気(第1段脱気)が行なわれ、
この第1段脱気により相当量の非凝縮ガスが脱気され
る。
A conventional technique relating to degassing will be described with reference to FIG. The deaeration device includes a deaeration chamber 1 and a water storage tank 12. In the deaeration chamber 1, the water supply is heated for deaeration, and the water storage tank 12 stores the deaerated water supply. The water supply is guided to the degassing chamber 1 by the water supply pipe 6, and is sprayed by the spray valve 8 above the degassing chamber 1 to be atomized. The feed water, which has been atomized and whose surface area has increased rapidly, directly contacts the steam and exchanges heat during the high-speed flow in the steam atmosphere, and rises to the saturation temperature of the operating pressure of the deaerator. Diffusion degassing (first stage degassing) is performed by such rapid heat exchange,
A considerable amount of non-condensed gas is degassed by this first stage degassing.

【0004】更に給水は、分配トレイ4により脱気トレ
イ5上に分配されて蛇行流下し、トレイ5内を上昇する
加熱蒸気と撹拌され、第2段脱気が行なわれる。トレイ
5を通り抜けて脱気を完了した給水は脱気室1下部に一
度溜まり、給水連絡管10を流下して貯水タンク12に
貯蔵される。
Further, the feed water is distributed on the degassing tray 5 by the distribution tray 4 and meanders down and is agitated with the heated steam rising in the tray 5 to perform the second stage degassing. The water supply that has passed through the tray 5 and has been deaerated is once stored in the lower part of the deaeration chamber 1, flows down through the water supply communication pipe 10, and is stored in the water storage tank 12.

【0005】一方、加熱蒸気は蒸気入口9より脱気室1
内に流入し、トレイ室を回って給水を加熱しながらトレ
イ室下部の蒸気流入路よりトレイ室に流入し、トレイの
間を上昇する。この上昇する蒸気は、トレイ5内を流下
してくる給水から非凝縮ガスを奪い去る。トレイの間を
上昇した蒸気は分配箱3の脇を通ってスプレー室2に入
り、噴射微粒化された給水と熱交換して、自らは復水と
なって給水と共に流下する。ここで復水にならなかった
非凝縮ガスは、スプレーバルブ8の座に設けられたベン
ト管7より排出される。
On the other hand, the heating steam is supplied from the steam inlet 9 to the degassing chamber 1
While flowing into the inside of the tray chamber, the water flows around the tray chamber and heats the feed water, flows into the tray chamber through the steam inlet passage at the lower part of the tray chamber, and rises between the trays. This rising steam removes non-condensable gas from the feed water flowing down in the tray 5. The steam rising between the trays enters the spray chamber 2 through the side of the distribution box 3 and exchanges heat with the sprayed atomized feed water, and becomes condensed water and flows down together with the feed water. The non-condensed gas that has not condensed into water here is discharged from the vent pipe 7 provided at the seat of the spray valve 8.

【0006】ボイラ装置が設けられたプラントは、定常
的に運転されている場合は、タービン抽気、又はボイラ
蒸気を充分に脱気器へ供給することができるので、給水
を脱気して溶存酸素濃度を規定値以下に保つことに関し
て別段の困難が無い。ところが、プラント起動時のクリ
ーンアップ運転に於いては、脱気用の蒸気が充分に確保
されない状態で、多量の脱気されていない補給水が復水
器を介して系統内に導入される。
[0006] When the plant provided with the boiler device is operated steadily, turbine extraction air or boiler steam can be sufficiently supplied to the deaerator. There is no particular difficulty in keeping the concentration below the specified value. However, in the clean-up operation at the time of starting the plant, a large amount of non-degassed makeup water is introduced into the system via the condenser in a state where steam for degassing is not sufficiently secured.

【0007】この場合の脱気器及びその廻りの配管系統
の作動を、図4を用いて説明する。クリーンアップ時は
ボイラ点火前でもあり、加熱蒸気としてタービン抽気ま
たはボイラ蒸気をとることができない。このため、加熱
蒸気として、他缶または所内ボイラからの補助蒸気が、
加熱蒸気管18より脱気器に導入される。図4で、19
は止弁である。
The operation of the deaerator and the piping system around it in this case will be described with reference to FIG. At the time of cleanup, it is also before the boiler ignition, and turbine extraction or boiler steam cannot be taken as heating steam. Therefore, as heating steam, auxiliary steam from other cans or in-house boilers
It is introduced into the deaerator from the heating steam pipe 18. In FIG. 4, 19
Is a stop valve.

【0008】また脱気器のベント系統の運用も、給水と
補助蒸気との熱交換を有効にする為、ベント管14の止
弁15は開(白抜きで図示する。)とするが、起動用ベ
ント管16の止弁17は閉(黒塗りで図示する。尚、弁
の開/閉を白抜き/黒塗りで図示するのは、例えば、社
団法人火力原子力発電技術協会昭和56年6月発行「運
転・保守講座」第126頁第7図等に示されるように、
この技術分野では慣例となっている。)としていた。
Also, in the operation of the vent system of the deaerator, the stop valve 15 of the vent pipe 14 is opened (illustrated in white) to make the heat exchange between the feed water and the auxiliary steam effective, but it is started. The stop valve 17 of the vent pipe 16 is closed (illustrated in black. The opening / closing of the valve is illustrated in white / black), for example, the Thermal Power Nuclear Power Technology Association, June 1981. As shown in Figure 7, etc., on page 126 of the issued "Operation and Maintenance Course",
It is customary in the art. ).

【0009】[0009]

【発明が解決しようとする課題】プラント起動時のクリ
ーンアップ運転に際しては、諸種の事情(例えば発電所
全体としての運用上の問題)により、脱気器に対して補
助蒸気を充分に供給できない事例が少なくない。この場
合、補助蒸気と給水との熱交換が充分に行われず、ある
いは脱気室1内に補助蒸気が不足気味となって、給水の
溶存酸素濃度を規定値まで低下させるのに長時間を要す
る。
A case in which auxiliary steam cannot be sufficiently supplied to the deaerator due to various circumstances (for example, operational problems of the entire power plant) during cleanup operation at plant startup. There are many. In this case, it takes a long time to reduce the dissolved oxygen concentration of the feed water to the specified value due to insufficient heat exchange between the supplemental steam and the feed water or a shortage of the auxiliary steam in the degassing chamber 1. .

【0010】最近は、中間負荷運用としてプラント起動
停止の頻繁なDSS(Daily Start&Stop)・WSS(We
ekly Start&Stop)等を行うプラントが増えている。斯
かるプラントに於いては、短時間でクリーンアップを完
了させるという発電所のニーズより、プラント起動時の
脱気器溶存酸素を少量の補助蒸気で、しかも短時間で低
減させる必要がある。
Recently, DSS (Daily Start & Stop) and WSS (We
The number of plants performing ekly Start & Stop) is increasing. In such a plant, it is necessary to reduce the dissolved oxygen in the deaerator at the time of plant startup with a small amount of auxiliary steam and in a short time, because of the needs of the power plant to complete the cleanup in a short time.

【0011】以上に述べた如く、従来技術による給水の
脱気については、次のような問題があり、早急な解決が
要望されている。 (1)脱気/クリーンアップに長時間かかる。→起動時
間大/起動損失大 (2)補助蒸気が大量に必要で所内ボイラの容量が大き
くなり設備費も大きくなる。
As described above, the deaeration of water supply according to the prior art has the following problems, and an urgent solution is demanded. (1) Deaeration / cleanup takes a long time. → Large start-up time / Large start-up loss (2) A large amount of auxiliary steam is required, which increases the capacity of the in-house boiler and increases equipment costs.

【0012】本発明の目的は、起動時の脱気及びクリー
ンアップ時間の短縮化を図り、補助蒸気量の節約及び所
内ボイラの設備費低減を図り、給水の水質向上によるプ
ラントの信頼性,耐久性向上を図ることのできる給水脱
気装置を提供することにある。
The object of the present invention is to reduce the degassing and cleanup time at the time of start-up, to save the amount of auxiliary steam and to reduce the facility cost of the on-site boiler, and to improve the reliability and durability of the plant by improving the water quality of the feed water. It is to provide a feed water deaeration device capable of improving the property.

【0013】[0013]

【課題を解決するための手段】上記目的は、給水を脱気
する脱気室と、該脱気室の下方に設置され脱気された給
水を貯水する貯水タンクと、前記脱気室と前記貯水タン
クとを連通し下端部が前記貯水タンク内の水面下に達す
る給水連絡管とを備える給水脱気装置において、前記貯
水タンク内の水面下に設置した蒸気噴射ノズルと、加熱
蒸気を前記脱気室に供給する第1加熱蒸気管と、前記加
熱蒸気を前記蒸気噴射ノズルに供給する第2加熱蒸気管
と、前記脱気室と復水器とを連通する起動用ベント管
と、前記第1加熱蒸気管の途中に設けられボイラ起動時
には閉弁される第1弁と、前記第2加熱蒸気管の途中に
設けられボイラ起動時には開弁される第2弁と、前記起
動用ベント管の途中に設けられボイラ起動時には開弁さ
れる第3弁とを設けることで、達成される。
Means for Solving the Problems The above object is to provide a deaeration chamber for deaeration of water supply, a water storage tank installed below the deaeration chamber for storing deaerated water supply, the deaeration chamber and the aforesaid deaeration chamber. In a water supply deaerator comprising a water supply communication pipe communicating with a water storage tank and having a lower end portion reaching below the water surface in the water storage tank, a steam injection nozzle installed below the water surface in the water storage tank and the heated steam A first heating steam pipe for supplying to the air chamber, a second heating steam pipe for supplying the heating steam to the steam injection nozzle, a start vent pipe for communicating the deaeration chamber and the condenser, 1 a first valve which is provided in the middle of the heating steam pipe and is closed at the time of starting the boiler; a second valve which is provided in the middle of the second heating steam pipe and is opened at the time of starting the boiler; A third valve is provided on the way and is opened when the boiler starts up. It is, is achieved.

【0014】[0014]

【作用】給水中の酸素溶解度は、圧力が低いほど、また
温度が高いほど低減される。そこで、本発明では、ボイ
ラ起動時には加熱蒸気の脱気室への流入を第1弁を閉弁
することで遮断すると共に第2弁を開弁することで加熱
蒸気を貯水タンク内の給水中に噴射供給し、給水を加温
する。そして更に、第3弁を開弁することで脱気室と復
水器とを連通して脱気室の真空にする。これにより、ボ
イラ起動時の給水中の溶存酸素は効果的に低減される。
The oxygen solubility in the feed water decreases as the pressure decreases and the temperature increases. Therefore, in the present invention, when the boiler is started, the flow of the heating steam into the deaeration chamber is blocked by closing the first valve and the second valve is opened, so that the heating steam is supplied to the water supply tank. Inject and supply to warm the water supply. Further, by opening the third valve, the deaeration chamber and the condenser are communicated with each other to create a vacuum in the deaeration chamber. This effectively reduces the dissolved oxygen in the feed water when the boiler is started.

【0015】[0015]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の一実施例に係る給水脱気装置
の構成図であり、前述の公知の給水脱気装置(図4)を
改良したものである。図4と異なる点は、次の如くであ
る。脱気室1と貯水タンク12を連絡する給水連絡管1
0を貯水タンク12内の水面上方で分割する。また、脱
気室1への加熱蒸気管18から起動用加熱蒸気管20を
分岐し、止弁21(第2弁)を介し貯水タンク12の下
部(分配管13よりも下方)へ導入し、上方へ吹き出す
スプレーノズル22を貯水タンク12の底部付近に設置
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a feed water deaerator according to an embodiment of the present invention, which is an improvement of the known feed water deaerator (FIG. 4) described above. The difference from FIG. 4 is as follows. Water supply connection pipe 1 that connects the deaeration chamber 1 and the water storage tank 12
0 is divided above the water surface in the water storage tank 12. In addition, the heating steam pipe 18 to the degassing chamber 1 is branched from the heating steam pipe 20 for start-up, and introduced into the lower portion of the water storage tank 12 (below the distribution pipe 13) via the stop valve 21 (second valve), A spray nozzle 22 that blows upward is installed near the bottom of the water storage tank 12.

【0016】本実施例の装置(図1)を用いて脱気を実
施する場合、起動用加熱蒸気の導入時に於いて脱気器ベ
ント系統であるベント管14に設置の止弁15及び起動
用ベント管16に設置の止弁17(第3弁)を開して運
用する。
When degassing is carried out using the apparatus of this embodiment (FIG. 1), a stop valve 15 and a starting valve installed in a vent pipe 14 which is a deaerator vent system when starting heating steam is introduced. The stop valve 17 (third valve) installed on the vent pipe 16 is opened for operation.

【0017】次に動作と脱気作用を説明する。プラント
起動時、脱気器への加熱蒸気導入時にベント管14の止
弁15と起動用ベント管16の止弁17は全開してお
く。止弁17を全開する効果は次の如くである。
Next, the operation and the deaerating action will be described. When the plant is started and the heating steam is introduced into the deaerator, the stop valve 15 of the vent pipe 14 and the stop valve 17 of the start vent pipe 16 are fully opened. The effect of fully opening the stop valve 17 is as follows.

【0018】ベント管14はオリフィス14aを設けて
あるので、止弁15を全開するだけでは、脱気室1内の
真空度が復水器の真空度には到らないが、配管口径も大
きい起動用ベント管16の止弁17を全開することによ
り、脱気室1内の真空度を復水器の真空度と略等しくさ
せ、給水の溶存酸素の真空脱気効果と加熱蒸気量の低減
を可能とする(この原理については後述する。)。
Since the vent pipe 14 is provided with the orifice 14a, the vacuum degree in the deaeration chamber 1 does not reach the vacuum degree of the condenser only by fully opening the stop valve 15, but the pipe diameter is also large. By fully opening the stop valve 17 of the start-up vent pipe 16, the degree of vacuum in the degassing chamber 1 is made substantially equal to the degree of vacuum of the condenser, and the vacuum deaeration effect of dissolved oxygen in the feed water and the amount of heated steam are reduced. (This principle will be described later).

【0019】上記状態にて加熱蒸気を起動用加熱蒸気管
20より導入し、スプレーノズル22から上方の分配管
13側に吹き出す。吹き出された蒸気は気泡となり貯水
タンク12内の給水と直接熱交換して温度上昇させなが
ら水面上に到る。水面上の圧力は真空となっており蒸気
の気泡は比容積を著しく増大され、上方に高速にて飛流
しながら均圧連絡管11及び給水連絡管10を上昇し脱
気室1に導入される。ここで、給水連絡管10を貯水タ
ンク12内で分割した効果としては、貯水タンク12水
面上で上方に飛流する蒸気を均一に脱気室1に導入で
き、しかも脱気室1と貯水タンク12との圧力差により
貯水タンク12内の給水が給水連絡管10を通り脱気室
1側に逆流するのを防止することを可能とする(尚、上
記逆流防止は通常運転時においても有効であり、また、
FCB時や負荷減少時においても同様の効果が得られ
る)。
In the above state, the heating steam is introduced from the starting heating steam pipe 20 and blown out from the spray nozzle 22 to the upper side of the distribution pipe 13. The blown steam becomes bubbles and reaches the surface of the water while directly exchanging heat with the water supply in the water storage tank 12 to raise the temperature. The pressure on the water surface is a vacuum, and the specific volume of the bubbles of steam is remarkably increased, and the pressure equalizing connection pipe 11 and the water supply connection pipe 10 are raised and introduced into the degassing chamber 1 while flying upward at high speed. . Here, as an effect of dividing the water supply connecting pipe 10 in the water storage tank 12, the steam flying upward on the water surface of the water storage tank 12 can be uniformly introduced into the degassing chamber 1, and the degassing chamber 1 and the water storage tank 12 can be evenly introduced. It is possible to prevent the feed water in the water storage tank 12 from flowing back to the degassing chamber 1 side through the feed water connecting pipe 10 due to the pressure difference between the water tank 12 (the above-mentioned backflow prevention is effective even during normal operation). Yes, again
The same effect can be obtained during FCB and load reduction).

【0020】脱気室1に均一に導入された蒸気は、脱気
トレイ5,分配トレイ4を上昇しながら、微粒化されて
流下してくる給水と熱交換し給水中の非凝縮ガスを析出
させることにより脱気し、自らは復水となって給水と共
に流下する。ここで復水とならなかった非凝縮ガスは、
ベント管14及び起動用ベント管16より復水器に排出
される。
The steam uniformly introduced into the degassing chamber 1 ascends the degassing tray 5 and the distribution tray 4 and exchanges heat with the feed water which is atomized and flows down to deposit a non-condensed gas in the feed water. By doing so, it is degassed, and it becomes condensed water and flows down along with the water supply. The non-condensed gas that did not become condensate here,
It is discharged from the vent pipe 14 and the start vent pipe 16 to the condenser.

【0021】次に本発明の基本的な原理である給水中の
溶存酸素量の真空度と温度との関係の一例を図2により
説明する。本図より給水中の溶存酸素量は、真空度及び
温度が高いほど減少されることが解る。
Next, an example of the relationship between the degree of vacuum of the amount of dissolved oxygen in the feed water and the temperature, which is the basic principle of the present invention, will be described with reference to FIG. From this figure, it is understood that the dissolved oxygen amount in the feed water decreases as the vacuum degree and the temperature increase.

【0022】例えば、従来技術である前記図4の真空脱
気状態では脱気器ベント管14の止弁15は開,起動用
ベント管16の止弁17は閉となっている為、脱気器内
圧はオリフィス作用により復水器内圧よりも高くなる。
この状態で溶存酸素量は、図2において給水温度15
℃、大気圧で約10ppm(A点)より、脱気器内圧が7
00mmHgVacでは、B点の状態となるが、この段階で
は溶存酸素量は500ppm以上ある。さらに脱気器加熱
蒸気導入により給水温度を15℃より40℃の温度上昇
(ΔT=25℃)にてC点の状態となり溶存酸素量も起
動時の規定値である50ppb以下に達する。
For example, in the vacuum degassing state of FIG. 4 which is a conventional technique, the stop valve 15 of the deaerator vent pipe 14 is open and the stop valve 17 of the starting vent pipe 16 is closed, so that degassing is performed. The internal pressure becomes higher than the internal pressure of the condenser due to the effect of the orifice.
In this state, the amount of dissolved oxygen is 15
Approximately 10 ppm (point A) at ℃ and atmospheric pressure, the deaerator internal pressure is 7
At 00 mmHg Vac, the state is point B, but at this stage, the dissolved oxygen amount is 500 ppm or more. Furthermore, when the feed water temperature is raised from 15 ° C. to 40 ° C. (ΔT = 25 ° C.) by introducing the deaerator heating steam, the state of point C is reached, and the amount of dissolved oxygen reaches 50 ppb or less, which is the specified value at startup.

【0023】ところが、本発明実施例の図1の真空脱気
状態では、従来技術に対して起動用ベント管16の止弁
7を開することにより、脱気器内圧はオリフィスバイパ
スされる為、低下して復水器の内圧と略等しくなり、比
容積が増大して脱気効率も向上する。この状態での溶存
酸素量は、給水温度15℃脱気器内圧730mmHgVac
では、図2のA点からD点となり、この段階で溶存酸素
量は約220ppbに低減される。この段階D点から更に
加熱蒸気によって給水を加熱して、規定の溶存酸素濃度
50ppbとするに必要な温度上昇幅は、D点からE点ま
で、すなわち給水温度15℃から26℃までの約11℃
で足りる。
In the vacuum deaeration state of FIG. 1 of the embodiment of the present invention, however, by opening the stop valve 7 of the starting vent pipe 16 as compared with the prior art, the deaerator internal pressure is bypassed by the orifice. It decreases and becomes almost equal to the internal pressure of the condenser, the specific volume increases and the degassing efficiency also improves. The amount of dissolved oxygen in this state is as follows: feed water temperature 15 ° C, deaerator internal pressure 730 mmHgVac
Then, from point A to point D in FIG. 2, the dissolved oxygen amount is reduced to about 220 ppb at this stage. From this point D, the temperature rise width required to further heat the feed water with heated steam to the specified dissolved oxygen concentration of 50 ppb is from point D to point E, that is, from the feed water temperature of 15 ° C to 26 ° C of about 11 ° C. ℃
Is enough.

【0024】さらに、寒冷地においては海水温度も低
く、タービン熱負荷も無い起動時、脱気器内圧は一層低
下し740mmHgVac、程度となる為、真空上昇により
約90ppb(F点)となり、脱気器加熱蒸気導入による
規定溶存酸素量50ppb達成に必要な温度上昇は、F点
からG点まで、すなわち給水温度15℃から約18℃の
温度上昇(ΔT≒3℃)で溶存酸素濃度の規定値を確保
でき、さらに補助蒸気量の低減が可能となる。
Furthermore, in cold regions, the seawater temperature is low and the internal pressure of the deaerator is further reduced to 740 mmHgVac at the time of start-up without turbine heat load. The temperature increase required to achieve the specified dissolved oxygen amount of 50 ppb by introducing the heating steam from the F point to the G point, that is, the temperature rise from the feed water temperature of 15 ° C to about 18 ° C (ΔT ≈ 3 ° C) is the specified value of the dissolved oxygen concentration. Can be secured, and the amount of auxiliary steam can be reduced.

【0025】ここで、必要な補助蒸気量Gs(T/H)
は次の数1によって求められる。
Here, the required auxiliary steam amount Gs (T / H)
Is calculated by the following equation 1.

【0026】[0026]

【数1】 [Equation 1]

【0027】ただし、 GB =給水量(500T/Hとする。) H1=補助蒸気エンタルピ(700Kcal/Hとする。) H2=脱気器出口給水エンタルピ H3=脱気器入口給水エンタルピ とする。However, GB = water supply amount (500T / H) H1 = auxiliary steam enthalpy (700Kcal / H) H2 = deaerator outlet water supply enthalpy H3 = deaerator inlet water supply enthalpy

【0028】次に、600MW級発電プラントにおける
ボイラ装置について、前述の図2におけるB点からC点
までの温度上昇に必要な補助蒸気量(従来例)は、
Next, regarding the boiler device in the 600 MW class power plant, the amount of auxiliary steam (conventional example) required to raise the temperature from point B to point C in FIG.

【0029】[0029]

【数2】 [Equation 2]

【0030】また、従来例における加圧脱気時に、脱気
器内圧力を1.5ata、貯水温度を111℃に保持する
ものとすると、
Further, when the pressure in the deaerator is kept at 1.5 ata and the stored water temperature is kept at 111 ° C. during pressure deaeration in the conventional example,

【0031】[0031]

【数3】 [Equation 3]

【0032】次に、本発明の実施例におけるD点からE
点までの温度上昇に必要な補助蒸気量は、
Next, from point D to E in the embodiment of the present invention.
The amount of auxiliary steam required to raise the temperature to the point is

【0033】[0033]

【数4】 [Equation 4]

【0034】同じく、本発明の実施例(寒冷地)におけ
るF点からG点までの温度上昇については、
Similarly, regarding the temperature rise from point F to point G in the embodiment of the present invention (cold region),

【0035】[0035]

【数5】 [Equation 5]

【0036】以上に示す如く、給水脱気時に必要な補助
蒸気量は、従来の真空脱気時には約18T/H、従来の
加圧脱気時には約70T/H必要であったが、本発明実
施例による真空脱気時には約8T/H、さらに寒冷地プ
ラントでは約2T/Hと大幅な補助蒸気量の低減が可能
となる。
As described above, the amount of auxiliary steam required for degassing feed water was about 18 T / H for conventional vacuum degassing and about 70 T / H for conventional pressurized degassing. According to the example, it is possible to significantly reduce the amount of auxiliary steam at about 8 T / H during vacuum degassing and about 2 T / H at a cold district plant.

【0037】このようにして、本実施例においては、 (イ)起動時脱気器での脱気運転において、脱気器の真
空上昇を図ることができるので、従来の必要補助蒸気量
に対し50%以上の節約及び所内ボイラ容量が低減可能
となり、600MW級プラントで真空脱気時従来約18
T/Hの補助蒸気が必要であったが、本発明実施例によ
り2〜8T/Hに低減できる。 (ロ)本実施例によれば、効率のよい給水蒸気運転が可
能となるので、従来初期のプレボイラクリーンアップ
は、約10日間要していたが、3〜4日のクリーンアッ
プ時間の短縮ができ、起動時間及び起動損失が低減可能
となる。 (ハ)上記1,2に関し、効率よく給水中の溶存酸素量
を低減できるので、水質向上によるプラントの信頼性が
確保できる。 という実用的な効果を奏する。
In this way, in this embodiment, (a) the vacuum of the deaerator can be increased in the deaerating operation at the start-up deaerator, so that the amount of auxiliary steam required in the conventional case It is possible to save more than 50% and reduce the boiler capacity in the plant. It is about 18 when the vacuum deaeration is performed in the 600MW class plant
Although T / H auxiliary steam was required, it can be reduced to 2 to 8 T / H by the embodiment of the present invention. (B) According to this embodiment, since efficient steam supply operation can be performed, the conventional pre-boiler cleanup required about 10 days, but the cleanup time was shortened in 3 to 4 days. The startup time and startup loss can be reduced. (C) With regard to the above 1 and 2, since the amount of dissolved oxygen in the feed water can be efficiently reduced, the reliability of the plant can be secured by improving the water quality. It has a practical effect.

【0038】図5は前述した実施例に係る脱気の部分的
応用例を示す図である。本応用例は、図4に示した従来
形の脱気装置を用いて行ったもので、起動操作時に起動
用ベント管16の止弁17を開く。これにより、脱気器
1内の圧力を低下させて蒸気の比容積を増大させ、蒸気
効率の向上、及び補助蒸気所要量の節減ができる。
FIG. 5 is a diagram showing a partial application example of deaeration according to the above-mentioned embodiment. This application example was performed by using the conventional degassing device shown in FIG. 4, and the stop valve 17 of the starting vent pipe 16 was opened during the starting operation. As a result, the pressure inside the deaerator 1 can be reduced to increase the specific volume of steam, improving steam efficiency and reducing the amount of auxiliary steam required.

【0039】図6は、図1と異なる実施例の装置を示
す。原理的には、図1の実施例と同じであるが、給水連
絡管10′に開口を設けていない。起動用ベント管16
の止弁17を開し、補助蒸気を貯水タンク12下部に導
入することで、効果的な貯水の温度上昇及び、脱気作用
により脱気時間の短縮,補助蒸気量の低減を図ることが
できる。
FIG. 6 shows an apparatus of an embodiment different from that of FIG. In principle, this is the same as the embodiment of FIG. 1, but the water supply connecting pipe 10 'is not provided with an opening. Starting vent pipe 16
By opening the stop valve 17 and introducing the auxiliary steam to the lower part of the water storage tank 12, it is possible to effectively raise the temperature of the stored water and shorten the deaeration time and the amount of the auxiliary steam by the deaeration action. .

【0040】図7は更に異なる実施例の装置を示す。本
例が図1と異なるところは、水面下の蒸気ノズル22の
他に、水面上の蒸気ノズル22′も併設してある点であ
る。このように構成すると、貯水タンク12内の水面の
変動に対応し易いという効果が有る。
FIG. 7 shows a device according to a further different embodiment. The difference of this example from FIG. 1 is that, in addition to the steam nozzle 22 below the water surface, a steam nozzle 22 ′ above the water surface is also provided. With such a configuration, there is an effect that it is easy to deal with the fluctuation of the water surface in the water storage tank 12.

【0041】[0041]

【発明の効果】本発明によれば、(i)起動時の脱気及
びクリーンアップ時間の短縮化、および、(ii)補助蒸
気量の節約及び所内ボイラの設備費低減を図ることがで
き、給水の水質向上によってプラントの信頼性向上およ
び耐久性向上に貢献するところ多大である。
According to the present invention, it is possible to (i) reduce the degassing and cleanup time at startup, and (ii) save the amount of auxiliary steam and reduce the equipment cost of the in-house boiler, It is a great contribution to improve the reliability and durability of the plant by improving the water quality of the water supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る給水脱気装置の構成図
である。
FIG. 1 is a configuration diagram of a feed water deaerator according to an embodiment of the present invention.

【図2】溶存酸素量及び真空度と温度との関係を示すグ
ラフである。
FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen, the degree of vacuum, and the temperature.

【図3】脱気器の構造及び脱気作用を示す為の断面図で
ある。
FIG. 3 is a cross-sectional view showing a structure of a deaerator and a deaerating action.

【図4】従来の起動時の脱気状態の説明図である。FIG. 4 is an explanatory diagram of a conventional degassing state at startup.

【図5】部分的応用例の説明図である。FIG. 5 is an explanatory diagram of a partial application example.

【図6】本発明の第2実施例に係る給水脱気装置の構成
図である。
FIG. 6 is a configuration diagram of a feed water deaerator according to a second embodiment of the present invention.

【図7】本発明の第3実施例に係る給水脱気装置の構成
図である。
FIG. 7 is a configuration diagram of a feed water deaerator according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…脱気室、2…スプレー室、3…分配箱、4…分配ト
レイ、5…脱気トレイ、6…給水入口管、7…ベント
管、8…スプレーバルブ、9…蒸気入口、10,10′
…給水連絡管、11…均圧連絡管、12…貯水タンク、
13…分配管、14…ベント管、14a…オリフィス、
15…ベント管止弁、16…起動用ベント管、17…起
動用ベント管止弁、18…加熱蒸気管、19…止弁(第
1弁)、20…起動用加熱蒸気管、21,21′…止
弁、22,22′…蒸気ノズル。
1 ... Deaeration chamber, 2 ... Spray chamber, 3 ... Distribution box, 4 ... Distribution tray, 5 ... Deaeration tray, 6 ... Water supply inlet pipe, 7 ... Vent pipe, 8 ... Spray valve, 9 ... Steam inlet, 10, 10 '
… Water supply connection pipe, 11… Pressure equalization connection pipe, 12… Water tank,
13 ... Distribution pipe, 14 ... Vent pipe, 14a ... Orifice,
15 ... Vent pipe stop valve, 16 ... Starting vent pipe, 17 ... Starting vent pipe stop valve, 18 ... Heating steam pipe, 19 ... Stop valve (first valve), 20 ... Starting heating steam pipe 21,21 '... stop valve, 22, 22' ... steam nozzle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 義邦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshikuni Oshima 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd., Hitachi Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 給水を脱気する脱気室と、該脱気室の下
方に設置され脱気された給水を貯水する貯水タンクと、
前記脱気室と前記貯水タンクとを連通し下端部が前記貯
水タンク内の水面下に達する給水連絡管とを備える給水
脱気装置において、前記貯水タンク内の水面下に設置し
た蒸気噴射ノズルと、加熱蒸気を前記脱気室に供給する
第1加熱蒸気管と、前記加熱蒸気を前記蒸気噴射ノズル
に供給する第2加熱蒸気管と、前記脱気室と復水器とを
連通する起動用ベント管と、前記第1加熱蒸気管の途中
に設けられボイラ起動時には閉弁される第1弁と、前記
第2加熱蒸気管の途中に設けられボイラ起動時には開弁
される第2弁と、前記起動用ベント管の途中に設けられ
ボイラ起動時には開弁される第3弁とを備えることを特
徴とする給水脱気装置。
1. A deaeration chamber for deaerating the water supply, and a water storage tank installed below the deaeration chamber for storing the deaerated water supply.
In a water supply deaerator comprising a water supply communication pipe that connects the degassing chamber and the water storage tank and a lower end portion thereof reaches below the water surface in the water storage tank, a steam injection nozzle installed below the water surface in the water storage tank. A first heating steam pipe for supplying heating steam to the deaeration chamber, a second heating steam pipe for supplying the heating steam to the steam injection nozzle, and a starter for connecting the deaeration chamber and the condenser A vent pipe, a first valve provided in the middle of the first heating steam pipe and closed when the boiler is started, and a second valve provided in the middle of the second heating steam pipe and opened when the boiler is started, A feed water deaeration device comprising: a third valve provided in the middle of the start-up vent pipe and opened when the boiler is started up.
JP11473193A 1993-05-17 1993-05-17 Water supply deaerator Expired - Lifetime JPH07102349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11473193A JPH07102349B2 (en) 1993-05-17 1993-05-17 Water supply deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11473193A JPH07102349B2 (en) 1993-05-17 1993-05-17 Water supply deaerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8268185A Division JPS61242683A (en) 1985-04-19 1985-04-19 Method and device for deaerating feed water

Publications (2)

Publication Number Publication Date
JPH06126270A true JPH06126270A (en) 1994-05-10
JPH07102349B2 JPH07102349B2 (en) 1995-11-08

Family

ID=14645221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11473193A Expired - Lifetime JPH07102349B2 (en) 1993-05-17 1993-05-17 Water supply deaerator

Country Status (1)

Country Link
JP (1) JPH07102349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504803A (en) * 2007-11-30 2011-02-17 テルモキミカ・インプランテイ・エツセ・エルレ・エルレ Deaerator
JP2011058654A (en) * 2009-09-07 2011-03-24 Toshiba Corp Device and method for suppressing thermal deformation of deaerator
JP2011125838A (en) * 2009-12-15 2011-06-30 Eonex:Kk Method for selectively separating methane gas from hot spring water and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504803A (en) * 2007-11-30 2011-02-17 テルモキミカ・インプランテイ・エツセ・エルレ・エルレ Deaerator
JP2011058654A (en) * 2009-09-07 2011-03-24 Toshiba Corp Device and method for suppressing thermal deformation of deaerator
JP2011125838A (en) * 2009-12-15 2011-06-30 Eonex:Kk Method for selectively separating methane gas from hot spring water and apparatus

Also Published As

Publication number Publication date
JPH07102349B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
CA2060094C (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
US4896500A (en) Method and apparatus for operating a combined cycle power plant having a defective deaerator
CA1240159A (en) Process for purifying and deaerating the condensate/feed water in the circulation system of a power-generating plant
US7074259B2 (en) Method and apparatus for thermal degassing
JPH06126270A (en) Feed water deaerator
CN102650218B (en) Turbine generator matched with evaporative hydrogen cooling system
RU9016U1 (en) HEAT POWER PLANT
CN107238072B (en) Regenerative vacuum deaerator
CN206207395U (en) Using the boiler feedwater backheat deaerating type of cycles of the hybrid many source of the gas heaters of low pressure
JPH024352B2 (en)
CN106322355B (en) The hybrid low-pressure heater of power station multi-steam source and its heating deoxygenation feed water system of boiler
JPH10169412A (en) Condenser
JPH0921503A (en) Plant for heating and deaerating supply water
WO2023180588A2 (en) Deaerator systems and methods of servicing of deaerator
FR2660988A1 (en) Method and device for drawing off condensate from a heating installation operating on high-pressure steam
KR200155620Y1 (en) Expansion handling device of heat coolant
JPH0255715B2 (en)
JP3592745B2 (en) Condenser with deaerator
RU2002993C1 (en) Degasification plant
SU1650925A1 (en) Steam-turbine plant
JP5349220B2 (en) Apparatus and method for suppressing thermal deformation of deaerator
JPH0579776A (en) Condenser
JPS58217707A (en) Steam turbine plant
JPH06269768A (en) Deaerator
JPS6241585A (en) Deaerator of condenser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term