JPS6186714A - Optical coupling parts - Google Patents

Optical coupling parts

Info

Publication number
JPS6186714A
JPS6186714A JP20701984A JP20701984A JPS6186714A JP S6186714 A JPS6186714 A JP S6186714A JP 20701984 A JP20701984 A JP 20701984A JP 20701984 A JP20701984 A JP 20701984A JP S6186714 A JPS6186714 A JP S6186714A
Authority
JP
Japan
Prior art keywords
optical
wavelength
optical fiber
light
interference film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20701984A
Other languages
Japanese (ja)
Inventor
Masayasu Yoshino
正康 吉野
Masaaki Tojo
正明 東城
Yoshikazu Suehiro
末広 芳和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20701984A priority Critical patent/JPS6186714A/en
Publication of JPS6186714A publication Critical patent/JPS6186714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To make three-system two-wavelength multiplexed two-way optical communication with a simple circuit, by putting a slightly inclined interference film filter between a rod lens with an interference film filter boned to its front end face and another rod lens put in front of the first mentioned lens so as to face them each other. CONSTITUTION:An interface film filter 27 is put between a rod lens 23, to which a partially transparent interference film filter 24 is bonded, and another rod lens 26 is put in front of the lens 23 so as to face them each other. Double lights of wavelengths lambda1 and lambda2 inputted from an optical fiber 20 become parallel lights after passing through the lens 23 and the light of the wavelength lambda1 is reflected by the filter 24 and outputted to an optical fiber 22. The light having the wavelength lambda2 of the lights passing through the half transparent section of the filter 24 is reflected by the filter 27 and outputted to an optical fiber 21 and the light having the wavelength lambda1 is outputted to an optical fiber 25. Therefore, three-system two-wavelength multiplexed two-way optical transmission becomes possible with a simple circuit which is less in optical energy loss and the transmission quality can be improved while the cost is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信機器に使用される光結合部品に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical coupling component used in optical communication equipment.

(従来例の構成とその問題点) 光通信の実用化が進むに伴って、波長多重光伝送や双方
向光伝送も実施に移され、これらに光分波・合波器、光
分岐・結合器等の光結合部品が多数用いられるようにな
った。
(Conventional configurations and their problems) As the practical use of optical communication progresses, wavelength multiplexing optical transmission and bidirectional optical transmission are also being implemented, and optical demultiplexing/combining devices, optical branching/coupling, etc. A large number of optical coupling parts such as containers have come into use.

このような波長多重・双方向光伝送を例として従来の光
結合部品について、第1図により説明する。同図は、波
長λ1およびλ3の光を用い、波長λ1の光では双方で
送信・受信を行う双方向光伝送を、波長λ3の光では片
方が送信または受信のみを行う一方向光伝送をそれぞれ
担当する三系統二波長多重・双方向伝送システムの構成
図である。
A conventional optical coupling component will be explained with reference to FIG. 1, taking such wavelength multiplexing/bidirectional optical transmission as an example. The figure uses light with wavelengths λ1 and λ3, and shows two-way optical transmission in which both sides transmit and receive light with wavelength λ1, and one-way optical transmission in which one side only transmits or receives light with wavelength λ3. It is a configuration diagram of the three-system dual-wavelength multiplexing/bidirectional transmission system in charge.

このシステムでは、波長λ1.λ2の光分波・合波器1
および2が伝送用光ファイバ3の両端に接続され、波長
λ、の光の発信側では、光分波・合波器1に波長λ2の
光発信器4が光ファイバ5で、波長λ、の光発信器6と
光受信器7とがそれぞれ光ファイバ8と9とで接続され
た光分岐・結合器10が光ファイバ11で、また、波長
λ8の光の受信側では、光分波・合波器2に波長λ3の
光受信器12が光ファイバ13で、波長λ1の光発信器
14と光受信器15とがそれぞれ光ファイバ16と17
とで接続さ 。
In this system, the wavelength λ1. λ2 optical demultiplexer/combiner 1
and 2 are connected to both ends of the transmission optical fiber 3, and on the transmission side of the light with the wavelength λ, an optical transmitter 4 with the wavelength λ2 is connected to the optical demultiplexer/combiner 1 via the optical fiber 5, and the optical transmitter 4 with the wavelength λ2 is connected to the optical fiber 5. An optical branching/combining device 10 in which an optical transmitter 6 and an optical receiver 7 are connected by optical fibers 8 and 9, respectively, is an optical fiber 11, and on the receiving side of the light with a wavelength λ8, an optical branching/combining device is connected. In the wave transmitter 2, an optical receiver 12 with a wavelength λ3 is an optical fiber 13, and an optical transmitter 14 and an optical receiver 15 with a wavelength λ1 are connected with optical fibers 16 and 17, respectively.
Connected with .

れた光分岐・結合器18が光ファイバ19で、それぞれ
接続されている。
The optical branching/coupling devices 18 are connected by optical fibers 19, respectively.

このような構成の三系統二波長多重・双方向伝送システ
ムの動作について説明する。
The operation of the three-system dual-wavelength multiplexing/bidirectional transmission system having such a configuration will be explained.

波長λ2の光による一方向光伝送は、光発信器4から出
力された波長λ、の光が、光ファイバ5、光分波・合波
器1.光ファイバ3、光分波・合波器2および光ファイ
バ13を通って光受信器12に入力することにより行わ
れる。
In unidirectional optical transmission using light with wavelength λ2, light with wavelength λ outputted from optical transmitter 4 is transmitted to optical fiber 5, optical demultiplexer/combiner 1. This is done by inputting the signal to the optical receiver 12 through the optical fiber 3, the optical demultiplexer/combiner 2, and the optical fiber 13.

波長λ、の光による双方向光伝送は、光発信器6から出
力された波長λ1の光が、光ファイバ8、光分岐・結合
器10.光ファイバ11.光分波・合波器1、光ファイ
バ3、光分波・合波器2、光ファイバ19、光分岐・結
合器18および光ファイバ17を通って光受信器15に
、また、光発信器14から出力された波長λ□の光が、
光ファイバ16、光分岐・結合器18、光ファイバ19
.光分波・合波器2、光ファイバ3.光分波・合波器1
、光ファイバ11、光分岐・結合器10および光ファイ
バ9を通って光受信器7に、それぞれ入力して行われる
In bidirectional optical transmission using light with a wavelength λ, the light with a wavelength λ1 output from the optical transmitter 6 is transmitted through the optical fiber 8, the optical branch/coupler 10, and so on. Optical fiber 11. Optical demultiplexer/combiner 1, optical fiber 3, optical demultiplexer/combiner 2, optical fiber 19, optical branch/combiner 18, and optical fiber 17 to optical receiver 15, and optical transmitter The light of wavelength λ□ output from 14 is
Optical fiber 16, optical branch/coupler 18, optical fiber 19
.. Optical demultiplexer/combiner 2, optical fiber 3. Optical demultiplexer/multiplexer 1
, the optical fiber 11, the optical branch/coupler 10, and the optical fiber 9, and are input to the optical receiver 7, respectively.

このようにして三系統二波長多重・双方向光伝送は行わ
れるが、しかしながら上述のような構成では、光結合部
品の点数が多く、光エネルギーの損失が大きいという問
題点があった。
In this way, three-system two-wavelength multiplexing/bidirectional optical transmission is performed, but the above configuration, however, has the problem of a large number of optical coupling parts and a large loss of optical energy.

(発明の目的) 本発明は上記の欠点を解消するもので、1個で光分波・
合波器と光分岐・結合器の機能を設け、簡単な回路で三
系統二波長多重・双方向光伝送システムが構成できる光
結合部品を提供しようとするものである。
(Objective of the invention) The present invention solves the above-mentioned drawbacks, and aims to perform optical demultiplexing and demultiplexing with a single unit.
The objective is to provide an optical coupling component that has the functions of a multiplexer and an optical branch/coupler, and can configure a three-system two-wavelength multiplexing/bidirectional optical transmission system with a simple circuit.

(発明の構成) 上記の目的を達成するために1本発明では、後端面に平
行に並べた3本の光ファイバ束が装着され、前端面に一
部が透明の干渉膜フィルタが接着されたロッドレンズと
、後端面に光ファイバが装着されたロッドレンズとを、
これらのロッドレンズ前端面が相対向するように配設し
、さらに、上記前端面間の隙間に僅かな傾斜角を有する
干渉膜フィルタを配置した構成とし、一部が透明の干渉
膜フィルタの干渉膜部は、伝送する2波長の光の内、双
方向伝送用の光を反射するように、また傾斜を有するよ
うに配置された干渉膜フィルタは、片方向伝送用の光を
反射し、双方向伝送用の光を透過するようにして、光分
波・合波器と光分岐・結合器の2つの機能を持たせよう
とするものである。
(Structure of the Invention) In order to achieve the above object, in the present invention, three optical fiber bundles arranged in parallel are attached to the rear end surface, and a partially transparent interference film filter is adhered to the front end surface. A rod lens and a rod lens with an optical fiber attached to the rear end surface,
The front end surfaces of these rod lenses are arranged so as to face each other, and an interference film filter having a slight inclination angle is arranged in the gap between the front end surfaces to prevent interference of the partially transparent interference film filter. The film part reflects the light for bidirectional transmission out of the two wavelengths of light transmitted, and the interference film filter arranged with an inclination reflects the light for unidirectional transmission and reflects the light for bidirectional transmission. It is intended to transmit light for direct transmission, and to have two functions: an optical demultiplexer/combiner and an optical branch/combiner.

(実施例の説明) 本発明の実施例について、第2図および第3図により説
明する。
(Description of Examples) Examples of the present invention will be described with reference to FIGS. 2 and 3.

第2図は1本発明による光結合部品の構成図で、光分波
および光分岐の機能を利用する場合を例として説明する
と、光結合器は、波長λ、およびλ。
FIG. 2 is a block diagram of an optical coupling component according to the present invention.To explain the case where the functions of optical demultiplexing and optical branching are used as an example, the optical coupler has wavelengths λ and λ.

の2重光が入力する光ファイバ20と、波長λ2の光お
よび波長λ□の光がそれぞれ出力する光ファイバ21お
よび光ファイバ22との3本が平行に並べられた光ファ
イバ束がロッドレンズ23の後端面に装着されており、
その前端面には、半分の面積が透明、半分の面積が波長
λ1の光を反射し波長λ2の光を透過する干渉膜フィル
タ24が接着されている(図には接着剤は示してない)
、さらに、後端面に光ファイバ25が装着されたロッド
レンズ26の前端面が上記ロッドレンズ23の前端面に
相対向するように配設され、これら両端面間の隙間に波
長λ2の光を反射し波長λ□の光を透過する干渉膜フィ
ルタ27が配置されたものである。
A bundle of three optical fibers arranged in parallel includes an optical fiber 20 into which the double light of λ2 is input, and an optical fiber 21 and an optical fiber 22 through which the light with a wavelength λ2 and the light with a wavelength λ It is attached to the rear end surface,
An interference film filter 24 whose half area is transparent and whose half area reflects light with wavelength λ1 and transmits light with wavelength λ2 is glued to the front end surface (the adhesive is not shown in the figure).
Further, the front end surface of a rod lens 26 having an optical fiber 25 attached to its rear end surface is arranged to face the front end surface of the rod lens 23, and light of wavelength λ2 is reflected in the gap between these end surfaces. An interference film filter 27 that transmits light having a wavelength of λ□ is arranged.

このように構成された光結合部品の動作について説明す
る。光ファイバ20から入力した波長λ1およびλ2の
2重光は、ロッドレンズ23によって平行光線となり、
その前端面に接着された干渉膜フィルタ24の干渉膜部
で波長λ□の光が反射されて、再びロッドレンズ23で
集束され光ファイバ22に出力し、干渉膜フィルタ24
の透明部を透過した上記2重光は、傾斜して配置された
干渉膜フィルタ27で波長λ2の光が反射され、ロッド
レンズ23で集束されて光ファイバ21に出力する。干
渉膜フィルタ27の傾斜角は、光ファイバ21と光軸が
一致するように調整されている。
The operation of the optical coupling component configured in this way will be explained. Dual light of wavelengths λ1 and λ2 inputted from the optical fiber 20 becomes parallel light beams by the rod lens 23,
The light of wavelength λ□ is reflected by the interference film portion of the interference film filter 24 bonded to the front end face, is focused again by the rod lens 23 and output to the optical fiber 22, and is then reflected by the interference film filter 24.
The double light transmitted through the transparent part is reflected by the interference film filter 27 disposed at an angle, and the light having the wavelength λ2 is focused by the rod lens 23 and output to the optical fiber 21. The inclination angle of the interference film filter 27 is adjusted so that the optical axis coincides with that of the optical fiber 21.

干渉膜フィルタ27を透過した波長λ、の光は、ロッド
レンズ26で集束されて光ファイバ25に出力する。
The light having the wavelength λ that has passed through the interference film filter 27 is focused by the rod lens 26 and output to the optical fiber 25 .

第2図中に矢印で示した光の径路は、径路28が波長λ
□およびλ2の2重光、径路29および30が波長λ□
の光、径路31が波長λ2の光のそれぞれの投射方向を
表わしている。
The light path indicated by the arrow in FIG. 2 has a wavelength of λ.
Dual light of □ and λ2, paths 29 and 30 have wavelength λ□
The paths 31 represent the respective projection directions of the light having the wavelength λ2.

このように構成した光結合部品を、光合波器および光結
合器として用いる場合は、上述の径路を逆方向に利用す
ればよい。
When the optical coupling component configured in this manner is used as an optical multiplexer and an optical coupler, the above-mentioned path may be used in the opposite direction.

第3図は、波長λ1およびλ2の2波長の光を用い、波
長λ1の光では双方で送信・受信器を行う双方向光伝送
を、波長λ2の光では片方が送信または受信のみを行う
一方向光伝送をそれぞれ担当する三系統二波長多重・双
方向光伝送システムの構成図である。
Figure 3 shows two-way optical transmission using two wavelengths of light, λ1 and λ2, with the light of wavelength λ1 acting as a transmitter and receiver on both sides, and the light of wavelength λ2 with one side transmitting or receiving only. FIG. 1 is a configuration diagram of a three-system dual-wavelength multiplexing bidirectional optical transmission system, each responsible for directional optical transmission.

このシステムでは、本発明による光結合部品32および
33が伝送用光ファイバ34の両端に接続され。
In this system, optical coupling components 32 and 33 according to the invention are connected to both ends of a transmission optical fiber 34.

さらに、波長λ、の光の発信側では、上記の光結合部品
32の伝送用光ファイバ34と並ぶ光ファイバ35およ
び36にそれぞれ波長λ2の光発信器37.および波長
λ1の光発信器38が、反対側の光ファイバ39に波長
λ、の光発信器40が、また、波長λ2の光の受信側で
は、上記の光結合部品33の伝送用光ファイバ34と並
ぶ光ファイバ41および42に、それぞれ波長λ2の光
受信器43および波長λ1の光送信器44が、反対側の
光ファイバ45に波長λ、の光受信器46が、それぞれ
接続されている。
Furthermore, on the transmitting side of the light with wavelength λ, optical fibers 35 and 36 lined up with the transmission optical fiber 34 of the optical coupling component 32 are connected to optical transmitters 37 with wavelength λ2, respectively. An optical transmitter 38 with a wavelength λ1 is connected to an optical fiber 39 on the opposite side, and an optical transmitter 40 with a wavelength λ2 is connected to an optical fiber 39 on the opposite side. An optical receiver 43 with a wavelength λ2 and an optical transmitter 44 with a wavelength λ1 are connected to the optical fibers 41 and 42 arranged side by side, respectively, and an optical receiver 46 with a wavelength λ is connected to the optical fiber 45 on the opposite side.

このような構成の三系統二波長多重・双方向光伝送シス
テムの動作について説明する。波長λ2による一方向光
伝送は、光発信器37から出力された波長λ2の光が、
光ファイバ35、光結合部品32、光ファイバ34、光
結合部品33および光ファイバ41を通って光受信器4
3に入力する。
The operation of the three-system dual-wavelength multiplexing/bidirectional optical transmission system having such a configuration will be explained. In the unidirectional optical transmission using the wavelength λ2, the light with the wavelength λ2 output from the optical transmitter 37 is
The optical receiver 4 passes through the optical fiber 35, the optical coupling component 32, the optical fiber 34, the optical coupling component 33, and the optical fiber 41.
Enter 3.

波長λ□の光による双方向光伝送では、一方向光発信器
40から出力される波長λ1の光が、光ファイバ39、
光結合部品32、光ファイバ34.光結合部品33およ
び光ファイバ45を通って受信器46に、逆方向は光発
信器44から波長λ1の光が、光ファイバ42、光結合
部品33、光ファイバ34、光結合部品32および光フ
ァイバ36を通って光受信器38に、それぞれ入力する
In bidirectional optical transmission using light with wavelength λ□, light with wavelength λ1 output from unidirectional optical transmitter 40 is transmitted through optical fiber 39,
Optical coupling component 32, optical fiber 34. Light with wavelength λ1 passes through the optical coupling component 33 and the optical fiber 45 to the receiver 46, and in the opposite direction from the optical transmitter 44, the light with the wavelength λ1 passes through the optical fiber 42, the optical coupling component 33, the optical fiber 34, the optical coupling component 32, and the optical fiber. 36 and are input to an optical receiver 38, respectively.

このようにして三系統二波長多重・双方向光伝送が行わ
れ、しかも伝送用光ファイバ34の両端にそれぞれ1個
の光結合部品32および33を接続するのみであるから
、伝送システムも簡単となり、かつ、光エネルギーの損
失も少ない三系統二波長多重・双方向光伝送システムが
得られる。
In this way, three-system two-wavelength multiplexing/bidirectional optical transmission is performed, and since only one optical coupling component 32 and 33 is connected to each end of the transmission optical fiber 34, the transmission system is also simplified. In addition, a three-system dual-wavelength multiplexing bidirectional optical transmission system with low loss of optical energy can be obtained.

なお、本実施例では、第2図における干渉膜フィルタ2
4は半分の面積に波長λ□の光を反射し波長λ2の光を
透過する干渉膜を形成し、残り半分の面積を透明とした
が、干渉膜を形成する面積を減らしてもよい、このよう
に干渉膜部と透明部の面積比を変えることによって、光
ファイバ22と25に入力する波長λ、のエネルギーの
比率を変えることができる。
In this example, the interference film filter 2 in FIG.
In No. 4, an interference film that reflects light with wavelength λ□ and transmits light with wavelength λ2 is formed on half the area, and the remaining half area is made transparent, but the area on which the interference film is formed may be reduced. By changing the area ratio of the interference film part and the transparent part, the ratio of energy of the wavelength λ input to the optical fibers 22 and 25 can be changed.

また、干渉膜フィルタ24の干渉膜部および干渉膜フィ
ルタ27の透過率を100%として説明して来たが、透
過率が100%に達しない場合には、光ファイバ20.
21および22からなる光ファイバ束とロフトレンズ2
3の間に、順に透明部、波長λ2の光を透過し波長λ、
の光を反射する干渉膜部および波長λ1の光を透過し波
長λ2の光を反射する干渉膜部を形成した干渉膜フィル
タを挿入して装着する必要がある。
Further, although the explanation has been given assuming that the transmittance of the interference film portion of the interference film filter 24 and the interference film filter 27 is 100%, if the transmittance does not reach 100%, the optical fiber 20.
Optical fiber bundle consisting of 21 and 22 and loft lens 2
During 3, the transparent part transmits the light of wavelength λ2 in order, and the wavelength λ,
It is necessary to insert and install an interference film filter having an interference film part that reflects light of wavelength λ1 and an interference film part that transmits light of wavelength λ1 and reflects light of wavelength λ2.

(発明の効果) 以上説明したように、光分波・合波器と光分岐・結合器
の2つの機能を合わせ持つ、本発明による光結合部品を
使用すれば、簡単でかつ光エネルギーの損失が少ない三
系統二波長多重・双方向光伝送システムが構成でき、シ
ステム構築コストの減少および伝送品質の向上に著しい
効果が得られる。
(Effects of the Invention) As explained above, by using the optical coupling component according to the present invention, which has the two functions of an optical demultiplexer/combiner and an optical branch/combiner, it is possible to easily reduce optical energy loss. It is possible to construct a three-system dual-wavelength multiplexing bidirectional optical transmission system with a small amount of noise, which has significant effects in reducing system construction costs and improving transmission quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の三系統二波長多重・双方向光伝・送シス
テムの構成図、第2図は本発明による光結合部品の構成
図、第3図は第2図の光結合部品を利用した三系統二波
長多重・双方向光伝送システムの構成図である。 1.2・・・光分波・合波器、 3,5,8.9゜11
.13,16,17,19,20,21,22,25,
34,35,36,39,41゜42.45・・・光フ
ァイバ、 4 、6 、14,37,40.44・・・
光発信器、 ? 、 12,15,38,43,46・
・・光受信器、  10.18・・・光分岐・結合器、
23,26・・・ロッドレンズ、24,27・・・干渉
膜フィルタ、28.29,30.31・・・光の径路。
Figure 1 is a configuration diagram of a conventional three-system two-wavelength multiplexing/bidirectional optical transmission/transmission system, Figure 2 is a configuration diagram of an optical coupling component according to the present invention, and Figure 3 is a diagram using the optical coupling component shown in Figure 2. FIG. 2 is a configuration diagram of a three-system dual-wavelength multiplexing bidirectional optical transmission system. 1.2... Optical demultiplexer/combiner, 3,5,8.9°11
.. 13, 16, 17, 19, 20, 21, 22, 25,
34, 35, 36, 39, 41° 42.45... Optical fiber, 4, 6, 14, 37, 40.44...
Optical transmitter? , 12, 15, 38, 43, 46・
...Optical receiver, 10.18... Optical branch/combiner,
23, 26... Rod lens, 24, 27... Interference film filter, 28.29, 30.31... Light path.

Claims (1)

【特許請求の範囲】[Claims] 後端面に平行に並べた3本の光ファイバ束が装着され、
前端面に一部が透明の干渉膜フィルタが接着されたロッ
ドレンズと、後端面に光ファイバが装着されたロッドレ
ンズとを、これらのロッドレンズの前端面が相対向する
ように配設し、さらに、上記前端面間の隙間に、僅かな
傾斜角を有する干渉膜フィルタが配置されたことを特徴
とする光結合部品。
Three optical fiber bundles arranged parallel to the rear end surface are attached,
A rod lens having a partially transparent interference film filter adhered to its front end face and a rod lens having an optical fiber attached to its rear end face are arranged so that the front end faces of these rod lenses face each other, Furthermore, an optical coupling component characterized in that an interference film filter having a slight inclination angle is disposed in the gap between the front end surfaces.
JP20701984A 1984-10-04 1984-10-04 Optical coupling parts Pending JPS6186714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20701984A JPS6186714A (en) 1984-10-04 1984-10-04 Optical coupling parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20701984A JPS6186714A (en) 1984-10-04 1984-10-04 Optical coupling parts

Publications (1)

Publication Number Publication Date
JPS6186714A true JPS6186714A (en) 1986-05-02

Family

ID=16532853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20701984A Pending JPS6186714A (en) 1984-10-04 1984-10-04 Optical coupling parts

Country Status (1)

Country Link
JP (1) JPS6186714A (en)

Similar Documents

Publication Publication Date Title
CA1172080A (en) Optical multi/demultiplexer using interference filters
JPH11507738A (en) Optoelectronic circuit
JPS60101508A (en) Light wavelength multiplexer and demultiplexer for bidirectional
AU2970499A (en) Multiplexer and demultiplexer for single mode optical fiber communication links
EP0153722A3 (en) Hybrid optical wavelength division multiplexer-demultiplexer
JPS6186714A (en) Optical coupling parts
JPS59200210A (en) Optical demultiplexer
JP3000900B2 (en) Optical coupler
JPS5815926Y2 (en) Composite optical wavelength demultiplexing circuit
JPH0252316A (en) Wavelength multiplex transmission module with monitoring function
JPS5814112A (en) Optical demultiplexer
JP3736435B2 (en) Optical multiplexer / demultiplexer
JP2978217B2 (en) Optical cross connect device
JPS5863244A (en) Transmitting system for wavelength multiplex light
JPS6191607A (en) Optical coupling component
JP2002072008A (en) Optical branching filter and optical coupler
JPS6051806A (en) Optical demultiplexer/multiplexer
JP2883443B2 (en) Optical fiber coupler
JPS6347623A (en) Wavelength multiplying and dividing element
JPS595205A (en) Demultiplexer for single mode bidirectional wavelength multiplex transmission
JP2611814B2 (en) Optical splitter / combiner
JPS6030455B2 (en) optical transmission equipment
JPS59192226A (en) Optical demultiplexer multiplexer
JPS63253308A (en) Optical demultiplexing and branching device
Zhongming et al. Hybrid optical wavelength division multiplexer-demultiplexer