JPS6188569A - Solar cell device - Google Patents

Solar cell device

Info

Publication number
JPS6188569A
JPS6188569A JP59209212A JP20921284A JPS6188569A JP S6188569 A JPS6188569 A JP S6188569A JP 59209212 A JP59209212 A JP 59209212A JP 20921284 A JP20921284 A JP 20921284A JP S6188569 A JPS6188569 A JP S6188569A
Authority
JP
Japan
Prior art keywords
electrode layer
transparent electrode
solar cell
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209212A
Other languages
Japanese (ja)
Inventor
Shinji Nishiura
西浦 真治
Takeshige Ichimura
市村 剛重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59209212A priority Critical patent/JPS6188569A/en
Priority to US06/780,093 priority patent/US4954181A/en
Publication of JPS6188569A publication Critical patent/JPS6188569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture a solar cell device with high yield by crystallizing a semiconductor thin-film interposing in a section where one region in one electrode layer is superposed to the edge section of the other electrode layer on an adjacent region. CONSTITUTION:Transparent electrode patterns 21-24 are formed onto a glass substrate 1. An a-Si layer 3 is shaped. The a-Si layers 3 are irradiated by YAG laser beams at the end sections 61-64 of the transparent electrode patterns, and the resistance of the a-Si layers 3 is lowered partially through a changed into a polycrystal. A metallic electrode layer 4 is shaped through an electron beam method. The metallic electrode layer 4 is patterned to form electrode patterns 41-45. The electrode patterns 41-45 and the transparent electrode patterns 21-24 are constituted so as to be superposed while holding the regions 61-64 of a-Si changed into the polycrystals. Accordingly, the transparent electrode such as one 21 and the metallic electrode such as one 42 are connected through the section turned into the polycrystal such as one 61. The electrodes 22-23, 43-45 are each connected by 62-64 through the same method, and several unit element is connected.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、光起電力発生部に非晶質薄膜半導体を用いた
太陽電池素子を直列接続して成る太陽電池装置に関する
The present invention relates to a solar cell device in which solar cell elements using an amorphous thin film semiconductor are connected in series to a photovoltaic power generating section.

【従来技術とその問題点】[Prior art and its problems]

シランガスのグロー放電分解により形成されるアモルフ
ァスシリコン(以下a−S+)は気相成長であるため原
理的に大面積化が容易であり、低コスト太陽電池用材料
として期待されている。太陽電池から発電した電力を効
率よく取り出すためには、太陽電池装置の構造を例えば
第2図に示すような形状とし、単位素子が直列接続され
ている構造が望ましい、ガラス基板等の透明絶縁基板1
の上に透明電極21,22,23,24.、、、、を短
冊状に形成する。この透明電極は、ITO(インジウム
錫酸化物) 、 SnO□(M化錫)を電子ビーム、ス
パッタリング、熱CVD等によりガラス5[1の全面に
付着させ、レーザパターニング法を用いて短冊状に形成
したものである。 同様の方法でa −5iN31.32.33,34.、
.1.金属電極M 41,42.43.44.、、、、
を形成する。このとき透明電極層と金属電極層が電気的
に接続するように、透明電極、a−SIJI、金属電極
の各パターンを図のように少しずらせて21と42.2
2と43.23と441111.をそれぞれ接触させる
。 a−SiN31.32は透明電極に近い側から、例
えば100人の厚さのpN。 0.5μmの厚さのノンドープ屡、500人の厚さのn
JiJがそれぞれ![された構造である。 しかし、レーザバターニングを行う場合、バタ−ン精度
を上げる上で問題がある。第3図はその例を示し、パタ
ーン状の透明電極21,22,23,24.、、、。 の上にa−5iN3を全面に形成する。このa−Si層
をパターニングする場合、例えば位1Z51,52,5
3゜54、、、、をレーザ光で照射することにより蒸発
させるのであるが、この蒸発させる部分の下地が段差部
であるためa −5!Nの膜厚が必ずしも一定でない、
このために、a−5lを蒸発させてしかも透明電極を損
わない条件を見出すことは非常に困難である。もしa−
5iと共に下の透明電極が除去されてしまうと、直列接
続は不可能となる。 同じことがパターン化されたa−5iFJO上に形成し
た金属電極をパターニングする際にもいえる。 いずれにしろ下地が段差を有し、それが上部の薄膜層の
膜厚に影響を与える第2図のような構造では、パターニ
ングを精度よく行うのは難しい、このことはレーザ以外
の方法でパターニングする際にも当てはまる。
Amorphous silicon (hereinafter referred to as a-S+) formed by glow discharge decomposition of silane gas is grown in a vapor phase, so it is theoretically easy to grow into a large area, and is expected to be a material for low-cost solar cells. In order to efficiently extract the power generated from solar cells, it is desirable that the structure of the solar cell device be shaped as shown in Figure 2, with unit elements connected in series, using a transparent insulating substrate such as a glass substrate. 1
Transparent electrodes 21, 22, 23, 24 . , , , is formed into a rectangular shape. This transparent electrode is made by attaching ITO (indium tin oxide) and SnO□ (M tin oxide) to the entire surface of the glass 5 [1] by electron beam, sputtering, thermal CVD, etc., and forming it into a strip shape using a laser patterning method. This is what I did. In a similar manner, a-5iN31.32.33,34. ,
.. 1. Metal electrode M 41, 42.43.44. ,,,,
form. At this time, in order to electrically connect the transparent electrode layer and the metal electrode layer, the patterns of the transparent electrode, a-SIJI, and metal electrode are slightly shifted as shown in the figure.
2 and 43.23 and 441111. touch each other. The a-SiN31.32 has a pN thickness of, for example, 100 nm from the side close to the transparent electrode. 0.5 μm thick non-doped, 500 μm thick n
JiJ each! [This is the structure. However, when performing laser patterning, there is a problem in improving pattern accuracy. FIG. 3 shows an example of this, with patterned transparent electrodes 21, 22, 23, 24 . ,,,. A-5iN3 is formed on the entire surface. When patterning this a-Si layer, for example, 1Z51, 52, 5
3°54, , , is evaporated by irradiating it with a laser beam, but since the base of this evaporated part is a stepped part, a -5! The N film thickness is not necessarily constant.
For this reason, it is extremely difficult to find conditions that allow a-5l to evaporate without damaging the transparent electrode. If a-
If the lower transparent electrode is removed together with 5i, series connection becomes impossible. The same holds true when patterning metal electrodes formed on patterned a-5i FJO. In any case, it is difficult to perform patterning with high precision in a structure like the one shown in Figure 2, where the underlying layer has steps that affect the thickness of the upper thin film layer. The same applies when doing.

【発明の目的】[Purpose of the invention]

本発明は、上述のようなa−5iJHのパターニングの
際に下層の電極層のパターンに損傷を与えて太陽電池素
子の直列接続を不可能にする問題を解決して、歩留りよ
く製造できる直列接続型太陽電池装置を提供することを
目的とする。
The present invention solves the problem of damaging the pattern of the lower electrode layer during patterning of a-5iJH as described above, making it impossible to connect solar cell elements in series, and the series connection can be manufactured with high yield. The purpose is to provide a type solar cell device.

【発明の要点】[Key points of the invention]

本発明による太陽電池装置は、絶縁基板上に非晶質半導
体薄膜がそれぞれ分割された領域からなる透明電極層お
よび金属電極層と共に積層され、透明電極層および金属
T4 Fii FJの分割部は互いにずらされた位置に
あり、一方の電極層の一つの領域が隣接領域の上の他方
の電極層の縁部と重なっている部分に介在する半導体3
aが結晶化されていることにより、透明電極、非晶質半
導体薄膜、金属電極からなる太陽電池素子の接続が結晶
質半導体によって行われ、半導体薄膜のパターニングの
必要が省かれるので上記の目的が達成される。
In the solar cell device according to the present invention, an amorphous semiconductor thin film is laminated on an insulating substrate together with a transparent electrode layer and a metal electrode layer each consisting of divided regions, and the divided portions of the transparent electrode layer and the metal T4 Fii FJ are staggered from each other. The semiconductor 3 is located at a position where one region of one electrode layer overlaps the edge of the other electrode layer over an adjacent region.
By crystallizing a, the solar cell element consisting of a transparent electrode, an amorphous semiconductor thin film, and a metal electrode is connected by the crystalline semiconductor, and the need for patterning the semiconductor thin film is omitted, so that the above purpose is achieved. achieved.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を、第4図(al〜fd+は
その製造工程をそれぞれ示し、第2.第3図と共に共通
の部分には同一の符号が付されている。透明絶縁基板1
の上にはa−3i層3をはさんで透明電極のパターン2
1.22,23,24.、、、、と金属電極のパターン
41,42,43.44が一部重なり合うように形成さ
れている。この重なり合っている部分においてa−5i
N3は多結晶化されて斜線で示した低抵抗領域6L62
,63,64..、、、を有する。このような構造は第
4図(al〜(d+に示す手順で製造される。 ガラス基板1の上に、電子ビーム、熱CVD等の方法で
I T O、5n02又はI T O/ S、nOtの
複合材料からなる膜を1000人〜7000人の厚さで
一面に形成し、この面に約5oIIII+の径に絞った
YAGレーザビームを照射してスキャンすることにより
、第4図(alに示す透明電極パターン2L22,23
,24.、、、。 を形成する。このときの出力パワーとしては2×10’
 W/−が適当である0次に(1))図に示すようにa
−s+ff13を形成する。a−3iJ33は上述のよ
うなp −i −n jn造を有する。p5はBzHh
/ 5iH4−1%の側合で導入し、グロー放電分解す
ることにより形成する。IJi5はSiH,の分解によ
り、nJ3はPR,/5iH−−1%の混合ガスの分解
により形成する0次いで透明電極パターンの端部61,
62,63,64゜110.においてa−5iF13に
YAGレーザビームを照射し、多結晶化させてa −S
i層を一部低抵抗化する。この照射パワーとしては数M
W/cdが適当である。多少出力が大きくても小さくて
も問題はない、a−Si層3が蒸発して無くなることの
ない出力密度にとどめればよいので、レーザビームの制
御は比較的容易である。 次に第4図fclに示すように電子ビーム法によって金
属電極層4を形成させる。この金属としてAI。 τi、Ta+Cu+旧、Ag、ステンレス鋼などの金属
が単層または積層として用いられる。膜厚は、全体で0
.2μ鵡〜1.crmに形成される。さらに第4図(司
に示すように、金属電極層4のパターニングを行い、電
極パターン41.42,43,44.45.、、、を形
成する。電極パターンと透明電極パターンは、多結晶化
されたa −SLの領域61,62.63,64.、、
、、をはさんで重ね合わさるように構成される。こうす
ることによって、例えば多結晶化部分61を通して透明
電極21と金llTi電?!i42が接続されることに
なる。同様のやり方で電極22,43;23.44;2
4.45;がそれぞれ62,63.64811.によっ
て接続され、各単位素子が直列接続されることになる。 金属電極パターニングのためのレーザ出力は1〜5 X
I(1’ W/csl程度が用いられる。この状態でa
−Si層に損傷を与えることなくパターンが形成できる
。 こうして形成された10ロ角ガラス基板上の10直列の
素子から成る太陽電池装置において、Voc =8、8
 V、 Isc =130mA、FF−0,58,出力
−660+w)iの特性を得た。この方法でパターニン
グを行うと透明電極間隙50μ鴎、金属電極間隙50μ
m、金属電極と透明電極の重なり部分約100μ楯とす
ることができ、無効面積部分が単位素子当たり0.3m
m程度となるので、全面積の93%程度を有効面積とす
ることができた。 さらに第5図に示すように、レーザパワーの出力をあげ
てa−SiF13の一部又は全部をパターニングの際に
除去しても特性上問題はなかった。またこの太陽電池を
グロー放電炉に入れてCH,で土砂ないし数土砂エンチ
ングを行うことにより、フィルファクタが0.65まで
改善され、それに伴い出力が約10%向上した。このこ
とはa−5iJi3の一部特に金属電極のパターニング
の際分割部の下に形成された低抵抗部分が除去され、リ
ーク電流が減少した結果によるものであると考えられる
FIG. 1 shows an embodiment of the present invention, and FIG. 4 (al to fd+ indicate the manufacturing process, respectively, and the same parts as in FIGS. 2 and 3 are given the same reference numerals. Transparent insulation Board 1
A-3i layer 3 is sandwiched on top of the transparent electrode pattern 2.
1.22, 23, 24. , , and metal electrode patterns 41, 42, 43, and 44 are formed so as to partially overlap. a-5i in this overlapping part
N3 is a polycrystalline low resistance region 6L62 indicated by diagonal lines.
, 63, 64. .. , , has. Such a structure is manufactured by the procedure shown in FIGS. 4(a-1 to d+). By forming a film made of a composite material with a thickness of 1,000 to 7,000 mm on one surface, and scanning this surface by irradiating a YAG laser beam focused to a diameter of about 5oIII+, Transparent electrode pattern 2L22, 23
,24. ,,,. form. The output power at this time is 2×10'
W/- is appropriate for the 0th order (1)) As shown in the figure, a
-s+ff13 is formed. a-3iJ33 has a p-i-n jn structure as described above. p5 is BzHh
/5iH4-1% is introduced and formed by glow discharge decomposition. IJi5 is formed by the decomposition of SiH, and nJ3 is formed by the decomposition of PR, /5iH--1% of the mixed gas.
62,63,64°110. A-5iF13 was irradiated with a YAG laser beam to polycrystallize it and form a-S
Partially lower the resistance of the i-layer. This irradiation power is several M
W/cd is appropriate. There is no problem whether the output is somewhat large or small; it is sufficient to keep the output density at a level that does not cause the a-Si layer 3 to evaporate and disappear, so controlling the laser beam is relatively easy. Next, as shown in FIG. 4fcl, a metal electrode layer 4 is formed by an electron beam method. AI as this metal. Metals such as τi, Ta+Cu+old, Ag, and stainless steel are used as a single layer or a laminated layer. The total film thickness is 0.
.. 2 μm ~ 1. Formed in crm. Furthermore, as shown in FIG. 4 (Tsukasa), the metal electrode layer 4 is patterned to form electrode patterns 41, 42, 43, 44, 45, . Areas 61, 62, 63, 64., of a-SL
, , are arranged so that they are superimposed on each other. By doing this, for example, the transparent electrode 21 and the gold/Ti electrode can be connected through the polycrystalline portion 61. ! i42 will be connected. In a similar manner electrodes 22, 43; 23, 44; 2
4.45; are respectively 62, 63.64811. The unit elements are connected in series. Laser power for metal electrode patterning is 1-5X
I (about 1' W/csl is used. In this state, a
- Patterns can be formed without damaging the Si layer. In the thus formed solar cell device consisting of 10 series elements on a 10 square glass substrate, Voc = 8,8
The characteristics of V, Isc = 130 mA, FF - 0, 58, output - 660 + w)i were obtained. When patterning is performed using this method, the gap between transparent electrodes is 50μ, and the gap between metal electrodes is 50μ.
m, the overlapping area between the metal electrode and the transparent electrode can be approximately 100μ shield, and the effective area is 0.3m per unit element.
Since the area is approximately 93% of the total area, the effective area can be approximately 93% of the total area. Furthermore, as shown in FIG. 5, there was no problem in terms of characteristics even when the laser power was increased to remove part or all of the a-SiF 13 during patterning. In addition, by placing this solar cell in a glow discharge furnace and subjecting it to sand or sand enching with CH, the fill factor was improved to 0.65, and the output was accordingly improved by about 10%. This is considered to be due to the fact that part of the a-5iJi3, particularly the low resistance portion formed under the divided portion during patterning of the metal electrode, was removed, resulting in a reduction in leakage current.

【発明の効果】【Effect of the invention】

本発明は複数の太陽電池素子が直列接続された太陽電池
装置を、分割パターニングされた透明電極、金属電極と
その間に挟まれた分割されない非晶質半導体薄膜とから
構成し、素子間の接続は半導体薄膜の結晶化された部分
によって行うものである。従って非晶買手4体薄膜のパ
ターニングが必要でなくなり、精度の高いパターニング
も要求されな(なって製造歩留りが向上するほか、発電
に対する無効面積部分の減少も可能になる。 本発明は透明絶縁基板上に形成される太陽電池装置に限
らず、不透明絶縁基板上に形成され、表面に透明電極を
有する太陽電池装置にも適用できる。またパターニング
をエツチングで行う場合にも適用可能である。
The present invention comprises a solar cell device in which a plurality of solar cell elements are connected in series, consisting of transparent electrodes patterned into segments, a metal electrode, and an undivided amorphous semiconductor thin film sandwiched between them, and the connections between the elements are This is done using a crystallized portion of a semiconductor thin film. Therefore, patterning of the amorphous 4-body thin film is no longer required, and highly accurate patterning is not required (this not only improves manufacturing yield but also reduces the area that is ineffective for power generation. The present invention is applicable not only to solar cell devices formed on an opaque insulating substrate but also to solar cell devices formed on an opaque insulating substrate and having a transparent electrode on the surface.It is also applicable when patterning is performed by etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の一部断面図、第2図は従来
例の部分断面図、第3121は第2図の太陽電池装置の
製造工程中の部分断面図、第4図は第1図の太陽電池装
置の製造工程を順次示す断面図、第5図は別の実施例の
一部断面図である。 1:透明絶縁基板、21.22.23.24 :透明電
極、3 : a −s+5、 4:金属t Pj、 H
141,42,43,44゜45;全屈TL極、61.
62.63.64 :多結晶化部分。 ]ぞ(°月14東羽暴′扱  第 1  しd第2図 第3図
FIG. 1 is a partial cross-sectional view of an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of a conventional example, FIG. 3121 is a partial cross-sectional view of the solar cell device in FIG. 2 during the manufacturing process, and FIG. FIG. 1 is a cross-sectional view sequentially showing the manufacturing process of the solar cell device, and FIG. 5 is a partial cross-sectional view of another embodiment. 1: Transparent insulating substrate, 21.22.23.24: Transparent electrode, 3: a-s+5, 4: Metal tPj, H
141, 42, 43, 44° 45; Total flexion TL pole, 61.
62.63.64: Polycrystalline portion. ] (°Mon. 14 Toba assault' treatment 1st 2nd figure 2 figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁基板上に非晶質半導体薄膜がそれぞれ分割され
た領域からなる透明電極層および金属電極層と共に積層
され、透明電極層および金属電極層の分割部は互いにず
らされた位置にあり、一方の電極層の一つの領域が隣接
領域の上の他方の電極層の縁部と重なっている部分に介
在する半導体薄膜が結晶化されたことを特徴とする太陽
電池装置。
1) An amorphous semiconductor thin film is laminated on an insulating substrate together with a transparent electrode layer and a metal electrode layer each consisting of a divided region, and the divided portions of the transparent electrode layer and the metal electrode layer are located at offset positions from each other, while A solar cell device characterized in that a semiconductor thin film interposed in a portion where one region of an electrode layer overlaps an edge of the other electrode layer on an adjacent region is crystallized.
JP59209212A 1984-10-05 1984-10-05 Solar cell device Pending JPS6188569A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59209212A JPS6188569A (en) 1984-10-05 1984-10-05 Solar cell device
US06/780,093 US4954181A (en) 1984-10-05 1985-09-25 Solar cell module and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209212A JPS6188569A (en) 1984-10-05 1984-10-05 Solar cell device

Publications (1)

Publication Number Publication Date
JPS6188569A true JPS6188569A (en) 1986-05-06

Family

ID=16569204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209212A Pending JPS6188569A (en) 1984-10-05 1984-10-05 Solar cell device

Country Status (1)

Country Link
JP (1) JPS6188569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086522A1 (en) * 2006-01-30 2007-08-02 Honda Motor Co., Ltd. Solar cell and manufacturing method thereof
JP2007201304A (en) * 2006-01-30 2007-08-09 Honda Motor Co Ltd Solar cell and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086522A1 (en) * 2006-01-30 2007-08-02 Honda Motor Co., Ltd. Solar cell and manufacturing method thereof
JP2007201304A (en) * 2006-01-30 2007-08-09 Honda Motor Co Ltd Solar cell and its manufacturing method
JP2007201302A (en) * 2006-01-30 2007-08-09 Honda Motor Co Ltd Solar cell and its manufacturing method

Similar Documents

Publication Publication Date Title
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US5935344A (en) Photovoltaic element and manufacturing method thereof
US5155051A (en) Method of manufacturing photovoltaic device
US4954181A (en) Solar cell module and method of manufacture
JPS6188569A (en) Solar cell device
US5238879A (en) Method for the production of polycrystalline layers having granular crystalline structure for thin-film semiconductor components such as solar cells
JP2586654B2 (en) Manufacturing method of thin film solar cell
JPS622713B2 (en)
JPH0476227B2 (en)
JPS62205668A (en) Manufacture of integrated type solar battery
JPS6191971A (en) Manufacture of solar battery device
JPH07105511B2 (en) Photovoltaic device manufacturing method
KR940005754B1 (en) Making method of amorphous silicon solar cell
JP3505201B2 (en) Method for manufacturing photovoltaic device
JPS6261376A (en) Solar battery
JPH0551190B2 (en)
JPS6095979A (en) Production of photoelectric conversion semiconductor device
JPH0758351A (en) Manufacture of thin film solar cell
JPH055194B2 (en)
JPH0415631B2 (en)
JPH065779B2 (en) Method for manufacturing solar cell device
JP2000049371A (en) Photovoltaic device and its manufacture
JPH0531315B2 (en)
JP2000208787A (en) Solar battery
JPS60231372A (en) Manufacture of semiconductor device