JPS6185169A - Concentration of albumen - Google Patents

Concentration of albumen

Info

Publication number
JPS6185169A
JPS6185169A JP59205737A JP20573784A JPS6185169A JP S6185169 A JPS6185169 A JP S6185169A JP 59205737 A JP59205737 A JP 59205737A JP 20573784 A JP20573784 A JP 20573784A JP S6185169 A JPS6185169 A JP S6185169A
Authority
JP
Japan
Prior art keywords
membrane
tube
albumen
egg white
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59205737A
Other languages
Japanese (ja)
Inventor
Shunichi Shimatani
俊一 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP59205737A priority Critical patent/JPS6185169A/en
Publication of JPS6185169A publication Critical patent/JPS6185169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Meat, Egg Or Seafood Products (AREA)

Abstract

PURPOSE:To enable the concentration of albumen, in high efficiency, by using a porous membrane of a hydrophobic polymer permeable to steam and impermeable to water, contacting albumen of a specific temperature to one surface of the membrane, permeating the steam generated from the albumen through the membrane to the other surface, and cooling and condensing the permeated steam. CONSTITUTION:One surface of a porous tubular membrane 2 made of a hydrophobic polymer permeable to steam and impermeable to water (e.g. porous membrane made of a fluorine resin such as polytetrafluoroethylene resin) is made to contact with albumen heated at a specific temperature and passed through the path 3 formed between the outer cylinder 1 and the tubular membrane 2. A heat-transfer tube 9 maintained at a specific low temperature is placed to the side of the other surface of the porous membrane 2 keeping a proper gap between the membrane. The steam generated from the albumen heated by the heater 6 is transferred through the tubular membrane 2, cooled on the heat-transfer tube 9 and condensed. Since the albumen composed of proteins cannot permeate through the tubular membrane 2, the albumen can be concentrated in high efficiency.

Description

【発明の詳細な説明】 本発明は卵白の濃縮方法に関し、卵白から水分を除去し
て、これを濃縮する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for concentrating egg white, and more particularly, to a method for removing water from egg white and concentrating it.

卵白は、マヨネーズ等に加工される卵黄を卯から除去し
た後に多量に得られるもので、固形温度約12%、残余
水分からなり、固形分の約85%はアルブミンが主成分
をなすタンパク質である。
Egg white is obtained in large quantities after removing the egg yolk from rabbits to be processed into mayonnaise, etc. It has a solid temperature of about 12% and is composed of residual water, and about 85% of the solid content is protein, the main component of which is albumin. .

このような卵白は、その起泡性を利用して、クリーム等
として食品分野において種々利用されている。しかし、
上記のように、卵白においては、水分が90%近くを占
めるうえに、卵黄分離後に大量に生成し、従って、従来
より、卵白は、濃縮して、固形分濃度を高めた後に保管
され、或いは輸送され、そのためのコストの低減化が図
られている。
Such egg whites are used in various ways in the food field as creams and the like by taking advantage of their foaming properties. but,
As mentioned above, egg whites account for nearly 90% water and are produced in large quantities after separation of the yolks. Therefore, conventionally, egg whites have been condensed to increase the solid content concentration before being stored, or The cost of transportation is being reduced.

従来、卵白の濃縮方法としては、例えば、逆浸透法や限
外濾過法が採用されているが、卵白はこのような膜処理
のためには固形分濃度が高いために、かかる従来の膜処
理法によれば、膜表面にゲル層が生じたり、或いは膜が
容易に目詰まりを生じるために、膜処理の過程において
経時的に速やかに透水速度が低下し、効率に劣るうえに
、高濃縮することが困難である。特に、逆浸透法によれ
ば、高圧で卵白を処理するので、卵白に大きい剪断力が
作用する結果、卵白に含まれるアルブミン等の有用なタ
ンパク質成分において分子鎖の切断が起こり、前記した
ような起泡性等の特性が低下することとなる。
Conventionally, methods for concentrating egg whites include reverse osmosis and ultrafiltration methods, but egg whites have a high solid content concentration that is not suitable for such conventional membrane treatments. According to the method, because a gel layer is formed on the membrane surface or the membrane is easily clogged, the water permeation rate rapidly decreases over time during the membrane treatment process, resulting in poor efficiency and high concentration. difficult to do. In particular, according to the reverse osmosis method, egg whites are treated under high pressure, and as a result, large shearing forces act on the egg whites, resulting in molecular chain scission in useful protein components such as albumin contained in the egg whites, resulting in the above-mentioned problems. Properties such as foaming properties will deteriorate.

本発明は、上記した問題を解決するためになされたもの
であって、特に、卵白を効率よく濃縮する方法を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and in particular, it is an object of the present invention to provide a method for efficiently concentrating egg white.

本発明による卵白の濃縮方法は、水蒸気は透過させるが
、水は透過させない疎水性重合体多孔質膜の一面側に所
定の温度の卵白を接触させ、この卵白から水蒸気を発生
させ、これを上記多孔質膜の他面側に透過させ、冷却し
て凝縮させることを特徴とする。
The method for concentrating egg white according to the present invention involves bringing egg white at a predetermined temperature into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but not water. It is characterized by permeating through the other side of the porous membrane, cooling and condensing it.

本発明の方法においては、卵白から発生し、疎水性重合
体多孔質膜を透過した水蒸気を冷却し、凝縮させるため
に、次のいずれかの方法によることができる。
In the method of the present invention, any of the following methods can be used to cool and condense the water vapor generated from the egg white and permeated through the hydrophobic polymer porous membrane.

その第1は、水蒸気は透過させるが、水や溶質は透過さ
せない疎水性重合体多孔質膜の一面側に所定の温度の卵
白を接触させ、この多孔質膜の他面側に膜面から適宜の
間隔をおいて所定の低温に保持した伝熱壁を設け、上記
卵白から発生し、多孔質膜を透過した水蒸気を上記伝熱
壁土で冷却し、凝縮させて凝縮水を得る一方、主として
タンパク質からなる卵白自体は膜を透過しないので、こ
れを高い除去率にて濃縮するのである。
First, egg white at a predetermined temperature is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water or solutes to pass through, and then the other side of the porous membrane is coated with appropriate amount of water from the membrane surface. A heat transfer wall maintained at a predetermined low temperature is provided at intervals of Since the albumen itself does not pass through the membrane, it is concentrated at a high removal rate.

第2は、疎水性重合体多孔質膜の一面側に上記のように
所定温度の卵白を接触させ、他面側には所定の低温の冷
却媒体、例えば、冷却水を接触させることにより、卵白
から発生し、多孔質膜を透過した水蒸気を直接に冷却媒
体にて冷却して凝縮させ、これを冷却媒体中に得る一方
、卵白を上記と同様に濃縮するのである。
Second, by bringing the egg white at a predetermined temperature into contact with one side of the hydrophobic polymer porous membrane as described above, and bringing the other side into contact with a predetermined low-temperature cooling medium, such as cooling water, the egg white is heated. The water vapor generated from the porous membrane and passed through the porous membrane is directly cooled and condensed in the cooling medium, and is obtained in the cooling medium, while the egg white is concentrated in the same manner as above.

卵白の加熱温度は40℃以下であることが好ましい。4
0℃を超える高温に加熱するときは、卵白の変質や凝固
が起こることがあるからである。
The heating temperature of egg white is preferably 40°C or lower. 4
This is because when heating to a high temperature exceeding 0°C, deterioration or coagulation of the egg white may occur.

本発明の方法においては、上記重合体多孔質膜は、卵白
に対して疎水性であり、更に卵白自体は透過させないが
、水蒸気は透過させる性質を有することが必要である。
In the method of the present invention, it is necessary that the above-mentioned porous polymer membrane is hydrophobic to egg white and has the property of not allowing the egg white itself to pass therethrough, but allowing water vapor to pass therethrough.

従って、かかる疎水性重合体多孔質膜は、通常、0.0
5〜50μm、好ましくは0.1〜10μm程度の微孔
を有し、且つ、多孔度が50%以上であることが好まし
い。また、膜厚は特に制限されるものではないが、通常
、1〜300μm、好ましくは5〜50μm程度である
Therefore, such hydrophobic polymer porous membranes usually have 0.0
It is preferable that it has micropores of about 5 to 50 μm, preferably about 0.1 to 10 μm, and has a porosity of 50% or more. Further, the film thickness is not particularly limited, but is usually about 1 to 300 μm, preferably about 5 to 50 μm.

従って、本発明においては、かかる多孔質膜として、ポ
リテトラフルオロエチレン樹脂のようなフッ素系樹脂か
らなる多孔質膜が、疎水性であると共に耐熱性にすぐれ
るために特に好ましく用いられる。また、例えば、フッ
化ビニリデン樹脂やエチレン−テトラフルオロエチレン
共重合樹脂等のようなフッ素系樹脂の溶液又は溶融液を
押出成形して得られる多孔質膜も好ましく用いられる。
Therefore, in the present invention, a porous membrane made of a fluororesin such as polytetrafluoroethylene resin is particularly preferably used as the porous membrane because it is hydrophobic and has excellent heat resistance. Also preferably used is a porous membrane obtained by extrusion molding a solution or melt of a fluororesin such as vinylidene fluoride resin or ethylene-tetrafluoroethylene copolymer resin.

しかし、例えばポリスルホンやセルロース樹脂のような
親水性樹脂からなる多孔質膜でも、表面にフッ素系樹脂
やシリコーン樹脂等の溌水性樹脂を被覆して疎水性の多
孔質表面を付与するときは、これら樹脂膜も使用するこ
とができる。
However, even if a porous membrane is made of a hydrophilic resin such as polysulfone or cellulose resin, when the surface is coated with a water-repellent resin such as a fluororesin or silicone resin to provide a hydrophobic porous surface. Resin films can also be used.

次に、本発明の方法を実施するのに好適な装置について
、図面に基づいて説明する。
Next, an apparatus suitable for carrying out the method of the present invention will be described based on the drawings.

第1図及び第2図は上記第1の方法を実施するために好
適な装置の一例を示す。
1 and 2 show an example of an apparatus suitable for carrying out the first method described above.

即ち、外管1内には上記したような疎水性重合体多孔質
膜よりなる膜管2が同軸的に配設されており、外管と膜
管との間に所定の温度の卵白のための原液通路3が形成
されている。従って、外管は保温性を有することが好ま
しく、例えば樹脂より形成される。原液通路3には卵白
の導入管4及び導出管5が接続され、必要に応じてこれ
ら管路に設けた加熱器6により所定の温度に加熱された
卵白が上記管4及び5にて原液回路に循環して流通され
る。卵白は、弁7を備えた供給管8から適宜に原液回路
に補充され、また、図示しないが、排出管により必要に
応じて原液回路から一部が排出される。
That is, the membrane tube 2 made of the above-mentioned hydrophobic polymer porous membrane is coaxially disposed inside the outer tube 1, and the egg white at a predetermined temperature is placed between the outer tube and the membrane tube. A stock solution passage 3 is formed. Therefore, the outer tube preferably has heat retaining properties, and is made of resin, for example. An inlet pipe 4 and an outlet pipe 5 for egg white are connected to the stock solution passage 3, and the egg white, which is heated to a predetermined temperature by a heater 6 provided in these pipes as necessary, is passed through the pipes 4 and 5 into the stock solution circuit. It is circulated and distributed. Egg white is appropriately replenished into the stock solution circuit through a supply pipe 8 equipped with a valve 7, and a portion of the egg white is discharged from the stock solution circuit as necessary through a discharge pipe (not shown).

膜管2の内側には、更にこれと同軸的に伝熱管9が配設
され、前記膜管との間に蒸気空間10を有するように適
宜の間隔がおかれている。蒸気拡散空間は、水蒸気の凝
縮効率の点からは狭い方が好ましいが、あまり狭くする
ときは、却って凝縮液の流通抵抗となるので、通常、0
.2〜5龍程度が好適である。伝熱管は伝熱性の高い材
料、例えば金属からなる薄肉管である。この伝熱管には
冷却媒体のための導入管11及び導出管12が接続され
、例えば冷却水のような冷却媒体が伝熱管内に循環して
流通される。また、蒸気拡散空間には膜管を透過し、伝
熱管にて冷却され、凝縮した凝縮水の導出管13が接続
されている。
A heat transfer tube 9 is further disposed coaxially inside the membrane tube 2, and is spaced at an appropriate distance so as to have a steam space 10 between it and the membrane tube. It is preferable for the vapor diffusion space to be narrow from the point of view of water vapor condensation efficiency, but if it is made too narrow, it will actually create a flow resistance for the condensate, so it is usually 0.
.. Approximately 2 to 5 dragons are suitable. A heat exchanger tube is a thin-walled tube made of a material with high heat conductivity, such as metal. An inlet pipe 11 and an outlet pipe 12 for a cooling medium are connected to the heat exchanger tube, and a cooling medium such as cooling water is circulated through the heat exchanger tube. Further, a discharge pipe 13 for condensed water that has passed through the membrane tube, been cooled by the heat exchanger tube, and condensed is connected to the vapor diffusion space.

尚、膜管を構成する前記多孔質膜は、一般に強度が小さ
いので、図示しないが、適宜の支持体上に支持されて形
成されているのが好ましい。このような支持体は、多孔
質膜を補強すると共に、水蒸気を透過させることができ
れば足り、例えば、ポリアミドからなる織布又は不織布
や、セラミック製の多孔質管が好適に用いられる。
Note that, since the porous membrane constituting the membrane tube generally has low strength, it is preferably supported on a suitable support (not shown). Such a support only needs to be able to reinforce the porous membrane and allow water vapor to pass therethrough, and for example, a woven or nonwoven fabric made of polyamide or a porous tube made of ceramic is preferably used.

また、装置は、第3図に示すように、外管1内に複数の
膜管2が配設され、各膜管が内部に伝熱管9を有すると
共に、外管と各膜管との間の空間が原液通路3であるよ
うに構成されていてもよい。
Further, as shown in FIG. 3, the device includes a plurality of membrane tubes 2 disposed inside an outer tube 1, each membrane tube having a heat transfer tube 9 inside, and a space between the outer tube and each membrane tube. The space may be configured as the stock solution passage 3.

第4図及び第5図は、本発明の方法において、特に好適
に用いることができる装置を示し、第1図と同じ部材に
は同じ参照番号が付されている。
4 and 5 show an apparatus which can be particularly advantageously used in the method of the invention, and the same parts as in FIG. 1 are given the same reference numerals.

即ち、外管1内に膜管2が同軸的に配設されており、外
管と膜管との間に原液通路3が形成されている点は、前
記した第1図の装置と同しであるが、この装置において
は、膜管2の内側にこれに接してスペーサ14が配設さ
れ、更に、このスペーサの内側にこれに接して伝熱管9
が配設されている。
That is, the membrane tube 2 is disposed coaxially within the outer tube 1, and the stock solution passage 3 is formed between the outer tube and the membrane tube, which is the same as the device shown in FIG. 1 described above. However, in this device, a spacer 14 is provided on the inside of the membrane tube 2 in contact with it, and a heat transfer tube 9 is further provided on the inside of this spacer in contact with it.
is installed.

即ち、スペーサは伝熱管によって冷却されるので、スペ
ーサ自体が冷却された蒸気拡散空間を形成していると共
に、凝縮水の通路を形成する。従って、卵白から発生し
、膜管を透過した蒸気は、このスペーサ及び伝熱管にて
冷却され、スペーサは凝縮した凝縮水の導出管13に連
通されている。
That is, since the spacer is cooled by the heat transfer tube, the spacer itself forms a cooled vapor diffusion space and also forms a passage for condensed water. Therefore, the steam generated from the egg white and transmitted through the membrane tube is cooled by the spacer and the heat transfer tube, and the spacer is communicated with the condensed water outlet tube 13.

このスペーサは、膜管を透過した蒸気が伝熱管まで透過
し得るように多孔質であると共に、伝熱壁によって冷却
されて凝縮した水が少なくとも所定方向に通液性を有す
ることが必要であり、更に、熱伝導性にすぐれているこ
とが好ましい。図示した装置においては、スペーサは生
じた凝縮水が鉛直方向に流下し得るように、スペーサは
少なくとも鉛直方向に通液性を有することが必要である
This spacer must be porous so that the steam that has passed through the membrane tube can pass through to the heat transfer tube, and must also have permeability in at least a predetermined direction for water that has been cooled and condensed by the heat transfer wall. Furthermore, it is preferable that the material has excellent thermal conductivity. In the illustrated apparatus, the spacer needs to have liquid permeability at least in the vertical direction so that the generated condensed water can flow down in the vertical direction.

勿論、スペーサは多孔質膜又は伝熱管表面に、又はこれ
らの両者に予め接合されていてもよい。
Of course, the spacer may be bonded in advance to the porous membrane, the heat exchanger tube surface, or both.

上記スペーサとしては、例えば、10−1000メツシ
ユの天然又は合成のit、例えば、ポリエチレン、ポリ
エステル、ポリアミド等の繊維からなる織布、不織布、
炭素繊維布、金属網等が好ましく用いられる。スペーサ
の厚みは特に制限されるものではないが、余りに厚いと
きは、却って蒸気の凝縮効率を低下させるので、通常、
5龍以下、特に0.2〜3菖鳳の範囲が好ましい。即ち
、厚みの小さいスペーサを用いることにより、蒸気拡散
空間の間隔を小さくすることができると同時に水蒸気の
凝縮効率及び凝縮水の取得速度を高めることができる。
The spacer may be, for example, a 10-1000 mesh natural or synthetic IT, a woven fabric or a non-woven fabric made of fibers such as polyethylene, polyester, polyamide, etc.
Carbon fiber cloth, metal mesh, etc. are preferably used. The thickness of the spacer is not particularly limited, but if it is too thick, it will actually reduce the steam condensation efficiency, so normally,
The range of 5 dragons or less, particularly 0.2 to 3 iris is preferred. That is, by using a spacer with a small thickness, the interval between the vapor diffusion spaces can be reduced, and at the same time, the efficiency of condensing water vapor and the acquisition rate of condensed water can be increased.

原液通路3には卵白の導入管4及び導出管5が接続され
、必要に応じてこの管路に加熱器6が備えられる。卵白
が弁7を備えた供給管8から原液回路に補充されるのは
、前記装置と同じである。
An introduction pipe 4 and an output pipe 5 for egg white are connected to the stock solution passage 3, and a heater 6 is provided in this pipe as necessary. It is the same as in the previous device that the egg whites are replenished into the concentrate circuit through a supply pipe 8 with a valve 7.

また、伝熱管には前記と同様に、冷却媒体のための導入
管11及び導出管12が接続され、冷却媒体が伝熱管内
に循環して流通される。
Further, the heat exchanger tube is connected to the inlet tube 11 and the outlet tube 12 for the cooling medium, as described above, and the cooling medium is circulated within the heat exchanger tube.

第1図及び第2図に示した第1の装置においては、所定
の温度の卵白は、原液通路3に導入され、卵白より発生
した水蒸気は膜管2を透過して蒸気空間10に至り、伝
熱管9の表面上で冷却されて凝縮水を生じ、伝熱管表面
を流下して凝縮水導出管13より装置外に導かれる。原
液中の卵白固形分は膜管により透過を阻止され、原液中
に濃縮される。この装置によれば、卵白を濃縮すると共
に、凝縮水として実質的に純水を得ることができる。
In the first apparatus shown in FIGS. 1 and 2, egg white at a predetermined temperature is introduced into the concentrate passage 3, and the water vapor generated from the egg white passes through the membrane tube 2 and reaches the vapor space 10. The condensed water is cooled on the surface of the heat exchanger tube 9, flows down the surface of the heat exchanger tube, and is led out of the apparatus through the condensed water outlet tube 13. The egg white solids in the stock solution are prevented from permeating through the membrane tube and concentrated in the stock solution. According to this device, egg white can be concentrated and substantially pure water can be obtained as condensed water.

第4図に示した装置によれば、卵白より発生した水蒸気
は膜管2を透過し、スペーサ14及び伝熱管9によって
冷却され、凝縮して、スペーサを流下して凝縮水導出管
13より装置外に導かれる。
According to the apparatus shown in FIG. 4, the water vapor generated from the egg white passes through the membrane tube 2, is cooled by the spacer 14 and the heat transfer tube 9, is condensed, flows down the spacer, and is passed through the condensed water outlet tube 13 into the apparatus. led outside.

第6図及び第7図は前記した第2の方法を実施するのに
好適な装置の一例を示し、第1図と同じ部材には同じ参
照番号が付されている。
6 and 7 show an example of an apparatus suitable for carrying out the second method described above, in which the same parts as in FIG. 1 are given the same reference numerals.

外管l内には前記したような疎水性重合体多孔質膜より
なる膜管2が同軸的に配設されて、外管と膜管との間に
原液通路3が形成され、この原液通路に所定の温度の卵
白が流通され、膜管内には冷却媒体、例えば、冷却水が
流通される。即ち、卵白と冷却媒体は上記膜管を介して
接触される。
A membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube l, and a stock solution passage 3 is formed between the outer tube and the membrane tube. Egg white at a predetermined temperature is passed through the membrane tube, and a cooling medium such as cooling water is passed through the membrane tube. That is, the egg white and the cooling medium are brought into contact through the membrane tube.

原液通路3には卵白を流通させるための汎入管4及び導
出管5が接続され、同様に、膜管2にも冷却媒体を流通
させるための導入管11及び導出管12が接続されてい
る。
An inlet tube 4 and an outlet tube 5 for circulating the egg white are connected to the stock solution passage 3, and an inlet tube 11 and an outlet tube 12 for circulating a cooling medium are similarly connected to the membrane tube 2.

ごの第2の装置によれば、卵白より発生し、膜管壁を透
過した水蒸気は、冷却媒体、例えば、冷却水にて直ちに
冷却されて凝縮し、冷却水中に回収される。前記したと
同様に、必要に応じて卵白は供給管8より補充されつつ
、加熱器6にて加熱されて、管路4及び5により原液回
路を循環され、また、冷却媒体は、必要に応じて冷却媒
体回路に設けた冷却器14により所定の温度に冷却され
つつ、冷却媒体回路を循環され、その一部は凝縮水と共
に取出管15から装置外に取り出される。
According to the second device, the water vapor generated from the egg white and permeated through the membrane tube wall is immediately cooled and condensed in a cooling medium, for example, cooling water, and is collected in the cooling water. As described above, the egg white is replenished from the supply pipe 8 as necessary, heated in the heater 6, and circulated through the stock solution circuit through the pipes 4 and 5, and the cooling medium is supplied as necessary. The coolant is circulated through the coolant circuit while being cooled to a predetermined temperature by a cooler 14 provided in the coolant circuit, and a portion of the coolant is taken out of the apparatus through a take-out pipe 15 along with the condensed water.

この第2の装置によれば、膜管を介して所定の温度の卵
白と冷却媒体とが直接に接触されるので、卵白から発生
した水蒸気は直ちに冷却媒体により冷却されて凝縮し、
冷却媒体中に回収される。従って、蒸気の透過速度が大
きいのみならず、膜管と伝熱壁との間に蒸気空間を設け
た装置よりも小型化し得、単位体積当りの有効膜面積が
大きいので、効率よく卵白の濃縮を行なうことができる
According to this second device, since the egg white at a predetermined temperature and the cooling medium are brought into direct contact through the membrane tube, the water vapor generated from the egg white is immediately cooled by the cooling medium and condensed.
Collected in cooling medium. Therefore, not only the vapor permeation rate is high, but also the device can be made smaller than a device that provides a vapor space between the membrane tube and the heat transfer wall, and the effective membrane area per unit volume is large, so it is possible to efficiently concentrate egg whites. can be done.

図示しないが、第6図に示す装置の変形として、装置は
、複数の膜管が外管内に収容され、各膜管内に冷却媒体
が循環され、外管内において膜管外の空間が原液通路を
なすように形成されていてもよい。
Although not shown, as a modification of the device shown in FIG. 6, the device includes a plurality of membrane tubes housed in an outer tube, a cooling medium is circulated in each membrane tube, and a space outside the membrane tubes in the outer tube serves as a stock solution passage. It may be formed as shown in FIG.

尚、上記したいずれの装置の場合についても、卵白を外
管と膜管との間の原液通路3に流通させ、膜管内に冷却
媒体を流通させるとして本発明の詳細な説明したが、し
かし、原液通路に冷却媒体を流通させ、一方、冷却媒体
通路に卵白を流通させてよいのは勿論である。
In addition, in the case of any of the above-mentioned apparatuses, the present invention has been described in detail assuming that the egg white is passed through the stock solution passage 3 between the outer tube and the membrane tube, and the cooling medium is circulated within the membrane tube. It goes without saying that the cooling medium may be passed through the stock solution passage, while the egg white may be passed through the cooling medium passage.

また、装置が膜管と伝熱管との間にスペーサを有すると
きは、スペーサ自体も低温の伝熱壁によって冷却されて
いるので、膜を透過した蒸気はスペーサ及び伝熱壁によ
って直ちに冷却されて凝縮し、その結果、蒸気の凝縮速
度が大きくなって、卵白の濃縮を高い効率にて行なうこ
とができる。
Furthermore, when the device has a spacer between the membrane tube and the heat transfer tube, the spacer itself is also cooled by the low-temperature heat transfer wall, so the vapor that permeates through the membrane is immediately cooled by the spacer and the heat transfer wall. As a result, the condensation rate of the steam increases, and the egg white can be concentrated with high efficiency.

また、図示した装置はいずれも、原液通路又は冷却媒体
通路が環状に形成されているが、膜管に代わる平板状の
膜壁と伝熱管に代わる平板状の伝熱壁とを、その間に蒸
気拡散空間を設けて、或いは設けることなく、少なくと
も一組を対向して配設し、前記外管に相当する適宜の容
器内に各通路を封入し、各通路に原液又は冷却媒体の循
環のための回路を接続すれば、前記した各装置に対応し
て、断面が方形の原液通路及び冷却媒体通路を有する装
置を得ることができる。更に、上記膜壁と伝熱壁とをス
ペーサを介して接触させて配設すれば、第4図に対応し
た装置を得ることができる。
In addition, in all of the illustrated devices, the raw liquid passage or the cooling medium passage is formed in an annular shape, but a flat membrane wall in place of the membrane tube and a flat heat transfer wall in place of the heat transfer tube are placed between them. At least one set is arranged facing each other with or without a diffusion space, and each passage is enclosed in a suitable container corresponding to the outer tube, and each passage is used for circulation of a stock solution or a cooling medium. By connecting these circuits, it is possible to obtain a device having a stock solution passage and a cooling medium passage each having a rectangular cross section, corresponding to each of the above-mentioned devices. Furthermore, by arranging the membrane wall and the heat transfer wall in contact with each other via a spacer, a device corresponding to FIG. 4 can be obtained.

このような装置も、本発明の方法を実施するのに好適に
用い得ることは明らかであろう。
It will be clear that such an apparatus can also be suitably used to carry out the method of the invention.

以上のように、本発明の方法は、所定の温度の卵白を疎
水性重合体多孔質膜に接触させ、この卵白より発生して
膜を透過した水蒸気を冷却し、凝縮させることにより、
卵白を濃縮するものである。
As described above, the method of the present invention involves bringing egg white at a predetermined temperature into contact with a hydrophobic polymer porous membrane, and cooling and condensing the water vapor generated from the egg white and passing through the membrane.
It concentrates egg whites.

従って、本発明の方法によれば、前記したような圧力差
を駆動力とする逆浸透法や限外濾過法と異なり、温度差
を駆動力としているために加圧を必要とせず、従って、
膜の目詰りや濃度分極がなく、卵白を効率よく高濃縮す
ることができる。更に、加圧を要しないために、アルブ
ミン等の主成分に剪断力が加わらず、変質が生じないほ
か、膜の圧密化も起こらない。
Therefore, according to the method of the present invention, unlike the above-mentioned reverse osmosis method or ultrafiltration method which uses a pressure difference as a driving force, pressurization is not required because a temperature difference is used as a driving force.
Egg white can be highly concentrated efficiently without membrane clogging or concentration polarization. Furthermore, since pressurization is not required, no shearing force is applied to the main components such as albumin, so that no deterioration occurs, and no compaction of the membrane occurs.

以下に本発明の実施例を挙げる。Examples of the present invention are listed below.

実施例1 第1図に示したように、直径40mの合成樹脂製外管内
に、多孔質ポリアミド織布にて裏打ちされたポリテトラ
フルオロエチレン多孔質膜からなる直径26mmの膜管
を同軸的に配設し、更にこの膜管内に直径24+nのス
テンレス鋼製伝熱管を管壁間の間隔が2龍となるように
配設して、装置を構成した。尚、上記多孔質膜は平均孔
径0.2μmの微孔を有し、多孔度80%であって、装
置における有効膜面積は240cdであった。
Example 1 As shown in Figure 1, a membrane tube with a diameter of 26 mm made of a porous polytetrafluoroethylene membrane lined with a porous polyamide woven fabric was coaxially placed inside an outer tube made of synthetic resin with a diameter of 40 m. Furthermore, a stainless steel heat transfer tube having a diameter of 24+n was disposed within the membrane tube so that the interval between the tube walls was 2 mm, thereby constructing an apparatus. The porous membrane had micropores with an average pore diameter of 0.2 μm, a porosity of 80%, and an effective membrane area in the device of 240 cd.

上記装置において、温度4℃の冷却水を伝熱管内に流通
すると共に、表に示すように卵白に代えて、これと同様
な種々の濃度のアルブミン水溶液を40℃の温度で原液
通路に循環供給した。処理の初期段階における凝縮水の
取得速度を表に示す。
In the above device, cooling water at a temperature of 4°C is passed through the heat transfer tube, and as shown in the table, instead of egg white, albumin aqueous solutions with various concentrations similar to this are circulated and supplied to the stock solution passage at a temperature of 40°C. did. The condensate acquisition rate at the initial stage of treatment is shown in the table.

比較のために、同じ条件で純水を処理したときの凝縮水
の取得速度Aに対するアルブミン水溶液処理における凝
縮水の取得速度Bの比B/A比を表に併せて示す。即ち
、アルブミン濃度によらずに、純水とほぼ速度でアルブ
ミン水溶液を濃縮することができる。また、凝縮水の性
状は、いずれの場合もその電気伝導度は2〜3μsであ
った。
For comparison, the table also shows the ratio B/A of the acquisition rate B of condensed water in albumin aqueous solution treatment to the acquisition rate A of condensed water when pure water is treated under the same conditions. That is, an aqueous albumin solution can be concentrated at almost the same rate as pure water, regardless of the albumin concentration. In addition, the electrical conductivity of the condensed water was 2 to 3 μs in all cases.

第8図にアルブミン濃度と、純水処理時の凝縮水取得速
度を1としたときの相対的な初期の凝縮水取得速度との
関係を示す。比較のためにポリオレフィンからなる分画
分子量約20000の限外濾過膜を用いて、温度25℃
、圧力4kg/ad、流速11/分の条件下に膜処理し
たときと同様の関係を併せて示す。限外濾過法によれば
、アルブミン濃度が大きくなるにつれて、凝縮水取得速
度が直線的に低下する。
FIG. 8 shows the relationship between the albumin concentration and the relative initial condensed water acquisition rate when the condensed water acquisition rate during pure water treatment is set to 1. For comparison, an ultrafiltration membrane made of polyolefin with a molecular weight cutoff of approximately 20,000 was used at a temperature of 25°C.
, the same relationship as when membrane treatment was performed under the conditions of a pressure of 4 kg/ad and a flow rate of 11/min is also shown. According to ultrafiltration, the rate of condensate acquisition decreases linearly as the albumin concentration increases.

実施例2 第6図に示すように、直径4011の合成樹脂製外管内
に、実施例1と同じ直径26職園の膜管を同軸的に配設
して、有効膜面積240c+ilの装置を構成した。こ
の装置において、実施例1と同じ条件下での濃度500
0ppmのアルブミン水溶液の処理によって、凝縮水の
取得速度は初期において12kg/lri・時であった
Example 2 As shown in Fig. 6, a membrane tube with the same diameter of 26 mm as in Example 1 was coaxially disposed inside a synthetic resin outer tube with a diameter of 4011 mm to construct a device with an effective membrane area of 240 c+il. did. In this apparatus, a concentration of 500 ml under the same conditions as in Example 1 was used.
With the treatment of 0 ppm albumin aqueous solution, the condensate acquisition rate was initially 12 kg/lri·hr.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施例するのに好適な装置の一
例を示す縦断面図、第2図は第1図において&%A−A
線に沿う断面図、第3図は別の装置を示す断面図、第4
図は本発明の方法において特に好適に用いることができ
る別の装置を示す縦断面図、第5図は第4図において′
41AB−B線に沿う断面図、第6図は更に別の装置を
示す縦断面図、第7図は第6図において線B−B線に沿
う断面図第8図は本発明方法及び限外濾過法によってア
ルブミン水溶液を処理した際のアルブミン濃度と初期段
階における凝縮水取得速度(純水処理時の凝縮水取得速
度を1とする。)との関係を示すグラフである。 1・・・外管、2・・・膜管、3・・・原液通路、9・
・・伝熱管、10・・・蒸気拡散空間、13・・・′a
縮氷水導出管14・・・スペーサ、15・・・冷却媒体
取出管。 第4図 第617
FIG. 1 is a longitudinal cross-sectional view showing an example of an apparatus suitable for carrying out the method of the present invention, and FIG.
3 is a sectional view along the line, FIG. 3 is a sectional view showing another device, FIG.
The figure is a longitudinal sectional view showing another apparatus that can be particularly preferably used in the method of the present invention, and FIG.
6 is a longitudinal sectional view showing yet another device; FIG. 7 is a sectional view taken along line BB in FIG. 6; FIG. It is a graph showing the relationship between the albumin concentration and the condensed water acquisition rate in the initial stage (the condensed water acquisition rate during pure water treatment is set to 1) when an albumin aqueous solution is treated by a filtration method. 1... Outer tube, 2... Membrane tube, 3... Stock solution passage, 9...
... Heat exchanger tube, 10... Vapor diffusion space, 13...'a
Condensed ice water outlet pipe 14...Spacer, 15...Cooling medium outlet pipe. Figure 4 No. 617

Claims (1)

【特許請求の範囲】[Claims] (1)水蒸気は透過させるが、水は透過させない疎水性
重合体多孔質膜の一面側に所定の温度の卵白を接触させ
、この卵白から水蒸気を発生させ、これを上記多孔質膜
の他面側に透過させ、冷却して凝縮させることを特徴と
する卵白の濃縮方法。
(1) Egg white at a predetermined temperature is brought into contact with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through, and water vapor is generated from this egg white, which is then transferred to the other side of the porous membrane. A method for concentrating egg whites, which is characterized by permeation through the side, cooling and condensation.
JP59205737A 1984-10-01 1984-10-01 Concentration of albumen Pending JPS6185169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59205737A JPS6185169A (en) 1984-10-01 1984-10-01 Concentration of albumen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205737A JPS6185169A (en) 1984-10-01 1984-10-01 Concentration of albumen

Publications (1)

Publication Number Publication Date
JPS6185169A true JPS6185169A (en) 1986-04-30

Family

ID=16511827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205737A Pending JPS6185169A (en) 1984-10-01 1984-10-01 Concentration of albumen

Country Status (1)

Country Link
JP (1) JPS6185169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834016A (en) * 2010-03-17 2012-12-19 帝勒萨公司 Membrane filtration and membrane filtration assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834016A (en) * 2010-03-17 2012-12-19 帝勒萨公司 Membrane filtration and membrane filtration assembly

Similar Documents

Publication Publication Date Title
US4620900A (en) Thermopervaporation apparatus
EP0207951B1 (en) Osmotic concentration by membrane
KR100612057B1 (en) Method for the purification of a liquid by membrane distillation, in particular for the production of desalinated water from seawater or brackish water or process water
JPS6362504A (en) Method for concentrating organic component in aqueous solution containing same
JPS6185169A (en) Concentration of albumen
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
Van Gassel et al. An energy-efficient membrane distillation process
JPS60206408A (en) Concentration of stick-water
JPS63182004A (en) Aqueous solution concentration system
JPS60203173A (en) Concentration of fruit juice
JPS6154206A (en) Thermopervaporation apparatus
JPS60147286A (en) Treatment of aqueous solution containing high- molecular substance
JPS60206409A (en) Separation of liquid
JPS60147285A (en) Treatment of aqueous acid or alkali solution
JPS62227492A (en) Method and apparatus for making pure water
JPS60118204A (en) Thermo-pervaporization apparatus
JPS60241845A (en) Method of concentrating raw milk and liquid dairy product obtained from it
JPS60206407A (en) Concentration of stick-water
JPS61164195A (en) Method of treating nuclear power waste water
JPS60226897A (en) Method for concentration of gelatin extraction liquid
JPS60118205A (en) Thermo-pervaporization apparatus
JPS60206410A (en) Method and apparatus for separating liquid
JPH0347521A (en) Separation membrane and usage thereof
JPH06121902A (en) Deaerating device and deaerating method
JPS61164604A (en) Preparation of sterile pure water