JPH0252316A - Wavelength multiplex transmission module with monitoring function - Google Patents

Wavelength multiplex transmission module with monitoring function

Info

Publication number
JPH0252316A
JPH0252316A JP63202639A JP20263988A JPH0252316A JP H0252316 A JPH0252316 A JP H0252316A JP 63202639 A JP63202639 A JP 63202639A JP 20263988 A JP20263988 A JP 20263988A JP H0252316 A JPH0252316 A JP H0252316A
Authority
JP
Japan
Prior art keywords
optical
wavelength
demultiplexer
monitoring function
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63202639A
Other languages
Japanese (ja)
Other versions
JP2518021B2 (en
Inventor
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63202639A priority Critical patent/JP2518021B2/en
Publication of JPH0252316A publication Critical patent/JPH0252316A/en
Application granted granted Critical
Publication of JP2518021B2 publication Critical patent/JP2518021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To monitor the cause of a failure in communication at respective offices by providing the monitoring function for monitoring light signals from its office and other offices by optical receivers. CONSTITUTION:A light signal of wavelength lambda2 which is made incident on an optical multiplexing/demultiplexing part 10 is demultiplexed by a directional coupler 12, demultiplexed similarly by a directional coupler 14, and inputted to an optical reception part 2. A light signal of wavelength lambda1 from an optical transmission part 1 is made incident into the optical multiplexing/demultiplexing part 10, guided without being demultiplexed by a direction coupler 13 nor 12, and inputted to an optical switch 11. The optical switch 11 is constituted by arranging two single-mode waveguides of exactly same structure size nearby each other and arranging planar electrodes 15 and 16 in a coupling area. For the purpose, a voltage V applied to the planar electrodes 15 and 16 is adjusted to monitor light signals from its office and other offices and also make a two- way communication. Consequently, the state of a failure in communication can be monitored at its office and other offices.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、双方向波長多重(i<送シスデノ、において
、自局から送出される光信号および他局から送られてき
た光信号を切換え動作により監視できる機能を付加した
監視機能1−1波長多1fj(〕、送モジュールに関す
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a system for switching optical signals sent from a local station and optical signals sent from other stations in bidirectional wavelength multiplexing (i<transmission denomination). Monitoring function 1-1 wavelength multiplier 1fj () with added function of monitoring based on operation, relates to a transmission module.

「従来の技術」 一本の光フアイバ内に波長の異なる複数の光信号(λ1
、λ2、・・・・、λn )を双方向に伝送させる双方
向波長多重伝送は、シスデノ、の拡張性、経済性、柔軟
性等の点て期待されている。
"Prior art" Multiple optical signals with different wavelengths (λ1
, λ2, .

第3図は従来の双方向波長多重伝送システムの構成例を
示したものである。
FIG. 3 shows an example of the configuration of a conventional bidirectional wavelength division multiplexing transmission system.

双方向波長多重伝送システムは、同図に示すように、局
8と局9間、例えば自局と他局間を一本の光ファイバ4
で接続し、−本の光ファイバ4内に異なった波長λ1、
λ2の光信号を双方向に伝送させるようにしたものであ
る。即ち、局8側からは光送信部1より波長λ1の光信
号を光合分波部3、光ファイバ4を介して局9側に送出
し、光合分波部7により分波して波長λ1の光信号を光
受信部6で受信する。逆に、局9側からは光送信部5よ
り波長λ2の光信号を光合分波部7、光ファイバ4を介
して局8側に送出し、光合分波部3により分波して光受
信部2で受信するシステムである。
As shown in the figure, the bidirectional wavelength division multiplexing transmission system uses a single optical fiber 4 between stations 8 and 9, for example between the own station and other stations.
- different wavelengths λ1,
The optical signal of λ2 is transmitted in both directions. That is, from the station 8 side, an optical signal with a wavelength λ1 is sent from the optical transmitter 1 to the station 9 side via the optical multiplexer/demultiplexer 3 and the optical fiber 4, and is demultiplexed by the optical multiplexer/demultiplexer 7 to produce an optical signal with the wavelength λ1. The optical signal is received by the optical receiver 6. Conversely, from the station 9 side, an optical signal with a wavelength λ2 is sent from the optical transmitter 5 to the station 8 side via the optical multiplexer/demultiplexer 7 and the optical fiber 4, and is demultiplexed by the optical multiplexer/demultiplexer 3 and optically received. This is a system in which part 2 receives the data.

し発明が解決しようとする課M] ところが、第3図の構成において、通信の障害か生じて
、通信不能になる場合を考えてみると次のような場合が
ある。
[Problem to be Solved by the Invention M] However, in the configuration shown in FIG. 3, if a communication failure occurs and communication becomes impossible, the following case may occur.

(1)光ファイバ4の切断、劣化による通信不能 (2)自局(例えば局8)内の光送信部1、光受信部2
の故障による通信不能 (3)他局く例えば局9)内の光送信部5、光受信部6
の故障による通信不能 (4)光送信部1.5の中心波長変動による通信不能 これらの通信不能が生じると、第3図の構成ては、障害
監視機能かないので、素早く対処することかできず、セ
キュリティの確保という面で問題かあった。
(1) Unable to communicate due to cutting or deterioration of optical fiber 4 (2) Optical transmitter 1 and optical receiver 2 in own station (for example, station 8)
(3) Optical transmitter 5, optical receiver 6 in another station (for example, station 9)
Communication failure due to failure (4) Communication failure due to center wavelength fluctuation of optical transmitter 1.5 When these communication failures occur, the configuration shown in Figure 3 does not have a failure monitoring function, so it cannot be dealt with quickly. However, there were some problems in terms of ensuring security.

本発明の目的は、通信不能の原因かどこにあるかをそれ
ぞれの局で監視できる機能を付加した監視機能14波長
多重伝送モジュールを提供することである。
An object of the present invention is to provide a 14-wavelength multiplexing transmission module with a monitoring function that allows each station to monitor the cause of communication failure.

[課題を解決するための手段] 本発明は、上記目的を達成するため、光送・受信部の後
に光合分波部を設け、該光合分波部の後に光ファイバを
接続し、波長の異なる複数の光信号を伝送する為の波長
多重伝送モジュールにおいて、上記光合分波部と上記光
ファイバとの間に光スイッチを設けて、この光スイッチ
の1入力および1出力を光合分波部および光ファイバと
接続し、残りの1入力および1出力に光受信器を接続し
、上記光スイッチの駆動電圧を制御することにより、自
局および他局からの上記光信号を上記光受信器で監視す
る為の監視機能を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an optical multiplexing/demultiplexing unit after the optical transmitting/receiving unit, connects an optical fiber after the optical multiplexing/demultiplexing unit, and connects optical fibers with different wavelengths. In a wavelength division multiplexing transmission module for transmitting a plurality of optical signals, an optical switch is provided between the optical multiplexer/demultiplexer and the optical fiber, and one input and one output of the optical switch are connected to the optical multiplexer/demultiplexer and the optical fiber. By connecting the fiber, connecting an optical receiver to the remaining one input and one output, and controlling the drive voltage of the optical switch, the optical signal from the own station and other stations is monitored by the optical receiver. A monitoring function is provided for this purpose.

さらに、上記光受信器に受信する上記光信号を分波する
ため上記光スイッチと上記光受信器との間にチューナブ
ル光分波器を設けたものである。
Furthermore, a tunable optical demultiplexer is provided between the optical switch and the optical receiver to demultiplex the optical signal received by the optical receiver.

[作 用コ 波長多重伝送システムが正常に作動されている場合、上
記構成により、自局の光送信部より光合分波部を経て伝
搬されてきた光信号、または光ファイバを介して他局よ
り送られてきた光信号は、光スイッチの駆動電圧を制御
することにより、光受信器に受信される。ところが、波
長多重伝送システムが何等かの原因により通信不能な状
態となっな場合、上記光信号は、上記光受信器へ伝搬さ
れないので、光スイッチの駆動電圧をどの様に制御した
としても、上記光受信器に受信されない。
[Function] When the wavelength division multiplexing transmission system is operating normally, the above configuration allows optical signals propagated from the optical transmitter of the own station via the optical multiplexer/demultiplexer, or from other stations via the optical fiber. The transmitted optical signal is received by the optical receiver by controlling the driving voltage of the optical switch. However, if the wavelength division multiplexing transmission system becomes unable to communicate for some reason, the optical signal will not be propagated to the optical receiver, so no matter how the driving voltage of the optical switch is controlled, the optical signal will not be transmitted to the optical receiver. Not received by optical receiver.

従って、上記光信号が上記光受信器により受信可能か否
かにより、波長多重伝送システムの通信不能か否かの監
視を行うことができる。
Therefore, depending on whether the optical signal can be received by the optical receiver, it is possible to monitor whether or not the wavelength division multiplexing transmission system is unable to communicate.

また、波長多重伝送システムか正常に作動されている場
合、巽なつた波長の複数の光信すはチュナブル光分波器
で分離されて、上記光受信器にそれぞれ独立に全て受信
される。ところか、波長多重伝送システムに故障をきた
した場合、ある波長の光信号のみは、チューナブル光分
波器および上記光受信器へ伝搬されず、チューナブル光
分波器で分離され得す、上記光受信器に受信されない。
Further, when the wavelength division multiplexing transmission system is operating normally, a plurality of optical signals of different wavelengths are separated by a tunable optical demultiplexer, and all are independently received by the optical receivers. On the other hand, if a failure occurs in the wavelength division multiplexing transmission system, only the optical signal of a certain wavelength will not be propagated to the tunable optical demultiplexer and the optical receiver, but may be separated by the tunable optical demultiplexer. Not received by the above optical receiver.

従って、異なった波長の複数の光信号をそれぞれ独立に
監視することが出来る。
Therefore, a plurality of optical signals having different wavelengths can be independently monitored.

[実施例] 次に本発明の実施例を添付図面に従い説明する。[Example] Next, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例を示す監視機能(=J波長伝
送モジュールであり、第3図の局8側のモジュール構成
(光集積回路)に対応するモジュール構成図であるに の監視機能付波長伝送モジュール40は、主として、光
送信部1、光受信部2、光合分波部101.および例え
ば2X2型の光スイッチ11からなる。
FIG. 1 shows a monitoring function (=J wavelength transmission module) showing one embodiment of the present invention, and is a module configuration diagram corresponding to the module configuration (optical integrated circuit) on the station 8 side in FIG. 3. The attached wavelength transmission module 40 mainly includes an optical transmitter 1, an optical receiver 2, an optical multiplexer/demultiplexer 101, and, for example, a 2X2 type optical switch 11.

光合分波部10は、同一構造の方向性結合器12.13
、および14を組み合わせた構成のものを用いである(
井水、佐野、宮崎、高崎、前出共著の′″導波路型光合
分波器′°電子情報通信学会、光・量子エレクトロニク
ス研究会0QE87−7、PP、47〜53参考)。上
記方向性結合器12.13、および14は波長λ2の光
信号を分波するように構成されている。即ち、光合分波
部10に入射した波長λ2の光信号は方向性結合器12
で分渡され、次いで方向性結合器14で同様に分渡され
て光受信部2に入力される。光送信部1からの波長λ1
の光信号は光合分波部3に入射され、方向性結合器13
.12で分波されずに導波されて光スイッチ11に入力
される。
The optical multiplexing/demultiplexing unit 10 includes directional couplers 12 and 13 having the same structure.
, and 14 are used (
Imizu, Sano, Miyazaki, Takasaki, ``Waveguide type optical multiplexer/demultiplexer'' co-authored by IEICE, Optical and Quantum Electronics Research Group 0QE87-7, PP, 47-53).The above direction. The couplers 12, 13, and 14 are configured to demultiplex the optical signal with the wavelength λ2. That is, the optical signal with the wavelength λ2 that has entered the optical multiplexer/demultiplexer 10 is transferred to the directional coupler 12.
The signal is then distributed in the same manner by the directional coupler 14 and input to the optical receiver 2. Wavelength λ1 from optical transmitter 1
The optical signal is input to the optical multiplexing/demultiplexing section 3, and the optical signal
.. The signal is guided without being demultiplexed at 12 and input to the optical switch 11 .

光スイッチ11は、まったく同じ構造寸法を持つ2つの
単一モード導波路を近接して配置させ、結合領域にプレ
ーナ電@15.16を配置したものである(西原、春名
、栖原共著の′”光集積回路′”、オーム社発行、昭和
60年2月25日第1版第1刷発行、PP、304〜3
06参考)。光スイッチ11は直流電源17による印加
電圧Vによって2つの導波路を伝搬する導波光に伝搬定
数差Δβを生じさぜ、例えば矢印18のごとく伝搬して
きた波長λ1の光信号を矢印1つまたは矢印20のごと
く伝搬させることができる。また、矢印21の如く伝搬
してきた波長λ2の光信号を欠〔122または矢印23
の如く伝搬さぜることかできる。 即ち、矢印18(2
1)の光信号か矢印20 (23)へ伝搬する条件とし
て、Δβ=0、L/j =2V+1 (V=O11,2
、・・・)・・・ (1) を満足するようにプレーナ電圧15.16に対する印加
電圧■を調整し、 また、矢印18(21)の光信号か矢印1つ(22)へ
伝搬する条件として、 (j/L)2十(ΔβfJ/π)2=(2V)2・・・
・・ (2) 但し、p:結合部の長さ、  L:完全結合長を満足す
るようにプレーナ電圧15.16に対する印加電圧Vを
調整することにより、自局および他局からの光信号を監
視したり、双方向通信を行っなりすることかできる。通
常の双方向通信は式(2)を満足するように印加電圧V
を調整し、自局および他局からの光信号を監視したいと
きには式(1)を満足するように印加型Hvを調整する
The optical switch 11 has two single-mode waveguides with exactly the same structural dimensions placed close to each other, and a planar electric @15.16 placed in the coupling region (Co-authored by Nishihara, Haruna, and Suhara). Photonic Integrated Circuits’”, published by Ohmsha, 1st edition, 1st printing published on February 25, 1985, PP, 304-3
06 reference). The optical switch 11 generates a propagation constant difference Δβ in the guided light propagating through the two waveguides by the applied voltage V from the DC power source 17, and converts the optical signal with the wavelength λ1 propagating as shown by the arrow 18 into one arrow or the arrow 18, for example. 20 can be propagated. In addition, the optical signal of wavelength λ2 that has propagated as shown by arrow 21 is missing [122 or arrow 23
It can be propagated as follows. That is, arrow 18 (2
The conditions for the optical signal in 1) to propagate toward arrow 20 (23) are Δβ=0, L/j=2V+1 (V=O11,2
,...)... (1) Adjust the applied voltage ■ to the planar voltage 15.16 so as to satisfy the following, and also the conditions for the optical signal of arrow 18 (21) to propagate to one arrow (22). As, (j/L)20(ΔβfJ/π)2=(2V)2...
... (2) However, by adjusting the applied voltage V with respect to the planar voltage 15.16 so that p: the length of the coupling part and L: the complete coupling length, the optical signals from the own station and other stations can be It can be used for monitoring and two-way communication. In normal two-way communication, the applied voltage V
When it is desired to monitor optical signals from the own station and other stations, the applied Hv is adjusted so as to satisfy equation (1).

ここで、自局の光信号の監視は、矢印18から矢印20
の如く伝搬してきた光信号を光受信器24で受信するこ
とにより行なわれる。この場合、例えは、光受信器24
で受信した信号レベルか初期値からどの程度劣化したか
を比教することにより、光送信部1の取換えの判断を行
うことができる。
Here, the monitoring of the optical signal of the own station is performed from arrow 18 to arrow 20.
This is done by receiving an optical signal propagated as shown in FIG. In this case, for example, the optical receiver 24
By determining how much the received signal level has deteriorated from its initial value, it is possible to determine whether to replace the optical transmitter 1.

また、他局からの光信号の監視は矢印21から矢印23
の如く伝搬してきた光信号を光受信器25で受信するこ
とにより行う。
Also, monitor optical signals from other stations from arrow 21 to arrow 23.
This is done by receiving the optical signal propagated as shown in FIG.

次に本発明の別の実施例について説明する。Next, another embodiment of the present invention will be described.

第2図に示ずように、この別の実施例による監視機能付
波長多重伝送モジュール41は、4波長(λ8、λ2、
λ3およびλ4)多重伝送モジュルの棺成例(光集積回
路)であり、主として、光送信部1.27、光受信部2
.28、光合分波器26、例えば2×2型の光スイッチ
11よりなる。このように本発明による実施例では波長
多重数は何波長でも適用することができる。
As shown in FIG. 2, the wavelength division multiplexing transmission module 41 with monitoring function according to this other embodiment has four wavelengths (λ8, λ2,
λ3 and λ4) This is an example of a multiplex transmission module (optical integrated circuit), and mainly includes an optical transmitter 1.27 and an optical receiver 2.
.. 28, an optical multiplexer/demultiplexer 26, which is composed of, for example, a 2×2 type optical switch 11; As described above, in the embodiment according to the present invention, any number of wavelengths can be multiplexed.

光合分波器26は、方向性結合器2つ、30と、マツハ
ジェンター型光分波器31とよりなる。方向性結合器2
9は波長λ2の光信号を分波し、波長λ1の光信号をそ
のまま導波する構成てあり、方向性結合器30は波長λ
4の光信号を分渡し、波長λ3の光信号をそのま′i導
波する構成のものである。マツハジェンター型光分波器
24は、3dB(デシベル)のカプラ31.32と、伝
送路長が、Illと、I!2との異なる導波IRI33
.311から構成されている。なお、光スイッチ11の
構成は第1図で示した実施例の場合と同しである。但し
、監視部の構成か異なっている。即ち、矢印25の如く
伝搬してくる光信号は、波長λ1、λ3の光信号であり
、光受信器24の前に設けられたチュナブル光分波器3
6でそれら異波長の光信号を分離して、光受信器24て
受信される。このようにして上記波長λ0、λ、の光信
号を独立に監視することができる。同様に、矢印38の
如く伝搬してきた光信号にも波長λ2とλ4の光信号が
含まれているので、チューナブル光分波器25によって
各々独立に光信号を監視することができる6また、光受
信器24.25にそれぞれの波長値をモニタする装置(
例えば、光波長計、光スペクトラムアナライザ等)を設
?−)ておけは、それぞれの中心波長ずれをモニタする
ことも可能である。そして、このモニタ信号を光送信部
1.7にフィードバックずれは、中心波長を常に一定に
保って光信号を送出することができる。また、光強度も
同様にフィードバックすれば、光強度の制御も可能であ
る。
The optical multiplexer/demultiplexer 26 includes two directional couplers 30 and a Matsuha Genter type optical demultiplexer 31. Directional coupler 2
9 is configured to demultiplex an optical signal with wavelength λ2 and guide the optical signal with wavelength λ1 as it is, and directional coupler 30 is configured to separate the optical signal with wavelength λ2.
4, and the optical signal of wavelength λ3 is directly guided. The Matsuha Genter type optical demultiplexer 24 includes 3 dB (decibel) couplers 31, 32, transmission path lengths Ill, I! Different waveguide IRI33 with 2
.. 311. Note that the configuration of the optical switch 11 is the same as that in the embodiment shown in FIG. However, the configuration of the monitoring section is different. That is, the optical signals propagating as indicated by the arrow 25 are optical signals with wavelengths λ1 and λ3, and are transmitted through the tunable optical demultiplexer 3 provided in front of the optical receiver 24.
6 separates the optical signals of different wavelengths, and the optical signals are received by an optical receiver 24. In this way, the optical signals of wavelengths λ0 and λ can be independently monitored. Similarly, since the optical signal propagated as indicated by the arrow 38 also includes optical signals with wavelengths λ2 and λ4, each of the optical signals can be independently monitored by the tunable optical demultiplexer 256. The optical receivers 24 and 25 are equipped with a device (
(e.g., optical wavelength meter, optical spectrum analyzer, etc.)? -) It is also possible to monitor each center wavelength shift. The feedback shift of this monitor signal to the optical transmitter 1.7 allows the optical signal to be transmitted while keeping the center wavelength constant. Furthermore, if the light intensity is also fed back in the same way, the light intensity can also be controlled.

[発明の効果] 以上、本発明によれば、波長多重伝送システムにおいて
、光ファイバの切断・劣化、自局および他局側の光送・
受信部の故障、光送信部の中心波長変動等による通信不
能状態の監視を自局および他局の各局内で行うことかで
き、通信不能に対し早期対策が打てる。
[Effects of the Invention] As described above, according to the present invention, in a wavelength division multiplexing transmission system, cutting and deterioration of optical fibers, optical transmission and
It is possible to monitor communication failures due to failures in the receiver, fluctuations in the center wavelength of the optical transmitter, etc. within the own station and other stations, allowing early countermeasures to be taken against communication failures.

また、チューナブル光分波器を設けたことによす、異な
った波長の複数の光信号をそれぞれ独立に監視すること
か出来る。
Further, by providing a tunable optical demultiplexer, it is possible to independently monitor a plurality of optical signals having different wavelengths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示ず構成図、第2図は本発明
の別の実施例を示ず構成図、第3 r;91は従来例を
示すブロック構成図である。 図中、1及び27は光送信部、2及び28は光受信部、
10及び26は光合分波部、4は光ファイバ、40及び
41は波長多重伝送モジュル、11は光スイッチ、24
及び25は光受信器、36及び37はチューナブル光分
波器である。
FIG. 1 is a block diagram not showing an embodiment of the present invention, FIG. 2 is a block diagram not showing another embodiment of the present invention, and 3rd r; 91 is a block diagram showing a conventional example. In the figure, 1 and 27 are optical transmitters, 2 and 28 are optical receivers,
10 and 26 are optical multiplexing/demultiplexing units, 4 is an optical fiber, 40 and 41 are wavelength multiplexing transmission modules, 11 is an optical switch, 24
and 25 are optical receivers, and 36 and 37 are tunable optical demultiplexers.

Claims (1)

【特許請求の範囲】 1、光送・受信部の後に光合分波部を設け、該光合分波
部の後に光ファイバを接続し、波長の異なる複数の光信
号を伝送する為の波長多重伝送モジュールにおいて、上
記光合分波部と上記光ファイバとの間に光スイッチを設
けて、この光スイッチの1入力および1出力を光合分波
部および光ファイバと接続し、残りの1入力および1出
力に光受信器を接続し、上記光スイッチの駆動電圧を制
御することにより、自局および他局からの上記光信号を
上記光受信器で監視する為の監視機能を設けたことを特
徴とする監視機能付波長多重伝送モジュール。 2、上記光受信器に受信する上記光信号を分波するため
上記光スイッチと上記光受信器との間にチューナブル光
分波器を設けたことを特徴とする請求項1の監視機能付
波長多重伝送モジュール。
[Claims] 1. Wavelength multiplexing transmission for transmitting a plurality of optical signals with different wavelengths by providing an optical multiplexing/demultiplexing unit after the optical transmitting/receiving unit and connecting an optical fiber after the optical multiplexing/demultiplexing unit. In the module, an optical switch is provided between the optical multiplexer/demultiplexer and the optical fiber, one input and one output of this optical switch are connected to the optical multiplexer/demultiplexer and the optical fiber, and the remaining one input and one output are connected to the optical multiplexer/demultiplexer and the optical fiber. A monitoring function is provided for monitoring the optical signals from the own station and other stations with the optical receiver by connecting an optical receiver to the optical switch and controlling the driving voltage of the optical switch. Wavelength multiplexing transmission module with monitoring function. 2. The monitoring function according to claim 1, further comprising a tunable optical demultiplexer provided between the optical switch and the optical receiver for demultiplexing the optical signal received by the optical receiver. Wavelength multiplexing transmission module.
JP63202639A 1988-08-16 1988-08-16 WDM module with monitoring function Expired - Lifetime JP2518021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63202639A JP2518021B2 (en) 1988-08-16 1988-08-16 WDM module with monitoring function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202639A JP2518021B2 (en) 1988-08-16 1988-08-16 WDM module with monitoring function

Publications (2)

Publication Number Publication Date
JPH0252316A true JPH0252316A (en) 1990-02-21
JP2518021B2 JP2518021B2 (en) 1996-07-24

Family

ID=16460671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202639A Expired - Lifetime JP2518021B2 (en) 1988-08-16 1988-08-16 WDM module with monitoring function

Country Status (1)

Country Link
JP (1) JP2518021B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104608U (en) * 1991-02-19 1992-09-09 日立電線株式会社 Waveguide type wavelength division multiplexing transmitter/receiver module
FR2685498A1 (en) * 1991-12-23 1993-06-25 Corning Inc OPTICAL DEVICE WITH PROXIMITY COUPLING BETWEEN TWO INTEGRATED WAVEGUIDES WITH REDUCED DIMENSIONS AND INTEGRATED OPTICAL COMPONENT BY APPLYING THEM.
JPH05333248A (en) * 1992-06-01 1993-12-17 Hitachi Cable Ltd Wavelength division multiplex system transmit-receive module and optical transmitter using same
JPH07154325A (en) * 1993-11-26 1995-06-16 Nec Corp Light emitting array module and control method for the same
US10962710B2 (en) * 2018-06-04 2021-03-30 The Boeing Company Multidimensional optical waveguide in planar dielectric structures
WO2022161410A1 (en) * 2021-01-28 2022-08-04 华为技术有限公司 Integrated optical transceiver and optical line terminal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399631A (en) * 1986-10-15 1988-04-30 Matsushita Electric Ind Co Ltd Monitoring system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399631A (en) * 1986-10-15 1988-04-30 Matsushita Electric Ind Co Ltd Monitoring system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104608U (en) * 1991-02-19 1992-09-09 日立電線株式会社 Waveguide type wavelength division multiplexing transmitter/receiver module
FR2685498A1 (en) * 1991-12-23 1993-06-25 Corning Inc OPTICAL DEVICE WITH PROXIMITY COUPLING BETWEEN TWO INTEGRATED WAVEGUIDES WITH REDUCED DIMENSIONS AND INTEGRATED OPTICAL COMPONENT BY APPLYING THEM.
US5448658A (en) * 1991-12-23 1995-09-05 Corning Incorporated Integrated optical proximity coupler
US5521993A (en) * 1991-12-23 1996-05-28 Corning Incorporated Process for manufacturing an integrated optical proximity coupler
JPH05333248A (en) * 1992-06-01 1993-12-17 Hitachi Cable Ltd Wavelength division multiplex system transmit-receive module and optical transmitter using same
JPH07154325A (en) * 1993-11-26 1995-06-16 Nec Corp Light emitting array module and control method for the same
US10962710B2 (en) * 2018-06-04 2021-03-30 The Boeing Company Multidimensional optical waveguide in planar dielectric structures
WO2022161410A1 (en) * 2021-01-28 2022-08-04 华为技术有限公司 Integrated optical transceiver and optical line terminal

Also Published As

Publication number Publication date
JP2518021B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US6366378B1 (en) Optical multiplexing and demultiplexing
US6185023B1 (en) Optical add-drop multiplexers compatible with very dense WDM optical communication systems
US5748349A (en) Gratings-based optical add-drop multiplexers for WDM optical communication system
US6535309B1 (en) Optical multiplexing/demultiplexing apparatus and optical multiplexing/demultiplexing method
US6281997B1 (en) Dense WDM optical multiplexer and demultiplexer
US6061157A (en) Optical wavelength multiplexing and demultiplexing device and an optical transmission system using the same
US20190349112A1 (en) Optical Signal Processing Device
EP3499282B1 (en) Polarization independent optical device
JP2977024B2 (en) Optical circuit for wavelength division multiplexing communication and optical transmission communication system including the same
US6348984B1 (en) Optical add/drop multiplexer
US6567196B1 (en) Dense WDM optical multiplexer and demultiplexer
WO1998052314A3 (en) An add and drop node for optical communication systems
US6205269B1 (en) Optical add/drop multiplexer
US8494369B2 (en) Planar lightwave circuit
EP0930799A1 (en) A reconfigurable branching unit for a submarine communications system
US6304351B1 (en) Universal branching unit
JPH0252316A (en) Wavelength multiplex transmission module with monitoring function
EP0518570A2 (en) Optical wavelength-division multiplex modules
US6782168B2 (en) Apparatus for and method of monitoring wavelength multiplexed signal light as well as optical transmission system using the same
WO1998049794A3 (en) Low loss, optical add/drop wdm node
EP1009120A2 (en) Multichannel optical ADD/DROP, multiplexor/demultiplexor
EP0967752A2 (en) WDM transmission system
JP6251206B2 (en) Optical transmission / reception system
JP2007155777A (en) Monitoring circuit
JP4755124B2 (en) Manufacturing method of optical transmission module