JPS6187887A - Production of joined ion exchange membrane-electrode body - Google Patents

Production of joined ion exchange membrane-electrode body

Info

Publication number
JPS6187887A
JPS6187887A JP59209179A JP20917984A JPS6187887A JP S6187887 A JPS6187887 A JP S6187887A JP 59209179 A JP59209179 A JP 59209179A JP 20917984 A JP20917984 A JP 20917984A JP S6187887 A JPS6187887 A JP S6187887A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
electrode
resin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59209179A
Other languages
Japanese (ja)
Inventor
Yuko Fujita
藤田 雄耕
Ikuo Tanigawa
谷川 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP59209179A priority Critical patent/JPS6187887A/en
Publication of JPS6187887A publication Critical patent/JPS6187887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To form a cathode having the characteristic excellent in the entire current density region by using a specific ion exchange resin as a starting material for the ion exchange resin to be incorporated into an electrode to be joined to an ion exchange resin membrane. CONSTITUTION:A mixture composed of an org. solvent soln. or a solvent soln. mixture of an org. solvent and water of the ion exchange resin powder consisting basically of electrode catalyst powder and copolymer resin powder of styrene and divinyl benzene and the ion exchange resin consisting basically of perfluorocarbon resin and a fluororesin binder is used as to starting material. The electrode consisting of the mixture composed of the ion exchange resin powder consisting basically of the electrode catalyst powder and the copolymer resin of styrene and divinyl benzene, the ion exchange resin consisting basically of the perfluorocarbon resin and fluorine resin is joined to one or both surfaces of the ion exchange resin consisting basically of the perfluorocarbon resin.

Description

【発明の詳細な説明】 a業上の利用分野 本発明は、イオン交換樹脂模−電極接合体の製造法に関
するものである。さらに詳しくは、本発明は、燃料電池
、水電解槽1食塩電解槽、塩酸電解槽、電気化学的酸素
弁l111装置、電気化学的水素分離装置、水電解式湿
度センサー、有機化合物の電解酸化還元装置等の各種電
気化学装置に用いられるイオン交換樹脂膜−電極接合体
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an ion exchange resin model-electrode assembly. More specifically, the present invention relates to a fuel cell, a water electrolyzer, a salt electrolyzer, a hydrochloric acid electrolyzer, an electrochemical oxygen valve l111 device, an electrochemical hydrogen separation device, a water electrolysis type humidity sensor, and an electrolytic redox of organic compounds. The present invention relates to a method for manufacturing an ion exchange resin membrane-electrode assembly used in various electrochemical devices such as devices.

従来の技術 イオン交換樹脂膜を固体電wi質とし、これに電極を一
体に接合した電気化学装置としてすでに燃料電池(例え
ばアメリカ特許3134697号)、水電解槽(例えば
J、 S、 Bone 、 Proceedings 
of14th  Annual power  5ou
rces  Conferencc 。
Conventional technology Electrochemical devices in which an ion exchange resin membrane is used as a solid electrolyte and electrodes are integrally bonded to it have already been used in fuel cells (for example, U.S. Pat. No. 3,134,697) and water electrolyzers (for example, J, S, Bone, Proceedings).
of14th Annual power 5ou
rces Conferencc.

p62〜G4 (1960) ) 、ハロゲン化物の電
解槽(例えば特開昭54−107493号)、電気化学
的酸累分が1装置(例えば特公昭43−25001号、
あるいは特公昭5G−33979月)、電気化学的水素
弁H1装置(例えば3tanley  H,Lange
r and Robert G、  Haldeman
 、 5cience、 Vol 142. No 、
 3587 (1963) )および水電解式湿度セン
サー(例えば竹中啓恭。
p62-G4 (1960)), a halide electrolytic cell (e.g., JP-A-54-107493), an electrochemical acid accumulation device having one unit (e.g., JP-B-43-25001,
or Special Publication No. 5G-33979), electrochemical hydrogen valve H1 device (e.g. 3tanley H, Lange
R and Robert G, Haldeman
, 5science, Vol 142. No,
3587 (1963)) and water electrolysis type humidity sensors (e.g. Keiyasu Takenaka.

島養米−1川見洋二、センサ技術、 Vol、 4 N
o 。
Island rice cultivation-1 Yoji Kawami, Sensor technology, Vol. 4 N
o.

5 (1984) )などが提案されている。5 (1984)) have been proposed.

−イオン交換樹脂膜としては、かってはスチレン−ジビ
ニルベンゼン樹脂を母核とし、これにイオン交換基を導
入したものが用いられていたが、近年になって、スルフ
ォン酸基、カルボン酸基あるいは両者をイオン交換基と
するパーフルオロカーボン樹脂が、よりすぐれていると
いう理由から一般的に利用されるようになっている。イ
オン交換基は、燃料電池あるいは水電解槽では、プロト
ン型のものが利゛用され、食塩電解槽ではナトリウムイ
オン型のものが用いられる。
-Ion-exchange resin membranes used to have styrene-divinylbenzene resin as a core and ion-exchange groups introduced into it, but in recent years, sulfonic acid groups, carboxylic acid groups, or both Perfluorocarbon resins with ion-exchange groups are now commonly used because they are superior. In fuel cells or water electrolyzers, proton type ion exchange groups are used, and in salt electrolyzers, sodium ion type ion exchange groups are used.

イオン交換樹脂膜に電極を一体に接合する方法としては
、電極触媒粉末と結着剤としてのフッ素樹脂との混合物
をイオン交換樹脂膜に加熱圧着する方法(例えば、アメ
リカ特許3134697号、特公昭58−15544号
)と電極触媒金属をイオン交換樹脂膜に無電解メッキす
る方法(例えば特開昭55−38934号)とがある。
As a method for integrally bonding an electrode to an ion exchange resin membrane, a method of heat-pressing a mixture of an electrode catalyst powder and a fluororesin as a binder to an ion exchange resin membrane (for example, U.S. Pat. No. 3,134,697, Japanese Patent Publication No. 58 15544) and a method of electroless plating of an electrode catalyst metal onto an ion exchange resin membrane (for example, JP-A-55-38934).

電極は、電気化学装置の種類によって異なるが、大別す
るとガス拡散電極とガス発生電極とに分類することがで
きる。ガス拡散電極の場合には、反応ガスが電極に供給
され、ガス発生電極の場合には、電解反応によってガス
がN極から発生する。
Electrodes vary depending on the type of electrochemical device, but can be broadly classified into gas diffusion electrodes and gas generation electrodes. In the case of gas diffusion electrodes, a reactant gas is supplied to the electrode, and in the case of gas generation electrodes, gas is generated from the north pole by an electrolytic reaction.

ガス拡散電極は燃料電池、電気化学的酸素分!!1を装
置の陰極、電気化学的水素分離装置の11瞳、および酸
素を陰極減極剤とする場合のハロゲン化物電解槽の陰極
に用いられる。ガス発生電極は、水電解槽、電気化学的
酸素力1Ill装置の陽極、電気化学的水素分離B置の
陰極、ハロゲン化物電解槽の陽極などに用いられる。
Gas diffusion electrode is a fuel cell, electrochemical oxygen! ! 1 is used as the cathode of the device, pupil 11 of the electrochemical hydrogen separation device, and the cathode of the halide electrolytic cell when oxygen is used as the cathode depolarizer. The gas generating electrode is used as an anode in a water electrolyzer, an electrochemical oxygen device, a cathode in an electrochemical hydrogen separation B, an anode in a halide electrolyzer, and the like.

一般に、上述のイオン交換樹脂膜に電極を一体に接合す
る方法のうち、加熱圧着法は、ガス拡散電極およびガス
発生電極の双方に適用できるが、無電解メッキ法は、ガ
ス発生電極にしか適用できない。これは、ガス発生電極
の場合には電極の反応サイトが水に濡れてもかまわない
が、ガス拡散電極の場合には、水に濡れる部分と水に濡
れない部分とが共存していないと反応が首尾よく進まな
いからである。つまり、加熱圧着法にお(ブる結む剤と
してのフッ素樹脂の撥水性がガス拡散電極反応に有効に
寄与する。
In general, among the methods for integrally bonding electrodes to the ion exchange resin membrane mentioned above, heat compression bonding can be applied to both gas diffusion electrodes and gas generation electrodes, but electroless plating is only applicable to gas generation electrodes. Can not. In the case of a gas generation electrode, it does not matter if the reaction site of the electrode gets wet with water, but in the case of a gas diffusion electrode, the reaction will occur if the parts that get wet with water and the parts that do not get wet with water coexist. This is because it does not proceed smoothly. In other words, the water repellency of the fluororesin as a binding agent in the heat compression bonding method effectively contributes to the gas diffusion electrode reaction.

電気化学反応は、電極と電解質との界面で起り、その電
気化学セルの電流−電圧特性は、電極と電解質との接触
面積に大きく影響される。電解質が水溶液である場合に
は一般に電極と電解質とが三次元的に接触しているのに
対し、電解質がイオン交換樹脂膜のような固体電解質の
場合には、電極と電@質とが二次元的にしか接触してい
ないので、接触面積が相対的に小さい。この問題を改善
する方法のひとつに、例えば特公昭45−14220@
に記載されているように、固体電解質としてのイオン交
換樹脂膜ど電極との間に、電極触媒粉末とイオン交換樹
脂粉末と結着剤との混合物層を介在させ、固体電解質と
電極との接触面積を増大さじる方法がある。このような
構造では、電極触媒粉末とイオン交換樹脂粉末と結着剤
との混合物層は、電極としてとらえることもできる。何
故なら、この混合物層に隣接するイオン交換樹脂を含ま
ない電極層は必ずしもなくてもすむからである。
An electrochemical reaction occurs at the interface between the electrode and the electrolyte, and the current-voltage characteristics of the electrochemical cell are greatly influenced by the contact area between the electrode and the electrolyte. When the electrolyte is an aqueous solution, the electrode and the electrolyte are generally in three-dimensional contact, whereas when the electrolyte is a solid electrolyte such as an ion exchange resin membrane, the electrode and the electrolyte are in two-dimensional contact. Since the contact is only dimensional, the contact area is relatively small. One of the ways to improve this problem is, for example,
As described in , a layer of a mixture of an electrode catalyst powder, an ion exchange resin powder, and a binder is interposed between an ion exchange resin membrane as a solid electrolyte and an electrode, and the solid electrolyte and the electrode are brought into contact with each other. There are ways to increase the area. In such a structure, the mixture layer of electrode catalyst powder, ion exchange resin powder, and binder can also be regarded as an electrode. This is because an electrode layer not containing an ion exchange resin adjacent to this mixture layer is not necessarily required.

発明が解決しようとする問題点 上述の特公昭45−14220号に記載されているイオ
ン交換樹脂膜と電極との接合面積を増大させる方法は、
基本的考え方としては極めて有効である。
Problems to be Solved by the Invention The method for increasing the bonding area between the ion exchange resin membrane and the electrode described in the above-mentioned Japanese Patent Publication No. 14220/1983 is as follows:
This is extremely effective as a basic concept.

しかしながら、上記文献で用いられているイオン交換樹
脂粉末としてのスルフォン酸化スチレン−ジビニルベン
ゼン共重合体粉末の粒子径が200メツシユ(14μ)
と比較的大きいために、電極触媒粉末と固体電解質との
接触面積がまだ不充分であり、殊に低電流密度領域での
電極過電圧が大きいという問題がみられた。
However, the particle size of the sulfonated styrene-divinylbenzene copolymer powder as the ion exchange resin powder used in the above literature is 200 mesh (14μ).
Since the electrode catalyst powder is relatively large, the contact area between the electrode catalyst powder and the solid electrolyte is still insufficient, and there is a problem that the electrode overvoltage is large, especially in a low current density region.

問題点を解決するための手段 本発明は、電極触媒粉末とスチレン−ジビニルベンゼン
共重合体樹脂を基体とするイオン交換樹脂粉末とパーフ
ルオロカーボン樹脂を基体とするイオン交換樹脂膜の有
I溶媒溶液もしくは有襞溶媒と水との混合溶液溶媒とフ
ッ素樹脂結着剤との混合物から、パーフルオロカーボン
樹脂を基体とするイオン交換樹脂股上に電極を形成する
ことによって、上述の問題点を解決せんとするものであ
る。
Means for Solving the Problems The present invention provides a solution of an electrocatalyst powder, an ion exchange resin powder based on a styrene-divinylbenzene copolymer resin, and an ion exchange resin membrane based on a perfluorocarbon resin, or This method attempts to solve the above-mentioned problems by forming an electrode on an ion exchange resin base made of perfluorocarbon resin from a mixed solution of a pleated solvent and water. It is.

作用 イオン交換樹脂膜への電極の接合方法としては、種々の
方法が適用可能である。第1の方法は、電極触媒粉末と
スチレン−ジビニルベンゼン共重合体樹脂を基体とする
イオン交換樹脂粉末とパーフルオロカーボン樹脂を基体
とするイオン交換樹脂の有機溶媒溶液もしくは右別溶媒
と水との混合溶媒溶液とフッ素樹脂結着剤との混合分散
液から薄膜の電極シートを製作し、溶媒および分散媒を
揮散させたものをイオン交換樹脂膜に加熱圧着するとい
う方法であり、第2の方法は、上述の混合分散液をイオ
ン交換樹脂膜に吹きつけ、溶媒および分散媒を揮散させ
たのら、加熱プレスするという方法であり、第3の方法
は、上述の混合分散液を、イオン交換樹脂膜にスクリー
ン印刷し、加熱ブレスするという方法である。1ノかし
本発明はこれらの方法に限定するものではない。
Various methods can be used to bond the electrode to the functional ion exchange resin membrane. The first method is to mix an electrocatalyst powder, an ion exchange resin powder based on a styrene-divinylbenzene copolymer resin, and an ion exchange resin based on a perfluorocarbon resin in an organic solvent or a different solvent and water. The second method is to fabricate a thin electrode sheet from a mixed dispersion of a solvent solution and a fluororesin binder, and heat and press the sheet after the solvent and dispersion medium have been volatilized to an ion exchange resin membrane. The third method is to spray the above-mentioned mixed dispersion onto an ion-exchange resin membrane, volatilize the solvent and dispersion medium, and then heat press. The method is to screen print the film and heat press it. However, the present invention is not limited to these methods.

パーフルオロカーボン樹脂を基体とするイオン交換樹脂
の代表的なものはパーフルオロカーボンスルフォン酸樹
脂である。パーフルオロカーボンスルフオン酸樹脂の有
機溶媒との親和性はスルフォン酸基のモル数によって変
り、このイオン交換樹脂はその交換容重が大きい領域で
極性の高いIT機溶媒、例えばn−ブタノールに溶解す
ることが知られている(特公昭48−13333号)。
A typical ion exchange resin based on perfluorocarbon resin is perfluorocarbon sulfonic acid resin. The affinity of perfluorocarbon sulfonic acid resin with organic solvents varies depending on the number of moles of sulfonic acid groups, and this ion exchange resin can dissolve in highly polar IT solvents such as n-butanol in the region where its exchange capacity is large. is known (Special Publication No. 48-13333).

このようなイオン交換樹脂溶液は、例えば米国のアルド
リッチケミカフ1社(△1drich  C:、 hc
mical C,ompany)からナフィオン溶液(
NA F I ON  5olution >という名
称で販売されている。ナフィオン溶液は米国のデュポン
社([)u pont )から発売されているナフィオ
ン(NAFION)いう商標のパーフルオロカーボンス
ルフオン酸樹脂の・5%低級脂肪族アルコール(10%
の水を含む)溶液である。
Such an ion exchange resin solution is manufactured by, for example, Aldrich Chemikaf 1 Co., Ltd. (△1drich C:, hc
mical C, company) to Nafion solution (
It is sold under the name NA FI ON 5 solution. Nafion solution is a 5% lower aliphatic alcohol (10%
It is a solution (containing water).

本発明の特徴は、イオン交換樹脂膜に接合される電極に
混入すべきイオン交換樹脂の出発材r4として、スチレ
ン−ジビニルベンゼン共重合体を基体とする粒子径が5
〜74μのイオン交換樹脂粉末とナフィオン溶液の如き
パーフルオロカーボン樹脂系のイオン交換樹脂溶液の双
方を用いる点にある。
The feature of the present invention is that the starting material r4 of the ion exchange resin to be mixed into the electrode to be bonded to the ion exchange resin membrane has a particle diameter of 5.
The point is that both an ion exchange resin powder of ~74μ and an ion exchange resin solution of perfluorocarbon resin such as Nafion solution are used.

電極を形成したのちには、イオン交換樹脂溶液の溶媒が
除去され、パーフルオロカーボン樹脂を基体とするイオ
ン交換樹脂が電極内で非常に微細な形で分散して存在す
る。
After forming the electrode, the solvent of the ion exchange resin solution is removed, and the ion exchange resin based on perfluorocarbon resin exists in a very finely dispersed form within the electrode.

いずれのイオン交換樹脂も電極反応帯の三次元化に寄与
するが、相対的に粒子径の大きなスチレン−ジビニルベ
ンゼン共重合体樹脂を基体とするイオン交換樹脂粉末は
、特に電流密度の大きい領域での過電圧の低減に寄与す
るのに対し、パーフルオロカーボン樹脂を基体とするイ
オン交換樹脂は相対的に電流密度の小さい領域での過電
圧の低減に寄与する。換言すると、両方のイオン交換樹
脂を使用することによって、それぞれ単独の場合の長所
を延ばし、欠点を補って、全電流密度領域での電極特性
が大幅に改善される。これはスチレン−ジビニルベンゼ
ン共重合体樹脂を基体とするイオン交換樹脂粉末は、そ
の粒子径が相対的に大きいために、造孔剤どしての作用
を果たし、そのために濃度過電圧の低下につながるのに
対し、パーフルオロカーボン樹脂を基体とJるイオン交
換樹脂は実質的な反応面積を増大する作用をしているか
らであると考えられる。
All ion exchange resins contribute to making the electrode reaction zone three-dimensional, but ion exchange resin powder based on styrene-divinylbenzene copolymer resin with a relatively large particle size is particularly effective in areas with large current densities. In contrast, ion exchange resins based on perfluorocarbon resins contribute to reducing overvoltages in regions where current density is relatively low. In other words, the use of both ion exchange resins greatly improves the electrode properties over the entire current density range, extending the advantages and compensating for the disadvantages of each alone. This is because the ion exchange resin powder based on styrene-divinylbenzene copolymer resin has a relatively large particle size, so it acts as a pore-forming agent, which leads to a decrease in concentration overvoltage. This is thought to be because, on the other hand, ion exchange resins based on perfluorocarbon resin have the effect of increasing the substantial reaction area.

イオン交換樹脂のイオン交換基としては、スルフォン酸
基、カルボン酸基および両者を混合したものが利用でき
る。また、イオン交換基の移動イオンとしてはプロトン
型、ナトリウムイオン型。
As the ion exchange group of the ion exchange resin, a sulfonic acid group, a carboxylic acid group, or a mixture of both can be used. In addition, the mobile ions of ion exchange groups are proton type and sodium ion type.

カリウムイオン型等、対象となる電気化学装置によって
適宜選択すればよい。またプロトンから他のイオンへの
置換は、イオン交換樹脂膜に電極を接合したのちにおこ
なってもよい。
Potassium ion type or the like may be selected as appropriate depending on the target electrochemical device. Further, the replacement of protons with other ions may be performed after the electrode is bonded to the ion exchange resin membrane.

電極触媒粉末としては、従来公知のものがすべて利用す
ることができる。
All conventionally known electrode catalyst powders can be used.

フッ素樹脂結着剤としては、ポリ 4フフ化エチレン、
4フフ化エチレン−6フ化プロピレン共東合体、4フッ
化エチレン−エチレン技手合体、ポリ 3フツ化塩化エ
チレンの単独もしくは混合物が用いられる。またこれら
のフッ素樹脂は粉末状。
As the fluororesin binder, polytetrafluoroethylene,
A combination of tetrafluoroethylene and hexafluoropropylene, a combination of tetrafluoroethylene and ethylene, and polytrifluorochloroethylene may be used alone or in mixtures. Also, these fluororesins are in powder form.

水懸濁液状あるいは有機溶媒!!!濁液状のものが用い
られる。また懸濁液状のフッ素樹脂の中に、粉来秋のフ
ッ素樹脂を混合分散さけたものを用いることも効果的な
ことがある。
Aqueous suspension or organic solvent! ! ! A cloudy liquid is used. It may also be effective to mix and disperse powdered fluororesin into a suspension of fluororesin.

イオン交換樹脂膜材料としては、スルフォン酸基、カル
ボン?[あるいはこれらの混合物をイオン交換基とする
パーフルオロカーボン樹脂がよい。
Ion exchange resin membrane materials include sulfonic acid groups and carboxyl groups. [Alternatively, a perfluorocarbon resin containing a mixture of these as an ion exchange group is preferable.

また移動イオンとしては、プロトン型、ナトリウムイオ
ン望、カリウムイAン型等、対象となる電気化学装;6
によって適宜選択すればよい。
In addition, the mobile ions include proton type, sodium ion type, potassium ion type A, etc., and target electrochemical devices;
It may be selected as appropriate.

本発明のイオン交換樹脂膜−電;可撓合体の製造法は、
陰極側、陰極側の双方に適用してもよいし、片方だけに
適用してもよい。寸なわら、陰極と陽極のどちらか一方
のfilqには従来のイオン交換樹脂を含まない電極を
接合してもよい。また、本発明のようにイオン交換樹脂
を含む電極をイオン交換樹脂膜に接合したのち、さらに
イオン交換樹脂を含まない第2の電極を積層することも
効果的なことがある。
The method for producing the ion exchange resin membrane-electrical flexible assembly of the present invention is as follows:
It may be applied to both the cathode side and the cathode side, or it may be applied to only one side. However, a conventional electrode not containing an ion exchange resin may be bonded to either the cathode or the anode filq. Furthermore, as in the present invention, it may be effective to bond an electrode containing an ion exchange resin to an ion exchange resin membrane and then further laminate a second electrode containing no ion exchange resin.

実施例 米国、デー1ボン社製のパーフルオロカーボンスルフオ
ン酸樹脂膜であるtクイオン11フの片面に、無電解メ
ッキ法によりロジウム電極を接合した。
EXAMPLE A rhodium electrode was bonded to one surface of tQuion 11F, a perfluorocarbon sulfonic acid resin film manufactured by Daybon, USA, by electroless plating.

ロジウムの担持量を4ma/adとした。The amount of rhodium supported was 4 ma/ad.

一方、電極触媒粉末としての白金ブラック粉末10gに
、8gのスルフtン酸化スチレンージビニルベンゼン共
重合体粉末(平均粒子1¥5μ) 、 +sgの5%ナ
フィオン溶液(米国、アルドリッチケミカル社製、パー
フルオロカーボンスルフォンM l’l脂の低級脂肪h
Xアルコールと水との混合溶媒溶液)および4mlの6
0%ポリ 4フフ化エヂレン水り、 iR液を加え、よ
く混練したのち圧延し、真空乾燥し。
On the other hand, to 10 g of platinum black powder as an electrode catalyst powder, 8 g of sulfated styrene oxide-divinylbenzene copolymer powder (average particle size: 1 yen 5 μm), +sg of 5% Nafion solution (manufactured by Aldrich Chemical Co., USA, Pers. Fluorocarbon sulfone M l'l fat lower fat h
X alcohol and water mixed solvent solution) and 4 ml of 6
Add 0% polyethylene tetrafluoride water and iR liquid, mix thoroughly, then roll and vacuum dry.

厚さが0.2Il+mの電極シートを製作した。An electrode sheet with a thickness of 0.2Il+m was manufactured.

次にこの白金ブラックを含む電極シートを上述のロジウ
ム電極を接合したイオン交換樹脂膜のロジウム電極が接
合されていない面に、100℃の温度、  200K(
1、’−の圧力でホットプレスした。
Next, the electrode sheet containing this platinum black was placed on the side of the ion exchange resin membrane to which the rhodium electrode was bonded, to which the rhodium electrode was not bonded, at a temperature of 100°C and 200K (
Hot pressed at a pressure of 1,'-.

かくして11られたイオン交換樹脂膜−電極接合体は電
気化学的酸素分離装置の構成要素になる。
The ion exchange resin membrane-electrode assembly thus assembled becomes a component of an electrochemical oxygen separation device.

すなわち、この接合体のロジウム電極を陽極とし。That is, the rhodium electrode of this bonded body is used as an anode.

白金ブラックを含む電極を陰極とし、陰極側に空気を供
給し、陰極側に水を供給して、両電極に直流電流を通電
すると、陽極側で純酸素がIr1られ、陰極側で空気か
らlS!I素が除去されたガスが得られる。
When an electrode containing platinum black is used as a cathode, air is supplied to the cathode side, water is supplied to the cathode side, and a direct current is applied to both electrodes, pure oxygen is converted to Ir1 at the anode side, and lS is converted from the air at the cathode side. ! A gas from which I elements have been removed is obtained.

発明の効果 実施例で10られたイオン交換樹脂膜−電極接合体を八
とし、実施例において、?ll極に混入すべき、イオン
交換樹脂として、スルフAン酸化スチレンージビニルベ
ンゼン共重合体粉末の単独を用いた場合を8とし、実施
例において、電極に混入すべきイオン交換樹脂としてパ
ーフルオロカーボンスルフォン酸樹脂の単独を用いた場
合をCとし、実施例を二おいて、電極にイオン交換樹脂
を全く混入しない場合をDとし、それぞれ電気化学的酸
素分離装置に組立て、陰極(空気極)の電流密度−電位
(対標準カロメル電極)特性を求めたところ、第1図に
示す結果が得られた。
Effects of the Invention The ion exchange resin membrane-electrode assembly that was rated as 10 in the example is set as 8, and in the example, ? The case where sulfur-A styrene divinylbenzene copolymer powder alone is used as the ion exchange resin to be mixed in the electrode is referred to as 8, and in the example, perfluorocarbon sulfone is used as the ion exchange resin to be mixed in the electrode. C is the case where the acid resin alone is used, Example 2 is set, and D is the case where no ion exchange resin is mixed in the electrode. Each is assembled into an electrochemical oxygen separation device, and the current of the cathode (air electrode) is When the density-potential (vs. standard calomel electrode) characteristics were determined, the results shown in FIG. 1 were obtained.

すなわら、本発明にかかる陰極の特性が全電流密度領域
でもっともすぐれていることが瞭然としている。
In other words, it is clear that the characteristics of the cathode according to the present invention are the best in the entire current density region.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によって19られたイオン交
換樹脂模−電極接合体を電気化学的酸素弁NJ装置に適
用した場合の陰極(空気極)の電流富度−電位特性を従
来品との比較のもとに示したしたものである。
Figure 1 shows the current enrichment-potential characteristics of the cathode (air electrode) when the ion exchange resin model-electrode assembly prepared according to an embodiment of the present invention is applied to an electrochemical oxygen valve NJ device. This is shown based on the comparison.

Claims (1)

【特許請求の範囲】[Claims] 1、電極触媒粉末とスチレンとジビニルベンゼンとの共
重合体樹脂を基体とするイオン交換樹脂粉末とパーフル
オロカーボン樹脂を基体とするイオン交換樹脂の有機溶
媒溶液もしくは有機溶媒と水との混合溶媒溶液とフッ素
樹脂結着剤との混合物を出発物質として、電極触媒粉末
とスチレンとジビニルベンゼンとの共重合体樹脂を基体
とするイオン交換樹脂粉末とパーフルオロカーボン樹脂
を基体とするイオン交換樹脂とフッ素樹脂との混合物か
らなる電極をパーフルオロカーボン樹脂を基体とするイ
オン交換樹脂膜の片面もしくは両面に接合してなること
を特徴とするイオン交換樹脂膜−電極接合体の製造法。
1. An organic solvent solution of an electrode catalyst powder, an ion exchange resin powder based on a copolymer resin of styrene and divinylbenzene, and an ion exchange resin based on a perfluorocarbon resin, or a mixed solvent solution of an organic solvent and water. Using a mixture with a fluororesin binder as a starting material, an electrode catalyst powder, an ion exchange resin powder based on a copolymer resin of styrene and divinylbenzene, an ion exchange resin based on a perfluorocarbon resin, and a fluororesin. A method for producing an ion exchange resin membrane-electrode assembly, characterized in that an electrode made of a mixture of the above is bonded to one or both sides of an ion exchange resin membrane having a perfluorocarbon resin as a base.
JP59209179A 1984-10-04 1984-10-04 Production of joined ion exchange membrane-electrode body Pending JPS6187887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209179A JPS6187887A (en) 1984-10-04 1984-10-04 Production of joined ion exchange membrane-electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209179A JPS6187887A (en) 1984-10-04 1984-10-04 Production of joined ion exchange membrane-electrode body

Publications (1)

Publication Number Publication Date
JPS6187887A true JPS6187887A (en) 1986-05-06

Family

ID=16568640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209179A Pending JPS6187887A (en) 1984-10-04 1984-10-04 Production of joined ion exchange membrane-electrode body

Country Status (1)

Country Link
JP (1) JPS6187887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483085A2 (en) * 1990-10-25 1992-04-29 Tanaka Kikinzoku Kogyo K.K. Process of preparing electrode for fuel cell
US5458955A (en) * 1993-10-21 1995-10-17 Monsanto Company Metal/polymer laminates having an anionomeric polymer film layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107493A (en) * 1977-12-23 1979-08-23 Gen Electric Method and apparatus for manufacturing halogen
JPS59191240A (en) * 1983-04-15 1984-10-30 Hitachi Ltd Adjustment and adjusting device of deflection yoke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107493A (en) * 1977-12-23 1979-08-23 Gen Electric Method and apparatus for manufacturing halogen
JPS59191240A (en) * 1983-04-15 1984-10-30 Hitachi Ltd Adjustment and adjusting device of deflection yoke

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483085A2 (en) * 1990-10-25 1992-04-29 Tanaka Kikinzoku Kogyo K.K. Process of preparing electrode for fuel cell
US5458955A (en) * 1993-10-21 1995-10-17 Monsanto Company Metal/polymer laminates having an anionomeric polymer film layer

Similar Documents

Publication Publication Date Title
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
JPH06111834A (en) Polymer solid-electrolyte composition and electrochemical cell using said composition
KR20040048310A (en) Electrode for fuel cell and fuel cell
CA2427036C (en) A cathode layer structure for a solid polymer fuel cell and fuel cell incorporating such structure
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JPH027399B2 (en)
US20050147868A1 (en) Fuel cell
JP2006134752A (en) Solid polymer fuel cell and vehicle
JPH11135136A (en) Solid poly electrolyte type fuel cell
EP2273589B1 (en) Membrane electrode assembly and fuel cell
JP2003115299A (en) Solid polymer fuel cell
JPH09219206A (en) Electrochemical element
JPS6187887A (en) Production of joined ion exchange membrane-electrode body
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JPH027398B2 (en)
JPS6167787A (en) Production of joined body of ion exchange resin film and electrode
JP2005190702A (en) Manufacturing method of film/electrode joined material for fuel cell
JP2002203568A (en) Film/electrode zygote, and fuel cell using it
JP2003272637A (en) Electrode junction body for solid polymer fuel cell
JPS6167788A (en) Production of joined body of ion exchange resin film and electrode
KR100481591B1 (en) Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane
JP2002252001A (en) Gas diffusion electrode and solid high polymer type fuel cell equipped with this
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell