JPS60226897A - Method for concentration of gelatin extraction liquid - Google Patents

Method for concentration of gelatin extraction liquid

Info

Publication number
JPS60226897A
JPS60226897A JP8341984A JP8341984A JPS60226897A JP S60226897 A JPS60226897 A JP S60226897A JP 8341984 A JP8341984 A JP 8341984A JP 8341984 A JP8341984 A JP 8341984A JP S60226897 A JPS60226897 A JP S60226897A
Authority
JP
Japan
Prior art keywords
membrane
tube
gelatin
liquid
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8341984A
Other languages
Japanese (ja)
Inventor
Kentaro Tasaka
田坂 謙太郎
Yuji Okawa
雄士 大川
Shunichi Shimatani
俊一 島谷
Jun Nakazawa
中沢 準
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP8341984A priority Critical patent/JPS60226897A/en
Publication of JPS60226897A publication Critical patent/JPS60226897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To concentrate an extracted liquid of gelatin, in high concentration ratio and efficiency, by contacting a hot gelatin extraction liquid to a surface of a porous membrane of a hydrophobic polymer which permeates steam and inhibits the permeation of liquid water, thereby transmitting the steam from the extraction liquid through the membrane to the other side of the membrane, and cooling the steam. CONSTITUTION:A membrane tube 2 composed of a porous membrane of a hydrophobic polymer which permeates steam and inhibits the permeation of liquid water is arranged concentrically to the outer tube 1. The gelatin extraction liquid heated by the heater 6 is introduced into the path 3 of the stock liquid. The steam generated from the liquid is transmitted through the membrane tube 2 to the space 10 for diffusing the steam, and cooled by the heat-transfer tube 9 to form condensed water. The condensed water is allowed to flow down along the surface of the heat-transfer tube,and discharged from the apparatus through the outlet tube 13. The permeation of the geletin in the stock liquid is inhibited by the membrane tube 2, and is concentrated in the extraction liquid.

Description

【発明の詳細な説明】 本発明はゼラチン抽出液を濃縮する方法に関する。[Detailed description of the invention] The present invention relates to a method for concentrating a gelatin extract.

ゼラチンは、動物の皮や翼の構成タンパク質であるコラ
ーゲンを熱水により加水変性させて得られる誘導タンパ
ク質であり、分子量はおよそ15000〜250000
の範囲にある不均一物質であり、平均分子量は約610
00〜67000である。工業製品としてのゼラチンは
、無色又は淡黄色、無味無臭のゼラチン含有量の高い製
品を指し、食品、医薬、写真等の種々の分野で広汎に使
用されている。
Gelatin is a derived protein obtained by hydrodenaturing collagen, which is a constituent protein of animal skin and wings, with hot water, and has a molecular weight of approximately 15,000 to 250,000.
It is a heterogeneous substance with an average molecular weight of about 610.
00-67000. Gelatin as an industrial product refers to a colorless or pale yellow, tasteless and odorless product with a high gelatin content, and is widely used in various fields such as food, medicine, and photography.

このようなゼラチンは、従来、次のような方法によって
製造されている。即ち、例えば、動物の皮、鍵、靭帯、
筋膜等を細かく切り、これを飽和石灰水に2〜3か月間
浸漬し、水洗した後、0.2%程度の硫酸又は塩酸に浸
漬して中和し、再度水洗した後、75〜85℃程度の温
湯に浸漬し、数十時間抽出し、この後、このゼラチン抽
出液を減圧下で加熱して20〜25%に濃縮し、冷却し
てゲル化させ、25℃程度の温度で速やかに乾燥させ、
白粉又は透明な薄片として得る。
Such gelatin has conventionally been produced by the following method. That is, for example, animal skin, keys, ligaments,
Cut the fascia into small pieces, immerse them in saturated lime water for 2 to 3 months, wash them with water, neutralize them by immersing them in about 0.2% sulfuric acid or hydrochloric acid, and wash them again with water. The gelatin extract is immersed in hot water at about 10°C and extracted for several tens of hours. After that, the gelatin extract is heated under reduced pressure to concentrate it to 20-25%, cooled to gel, and then quickly extracted at a temperature of about 25°C. dry to
Obtained as a white powder or transparent flakes.

上記のようなゼラチンの製造において、ゼラチン抽出液
の濃縮は、従来、減圧下で多重効用缶を用いて行なわれ
ているが、この方法による場合は、多大のエネルギーを
必要とするので、近年、省エネルギーの観点から、限外
濾過膜を用いてゼラチン抽出液を濃縮する所謂膜濃縮法
が提案されるに至っている。しかしながら、ゼラチン抽
出液は、その粘度が高く、50℃以上の温度に加熱して
も尚、膜処理装置への通液に多大のエネルギーを必要と
し、また、ゼラチン抽出液が高粘度溶液であるために、
膜面での濃度分極が著しく、膜面汚染の防止のためには
、高流速運転を行なうことが余儀なくされ、この点から
もエネルギー消費が大きい。更に、限外濾過法による濃
縮の場合は、膜透過液中に一部ゼラチンが失われる。
In the production of gelatin as described above, concentrating the gelatin extract has conventionally been carried out under reduced pressure using a multi-effect canister, but this method requires a large amount of energy, so in recent years it has been From the viewpoint of energy saving, a so-called membrane concentration method has been proposed in which gelatin extract is concentrated using an ultrafiltration membrane. However, the gelatin extract has a high viscosity, and even when heated to a temperature of 50°C or higher, it still requires a large amount of energy to pass through the membrane processing device, and the gelatin extract is a high viscosity solution. for,
Concentration polarization at the membrane surface is significant, and in order to prevent membrane surface contamination, it is necessary to operate at a high flow rate, which also results in large energy consumption. Furthermore, in the case of concentration by ultrafiltration, some gelatin is lost in the membrane permeate.

また、ゼラチン抽出液は、上記したように、高温の溶液
として得られるが、従来より知られている限外濾過膜は
、一般に耐熱性に劣るために、上記抽出液を膜濃縮する
ためには、抽出液を一旦常温付近まで冷却する必要があ
り、そのために余分の装置や費用を要する。
Furthermore, as mentioned above, the gelatin extract can be obtained as a high-temperature solution, but since conventionally known ultrafiltration membranes generally have poor heat resistance, it is difficult to concentrate the extract with a membrane. , it is necessary to once cool the extract to around room temperature, which requires extra equipment and costs.

本発明者らは、上記の問題を解決するために鋭意研究し
た結果、低エネルギー費用にて、高い濃縮倍率まで効率
よくゼラチン抽出液を濃縮することができ、特に、ゼラ
チン抽出液が高温で得られる場合には、高温であること
を利用して、これを駆動力とする膜濃縮法によって高濃
縮することができるゼラチン抽出液濃縮方法を見出して
、本発明に至ったものである。
As a result of intensive research to solve the above problems, the present inventors have found that gelatin extracts can be efficiently concentrated to a high concentration ratio at low energy costs. In this case, we have discovered a method for concentrating a gelatin extract that can be highly concentrated by a membrane concentration method using the high temperature as a driving force, leading to the present invention.

本発明によるゼラチン抽出液の濃縮方法は、水蒸気は透
過させるが、水は透過させない疎水性重合体多孔質膜の
一面側に所定の高温のゼラチン抽出液を接触させ、この
ゼラチン抽出液から水蒸気を発生させ、これを上記多孔
質膜の他面側に透過させ、冷却して凝縮させることを特
徴とする。
The method for concentrating gelatin extract according to the present invention involves contacting a predetermined high-temperature gelatin extract with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but not water. It is characterized in that it is generated and allowed to pass through the other side of the porous membrane, cooled and condensed.

本発明の方法において、ゼラチン抽出液とは、前記した
ように、動物の皮、股、靭帯、筋膜等を原料とし、所定
の処理の後、ゼラチンを抽出した水溶液をいう。
In the method of the present invention, the gelatin extract refers to an aqueous solution obtained by extracting gelatin from animal skin, crotch, ligament, fascia, etc. as raw materials after a predetermined treatment, as described above.

本発明の方法において、ゼラチン抽出液がら発生し、疎
水性重合体多孔質膜を透過した水蒸気を冷却し、凝縮さ
せるために、次のいずれかの方法によることができる。
In the method of the present invention, any of the following methods can be used to cool and condense the water vapor generated from the gelatin extract and permeated through the hydrophobic polymer porous membrane.

その第1は、水蒸気は透過させるが、水は透過させない
疎水性重合体多孔質膜の一面側に所定の高温のゼラチン
抽出液を接触させ、この重合体膜の他面側に膜面から適
宜の間隔をおいて所定の低温に保持した伝熱壁を設け、
上記ゼラチン抽出液から発生し、重合体膜を透過した水
蒸気を上記伝熱壁上で冷却し、凝縮させて凝縮水を得る
一方、高分子物質であるゼラチンは膜を透過しないので
、これをゼラチン抽出液中に濃縮するのである。ここに
、ゼラチン抽出液が常温で得られるときは、水蒸気を発
生し得る程度の温度にゼラチン抽出液を加熱し、また、
ゼラチン抽出液が高温で得られるときは、必要に応じて
、温度を適宜に調整し、高温のまま、上記多孔質膜の一
面側に接触させる。
The first method is to contact a predetermined high-temperature gelatin extract with one side of a hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through, and then apply appropriate amounts of gelatin extract from the membrane surface to the other side of this polymer membrane. Heat transfer walls maintained at a predetermined low temperature are provided at intervals of
The water vapor generated from the gelatin extract and passed through the polymer membrane is cooled on the heat transfer wall and condensed to obtain condensed water. However, since gelatin, which is a polymeric substance, does not pass through the membrane, it is It is concentrated into an extract. Here, when the gelatin extract is obtained at room temperature, the gelatin extract is heated to a temperature that can generate water vapor, and
When the gelatin extract is obtained at a high temperature, the temperature is appropriately adjusted as necessary, and the gelatin extract is brought into contact with one side of the porous membrane while maintaining the high temperature.

ゼラチン抽出液の温度は高いほど、水蒸気発生量、従っ
て、凝縮木取速度が大きくなるので有利であるが、従来
の蒸発法による濃縮のように高温にする必要はない。
The higher the temperature of the gelatin extract, the greater the amount of water vapor generated and therefore the higher the condensation rate, but it is advantageous, but it is not necessary to raise the temperature to a higher temperature than in conventional evaporation methods.

第2は、疎水性重合体多孔質膜の一面側に上記のように
所定の高温のゼラチン抽出液を接触させ、他面側には所
定の低温の冷却媒体、例えば、冷却水を接触させること
により、ゼラチン抽出液から発生し、重合体を透過した
水蒸気を直接に冷却媒体にて冷却して凝縮させ、これを
冷却媒体中に得る一方、ゼラチン抽出液を上記と同様に
濃縮するのである。
Second, one side of the hydrophobic polymer porous membrane is brought into contact with a predetermined high-temperature gelatin extract as described above, and the other side is brought into contact with a prescribed low-temperature cooling medium, such as cooling water. Accordingly, the water vapor generated from the gelatin extract and permeated through the polymer is directly cooled and condensed with a cooling medium, and this is obtained in the cooling medium, while the gelatin extract is concentrated in the same manner as above.

本発明の方法においては、上記重合体多孔質膜は、ゼラ
チン抽出液に対して疎水性であり、更に水自体は透過さ
せないが、水蒸気は透過させる性質を有することが必要
である。従って、かかる疎水性重合体多孔質膜は、通常
、0.05〜50μm、好ましくは0.1〜10μm程
度の微孔を有し、且つ、多孔度が50%以上であること
が好ましい。
In the method of the present invention, it is necessary that the polymer porous membrane is hydrophobic to the gelatin extract and has the property of not allowing water itself to pass therethrough, but allowing water vapor to pass therethrough. Therefore, such a hydrophobic polymer porous membrane usually has micropores of about 0.05 to 50 μm, preferably about 0.1 to 10 μm, and preferably has a porosity of 50% or more.

また、膜厚は特に制限されるものではないが、通常、1
〜300μm、好ましくは5〜50μm程度である。
In addition, the film thickness is not particularly limited, but is usually 1
~300 μm, preferably about 5 to 50 μm.

従って、本発明においては、かかる重合体膜として、ポ
リテトラフルオロエチレン樹脂のようなフッ素系樹脂か
らなる多孔質膜が、疎水性であると共に耐熱性にすぐれ
るために特に好ましく用いられる。また、例えば、フッ
化ビニリデン樹脂やエチレン−テトラフルオロエチレン
共重合樹脂等のようなフッ素系樹脂の溶液又は溶融液を
押出成−形して得られる多孔質膜も好ましく用いられる
Therefore, in the present invention, a porous membrane made of a fluororesin such as polytetrafluoroethylene resin is particularly preferably used as the polymer membrane because it is hydrophobic and has excellent heat resistance. Also preferably used is a porous membrane obtained by extrusion molding a solution or melt of a fluororesin such as vinylidene fluoride resin or ethylene-tetrafluoroethylene copolymer resin.

しかし、例えばポリスルホンやセルロース樹脂のような
親水性樹脂からなる多孔質膜でも、表面にフッ素系樹脂
やシリコーン樹脂等の撥水性樹脂を被覆して疎水性の多
孔質表面を付、りするときは、これら樹脂膜も使用する
ことができる。
However, even for porous membranes made of hydrophilic resins such as polysulfone or cellulose resin, when coating the surface with a water-repellent resin such as fluororesin or silicone resin to create a hydrophobic porous surface. , these resin films can also be used.

次に、本発明の方法を実施するのに好適な装置について
、図面に基づいて説明する。
Next, an apparatus suitable for carrying out the method of the present invention will be described based on the drawings.

第1図及び第2図は上記第1の方法を実施するために好
適な装置の一例を示す。
1 and 2 show an example of an apparatus suitable for carrying out the first method described above.

即ち、外管1内には上記したような疎水性重合体多孔質
膜よりなる膜管2が同軸的に配設されており、外管と膜
管との間に高温のゼラチン抽出液のための原液通路3が
形成されている。従って、外管は保温性を有することが
好ましく、例えば樹脂より形成される。原液通路3には
ゼラチン抽出液の導入管4及び導出管5が接続され、必
要に応じてこれら管路に設けた加熱器6により加熱され
て、所定の温度に保持されたゼラチン抽出液が上記管4
及び5にて原液回路に循環して流通される。
That is, inside the outer tube 1, a membrane tube 2 made of a hydrophobic polymer porous membrane as described above is arranged coaxially, and between the outer tube and the membrane tube there is a high temperature gelatin extract. A stock solution passage 3 is formed. Therefore, the outer tube preferably has heat retaining properties, and is made of resin, for example. An inlet pipe 4 and an outlet pipe 5 for the gelatin extract are connected to the stock solution passage 3, and if necessary, the gelatin extract is heated by a heater 6 provided in these pipes and maintained at a predetermined temperature. tube 4
and 5, it is circulated and distributed to the stock solution circuit.

ゼラチン抽出液は、弁7を備えたゼラチン抽出液供給管
8から適宜に原液回路に補充され、また、図示しないが
、排出管により必要に応じて原液回路から一部が排出さ
れる。
The gelatin extract is appropriately replenished into the stock solution circuit from a gelatin extract supply pipe 8 equipped with a valve 7, and a portion of the gelatin extract is discharged from the stock solution circuit as necessary through a discharge pipe (not shown).

膜管2の内側には、更にこれと同軸的に伝熱管9が配設
され、前記膜管との間に蒸気拡散空間10を有するよう
に適宜の間隔がおかれている。蒸気拡散空間は、水蒸気
の凝縮効率の点からは狭い方が好ましいが、余りに狭く
するときは、却って凝縮液の流通抵抗となので、通常、
0.2〜3買貢程度が好適である。伝熱管は伝熱性の高
い材料、例えば金属からなる薄肉管である。この伝熱管
には冷却媒体のための導入管11及び導出管12が接続
され、例えば冷却水のような冷却媒体が伝熱管内に循環
して流通される。また、蒸気拡散空間には膜管を透過し
、伝熱管にて冷却され、凝縮した凝縮水の導出管13が
接続されている。
A heat exchanger tube 9 is further disposed coaxially inside the membrane tube 2, and is spaced at an appropriate distance so as to have a vapor diffusion space 10 between it and the membrane tube. It is preferable for the vapor diffusion space to be narrow from the point of view of water vapor condensation efficiency, but if it is too narrow, it will actually create a flow resistance for the condensate.
Approximately 0.2 to 3 tributaries are suitable. A heat exchanger tube is a thin-walled tube made of a material with high heat conductivity, such as metal. An inlet pipe 11 and an outlet pipe 12 for a cooling medium are connected to the heat exchanger tube, and a cooling medium such as cooling water is circulated through the heat exchanger tube. Further, a discharge pipe 13 for condensed water that has passed through the membrane tube, been cooled by the heat exchanger tube, and condensed is connected to the vapor diffusion space.

尚、膜管を構成する前記多孔質膜は、一般に強度が小さ
いので、図示しないが、適宜の支持体上に支持されて形
成されているのが好ましい。このような支持体は、重合
体膜を補強すると共に、水蒸気を透過させることができ
れば足り、例えば、ポリアミドからなる織布又は不織布
や、セラミック製の多孔質管が好適に用いられる。
Note that, since the porous membrane constituting the membrane tube generally has low strength, it is preferably supported on a suitable support (not shown). Such a support only needs to be able to reinforce the polymer membrane and allow water vapor to pass therethrough, and for example, a woven or nonwoven fabric made of polyamide or a porous tube made of ceramic is preferably used.

また、装置は、第3図に示すように、外管1内に複数の
膜管2が配設され、各膜管が内部に伝熱管9を有すると
共に、外管と各膜管との間の空間が原液通路3であるよ
うに構成されていてもよい。
Further, as shown in FIG. 3, the device includes a plurality of membrane tubes 2 disposed inside an outer tube 1, each membrane tube having a heat transfer tube 9 inside, and a space between the outer tube and each membrane tube. The space may be configured as the stock solution passage 3.

第4図及び第5図は、本発明の方法において、特に好適
に用いることができる装置を示し、第1図と同じ部材に
は同じ参照番号が付されている。
4 and 5 show an apparatus which can be particularly advantageously used in the method of the invention, and the same parts as in FIG. 1 are given the same reference numerals.

即ち、外管1内に膜管2が同軸的に配設されており、外
管と膜管との間に原液通路3が形成されている点は、前
記した第1図の装置と同じであるが、この装置において
は、膜管2の内側にこれに接してスペーサ14が配設さ
れ、更に、このスペーサの内側にこれに接して伝熱管9
が配設されている。
That is, the membrane tube 2 is disposed coaxially within the outer tube 1, and the stock solution passage 3 is formed between the outer tube and the membrane tube, which is the same as the device shown in FIG. 1 described above. However, in this device, a spacer 14 is disposed on the inside of the membrane tube 2 in contact with it, and a heat transfer tube 9 is further provided on the inside of this spacer in contact with it.
is installed.

即ち、スペーサは伝熱管によって冷却されるので、スペ
ーサ自体が冷却された蒸気拡散空間を形成していると共
に、凝縮水の通路を形成する。従って、原液から発生し
、膜管を透過した蒸気は、このスペーサ及び伝熱管にて
冷却され、スペーサは凝縮した凝縮水の導出管13に連
通されている。
That is, since the spacer is cooled by the heat transfer tube, the spacer itself forms a cooled vapor diffusion space and also forms a passage for condensed water. Therefore, the vapor generated from the raw solution and transmitted through the membrane tube is cooled by the spacer and the heat transfer tube, and the spacer is communicated with the condensed water outlet tube 13.

このスペーサは、膜管を透過した蒸気が伝熱管まで透過
し得るように多孔質であると共に、伝熱壁によって冷却
されて凝縮した水が少なくとも所定方向に通液性を有す
ることが必要であり、更に、熱伝導性にすぐれているこ
とが好ましい。図示した装置においては、スペーサは生
じた凝縮水が鉛直方向に流下し得るように、スペーサは
少なくとも鉛直方向に通液性を有することが必要である
This spacer must be porous so that the steam that has passed through the membrane tube can pass through to the heat transfer tube, and must also have permeability in at least a predetermined direction for water that has been cooled and condensed by the heat transfer wall. Furthermore, it is preferable that the material has excellent thermal conductivity. In the illustrated apparatus, the spacer needs to have liquid permeability at least in the vertical direction so that the generated condensed water can flow down in the vertical direction.

勿論、スペーサは多孔質膜又は伝熱管表面に、又はこれ
らの両者に予め接合されていてもよい。
Of course, the spacer may be bonded in advance to the porous membrane, the heat exchanger tube surface, or both.

上記スペーサとしては、例えば、10〜1000メツシ
ユの天然又は合成の繊維、例えば、ポリエチレン、ポリ
エステル、ポリアミド等の繊維からなる織布、不織布、
炭素繊維布、金属網等が好ましく用いられる。スペーサ
の厚みは特に制限されるものではないが、余りに厚いと
きは、却って蒸気の凝縮効率を低下させるので、通常、
51以下、特に0.2〜3mmの範囲が好ましい。即ち
、厚みの小さいスペーサを用いることにより、蒸気拡散
空間の間隔を小さくすることができると同時に、水蒸気
の凝縮効率及び凝縮水の取得速度を高めることができる
Examples of the spacer include woven fabrics, non-woven fabrics made of 10 to 1000 meshes of natural or synthetic fibers, such as polyethylene, polyester, polyamide, etc.
Carbon fiber cloth, metal mesh, etc. are preferably used. The thickness of the spacer is not particularly limited, but if it is too thick, it will actually reduce the steam condensation efficiency, so normally,
51 or less, particularly preferably in the range of 0.2 to 3 mm. That is, by using a spacer with a small thickness, the interval between the vapor diffusion spaces can be reduced, and at the same time, the efficiency of condensing water vapor and the acquisition rate of condensed water can be increased.

原液通路3にはゼラチン抽出液の導入管4及び導出管5
が接続され、必要に応じてこの管路に加熱器6が備えら
れる。ゼラチン抽出液が、弁7を備えたゼラチン抽出液
供給管8から原液回路に補充されるのは、前記装置と同
じである。また、伝熱管には前記と同様に、冷却媒体の
ための導入管11及び導出管12が接続され、冷却媒体
が伝熱管内に循環して流通される。
The stock solution passage 3 has an inlet pipe 4 and an outlet pipe 5 for gelatin extract.
is connected, and a heater 6 is provided in this conduit as necessary. It is the same as in the previous device that the gelatin extract is replenished into the stock solution circuit from a gelatin extract supply pipe 8 equipped with a valve 7. Further, the heat exchanger tube is connected to the inlet tube 11 and the outlet tube 12 for the cooling medium, as described above, and the cooling medium is circulated within the heat exchanger tube.

第1図に示した第1の装置においては、所定の温度のゼ
ラチン抽出液は、原液通路3に導入され、ゼラチン抽出
液より発生した水蒸気は膜管2を透過して蒸気拡散空間
10に至り、伝熱管9の表面子で冷却されて凝縮水を生
し、伝熱管表面を流下して凝縮水導出管13より装置外
にmがれる。原液中のゼラチンは膜管により透過を阻止
され、ゼラチン抽出液中に濃縮される。この装置によれ
ば、ゼラチン抽出液を濃縮すると共に、凝縮水として実
質的に純水を得ることができる。
In the first apparatus shown in FIG. 1, a gelatin extract at a predetermined temperature is introduced into the stock solution passage 3, and the water vapor generated from the gelatin extract passes through the membrane tube 2 and reaches the vapor diffusion space 10. The condensed water is cooled by the surface of the heat exchanger tube 9, flows down the surface of the heat exchanger tube, and is discharged from the apparatus through the condensed water outlet tube 13. The gelatin in the stock solution is prevented from permeating through the membrane tube and concentrated into the gelatin extract. According to this device, gelatin extract can be concentrated and substantially pure water can be obtained as condensed water.

第4図に示した装置によれば、ゼラチン抽出液より発生
した水蒸気は膜管2を透過し、スペーサ14及び伝熱管
9によって冷却され、凝縮して、スペーサを流下して凝
縮水導出管13より装置外に導かれる。
According to the apparatus shown in FIG. 4, water vapor generated from the gelatin extract passes through the membrane tube 2, is cooled by the spacer 14 and the heat transfer tube 9, is condensed, and flows down the spacer to the condensed water outlet tube 13. is guided outside the device.

第6図及び第7図は前記した第2の方法を実施するのに
好適な装置の一例を示し、第1図と同じ部材には同じ参
照番号が付されている。
6 and 7 show an example of an apparatus suitable for carrying out the second method described above, in which the same parts as in FIG. 1 are given the same reference numerals.

外管1内には前記したような疎水性重合体多孔質膜より
なる膜管2が同軸的に配設されて、外管と膜管との間に
原液通路3が形成され、この原液通路に所定の高温のゼ
ラチン抽出液が流通され、膜管内には冷却媒体、例えば
、冷却水が流通される。即ち、ゼラチン抽出液と冷却媒
体は上記膜管を介して接触される。原液通路3にはゼラ
チン抽出液を流通させるための導入管4及び導出管5が
接続され、同様に、膜管2にも冷却媒体を流通させるた
めの導入管11及び導出管12が接続されている。
A membrane tube 2 made of a hydrophobic polymer porous membrane as described above is disposed coaxially within the outer tube 1, and a stock solution passage 3 is formed between the outer tube and the membrane tube. A predetermined high temperature gelatin extract is passed through the membrane tube, and a cooling medium such as cooling water is passed through the membrane tube. That is, the gelatin extract and the cooling medium are brought into contact through the membrane tube. An inlet pipe 4 and an outlet pipe 5 for flowing the gelatin extract are connected to the stock solution passage 3, and similarly, an inlet pipe 11 and an outlet pipe 12 for circulating a cooling medium are connected to the membrane tube 2. There is.

この第2の装置によれば、ゼラチン抽出液より発生し、
膜管壁を透過した水蒸気は、冷却媒体、例えば、冷却水
にて直らに冷却されて凝縮し、冷却水中に回収される。
According to this second device, generated from the gelatin extract,
The water vapor that has passed through the membrane tube wall is immediately cooled with a cooling medium, such as cooling water, condensed, and recovered in the cooling water.

前記したと同様に、必要に応し7てゼラチン抽出液はゼ
ラチン抽出液供給管8より補充されつつ、加熱器6にて
加熱されて、管路4及び5により原液回路を循環され、
また、冷却媒体は、必要に応じて冷却媒体回路に設けた
冷却器14により所定の温度に冷却されつつ、冷却媒体
回路を循環され、その一部は凝縮水と共に取出管15か
ら装置外に取り出される。
In the same manner as described above, the gelatin extract is replenished from the gelatin extract supply pipe 8 as necessary, heated by the heater 6, and circulated through the stock solution circuit through the pipes 4 and 5.
Further, the cooling medium is circulated through the cooling medium circuit while being cooled to a predetermined temperature by a cooler 14 provided in the cooling medium circuit as necessary, and a part of the cooling medium is taken out of the device from a take-out pipe 15 along with condensed water. It will be done.

この装置によれば、膜管壁を介して所定の高温のゼラチ
ン抽出液と冷却媒体とが直接に接触されるので、ゼラチ
ン抽出液から発生した水蒸気は直ちに冷却媒体により冷
却されて凝縮し、冷却媒体中に回収される。従って、水
蒸気の透過速度が大きいのみならず、膜管と伝熱壁との
間に蒸気拡散空間を設けた装置よりも小型化し得、単位
体積当りの有効膜面積が大きいので、効率よくゼラチン
抽出液の濃縮を行なうことができる。
According to this device, the gelatin extract at a predetermined high temperature is brought into direct contact with the cooling medium through the membrane tube wall, so that the water vapor generated from the gelatin extract is immediately cooled by the cooling medium and condensed. recovered in the medium. Therefore, not only is the water vapor permeation rate high, but it can also be made smaller than a device that provides a vapor diffusion space between the membrane tube and the heat transfer wall, and the effective membrane area per unit volume is large, so gelatin can be extracted efficiently. The liquid can be concentrated.

図示しないが、第6図に示す装置の変形として、装置は
、複数の膜管が外管内に収容され、各膜管内に冷却媒体
が循環され、外管内において膜管外の空間が原液通路を
なすように形成されていてもよい。
Although not shown, as a modification of the device shown in FIG. 6, the device includes a plurality of membrane tubes housed in an outer tube, a cooling medium is circulated in each membrane tube, and a space outside the membrane tubes in the outer tube serves as a stock solution passage. It may be formed as shown in FIG.

尚、上記したいずれの装置の場合についても、ゼラチン
抽出液を外管と膜管との間の原液通路3に流通させ、膜
管内に冷却媒体を流通させるとして本発明の詳細な説明
したが、しがし、原液通路に冷却媒体を流通させ、一方
、冷却媒体通路にゼラチン抽出液を流通させてよいのは
勿論である。
In addition, in the case of any of the above-mentioned apparatuses, the present invention has been described in detail assuming that the gelatin extract is passed through the stock solution passage 3 between the outer tube and the membrane tube, and the cooling medium is circulated inside the membrane tube. However, it goes without saying that a cooling medium may be passed through the stock solution passage, while a gelatin extract may be passed through the cooling medium passage.

また、スペーサを有するときは、多孔質膜と伝熱壁とが
共に薄いスペーサに接触し、且つ、一定の極めて小さい
間隔にて平行に配設されており、更に、スペーサ自体も
低温の伝熱壁によって冷却されており、しかも、多孔質
膜と伝熱壁との間には直接の接触部分がなく、ゼラチン
抽出液からの水蒸気の発生が妨げられないので、濃縮を
効率よく行なうことができる。
In addition, when a spacer is provided, both the porous membrane and the heat transfer wall are in contact with the thin spacer and are arranged in parallel with a certain extremely small interval, and furthermore, the spacer itself also supports low temperature heat transfer. It is cooled by the wall, and there is no direct contact between the porous membrane and the heat transfer wall, so the generation of steam from the gelatin extract is not hindered, so concentration can be carried out efficiently. .

また、図示した装置はいずれも、原液通路又は冷却媒体
通路が環状に形成されているが、膜管に代わる平板状の
膜壁と伝熱管に代わる平板状の伝熱壁とを、その間に蒸
気拡散空間を設けて、或いは設けることなく、少なくと
も一組を対向して配設し、前記外管に相当する適宜の容
器内に各通路を封入し、各通路に原液又は冷却媒体の循
環のための回路を接続すれば、前記した各装置に対応し
て、断面が方形の原液通路及び冷却媒体通路を有する装
置を得ることができる。更に、上記膜壁と伝熱壁とをス
ペーサを介して接触させて配設すれば、第4図に対応し
た装置を得ることができる。
In addition, in all of the illustrated devices, the raw liquid passage or the cooling medium passage is formed in an annular shape, but a flat membrane wall in place of the membrane tube and a flat heat transfer wall in place of the heat transfer tube are placed between them. At least one set is arranged facing each other with or without a diffusion space, and each passage is enclosed in a suitable container corresponding to the outer tube, and each passage is used for circulation of a stock solution or a cooling medium. By connecting these circuits, it is possible to obtain a device having a stock solution passage and a cooling medium passage each having a rectangular cross section, corresponding to each of the above-mentioned devices. Furthermore, by arranging the membrane wall and the heat transfer wall in contact with each other via a spacer, a device corresponding to FIG. 4 can be obtained.

このような装置も、本発明の方法を実施するのに好適に
用い得ることは明らかであろう。
It will be clear that such an apparatus can also be suitably used to carry out the method of the invention.

以上のように、本発明の方法は、所定の高温のゼラチン
抽出液を疎水性重合体多孔質膜に接触させ、このゼラチ
ン抽出液より発生して膜を透過した水蒸気を冷却し、凝
縮させることにより、ゼラチン抽出液を濃縮すると共に
凝縮水を得るものである。従って、本発明の方法によれ
ば、ゼラチン水溶液の粘度が高いにもかかわらず、前記
したような圧力差を駆動力とする限外濾過と異なり、温
度を駆動力としているために加圧を必要としないうえに
、疎水性の膜を使用するので、膜の目詰りや濃度分極が
なく、一方、比較的低温で処理し得るので、低エネルギ
ー費用にて高粘性ゼラチン抽出液を高い濃縮倍率まで効
率よく濃縮することができる。更に、ゼラチン抽出液が
その製造工程から高温で得られる場合には、ゼラチン抽
出液を高い温度のままで膜濃縮することができる。
As described above, the method of the present invention involves bringing a predetermined high-temperature gelatin extract into contact with a hydrophobic polymer porous membrane, and cooling and condensing the water vapor generated from the gelatin extract and permeated through the membrane. In this way, the gelatin extract is concentrated and condensed water is obtained. Therefore, according to the method of the present invention, despite the high viscosity of the gelatin aqueous solution, pressurization is required because the driving force is temperature, unlike the ultrafiltration described above, which uses a pressure difference as a driving force. In addition, since a hydrophobic membrane is used, there is no membrane clogging or concentration polarization, and on the other hand, it can be processed at relatively low temperatures, so high viscosity gelatin extracts can be concentrated at high concentration ratios at low energy costs. It can be concentrated efficiently. Furthermore, if the gelatin extract is obtained at a high temperature from the manufacturing process, the gelatin extract can be membrane concentrated at the high temperature.

以下に本発明の実施例を挙げる。Examples of the present invention are listed below.

実施例 第4図に示したように、直径40龍の合成樹脂製外管内
に、多孔質ポリアミド織布にて裏打ちされたポリテトラ
フルオロエチレン多孔質膜からなる直径25+nの膜管
を同軸的に配設し、更にこの膜管内面にスペーサとして
厚み0.5 mの多孔質ポリアミド織布を重ね、このス
ドーザの内面にこれと接触させて直径23朋のステンレ
ス鋼製伝熱管を配設して、装置を構成した。尚、上記多
孔質膜は平均孔径0,2μmの微孔を有し、多孔度80
%であって、装置における有効膜面積は240cn!で
あった。
Example As shown in Fig. 4, a membrane tube with a diameter of 25+n made of a polytetrafluoroethylene porous membrane lined with a porous polyamide woven fabric was coaxially placed inside a synthetic resin outer tube with a diameter of 40mm. Furthermore, a porous polyamide woven fabric with a thickness of 0.5 m was layered on the inner surface of this membrane tube as a spacer, and a stainless steel heat exchanger tube with a diameter of 23 mm was arranged on the inner surface of this dozer in contact with this. , configured the device. The above porous membrane has micropores with an average pore diameter of 0.2 μm and a porosity of 80
%, and the effective membrane area in the device is 240cn! Met.

上記装置において、温度20℃の冷却水を伝熱管内に流
通すると共に、温度85℃の5重量%ゼラチン水溶液を
原液通路に循環供給し、濃度20重量%まで濃縮した(
濃縮倍率4倍)。ゼラチン水溶液の濃縮に伴う凝縮水の
取得速度を第8図に示す。尚、この間、凝縮水に溶出し
たゼラチン量は原液の0.1%以下であった。
In the above apparatus, cooling water at a temperature of 20°C was passed through the heat transfer tube, and a 5% by weight aqueous gelatin solution at a temperature of 85°C was circulated and supplied to the stock solution passage, and concentrated to a concentration of 20% by weight.
(concentration factor: 4 times). FIG. 8 shows the acquisition rate of condensed water as the gelatin aqueous solution is concentrated. During this period, the amount of gelatin eluted into the condensed water was 0.1% or less of the stock solution.

比較のために、分画分子量20000のポリスルホン限
外濾過膜を備えた膜モジュールにて、温度30℃、圧力
4kg/cnl、膜り速2m/秒の条件で、上記と同じ
ゼラチン抽出液を濃度14重量%まで濃縮した(濃縮倍
率2.8倍)。結果を第8図に示す。この比較側にまれ
ば、膜透過液中のゼラチン濃度は、濃縮に伴って0.2
重量%から0.4重量%まで直線的に増加し、最終的に
は膜透過液に原液の3%のゼラチンが流出した。
For comparison, in a membrane module equipped with a polysulfone ultrafiltration membrane with a molecular weight cutoff of 20,000, the same gelatin extract as above was used at a concentration of It was concentrated to 14% by weight (concentration ratio 2.8 times). The results are shown in FIG. On the side of this comparison, the gelatin concentration in the membrane permeate will increase by 0.2 as it is concentrated.
The gelatin content increased linearly from 0.4 wt% to 0.4 wt%, and finally 3% of the original gelatin was leaked into the membrane permeate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施例するのに好適な装置の一
例を示す縦断面図、第2図は第1図において線A−A線
に沿う断面図、第3図は別の装置を示す断面図、第4図
は本発明の方法におい“ζ特に好適に用いることができ
る別の装置を示す縦断面図、第5図は第4図において線
B−B線に沿う断面図、第6図は更に別の装置を示す縦
断面図、第7図は第6図において線B−B線に沿う断面
図、第8図は本発明の方法によるゼラチン水溶液の濃縮
倍率と凝縮水取得速度との関係を比較例と共に示すグラ
フである。 1・・・外管、2・・・膜管、3・・・原液通路、9・
・・伝熱管、IO・・・蒸気空間、13・・・a縮i導
出管、14・・・スペーサ。 第4図 第6図 セ゛特〉#L(市4%)
FIG. 1 is a longitudinal sectional view showing an example of an apparatus suitable for carrying out the method of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. 3 is another apparatus. 4 is a longitudinal sectional view showing another apparatus that can be particularly suitably used in the method of the present invention; FIG. 5 is a sectional view taken along line BB in FIG. 4; FIG. 6 is a longitudinal cross-sectional view showing yet another apparatus, FIG. 7 is a cross-sectional view taken along line B-B in FIG. 6, and FIG. 8 is a concentration ratio of gelatin aqueous solution and acquisition of condensed water by the method of the present invention. It is a graph showing the relationship with speed together with comparative examples. 1... Outer tube, 2... Membrane tube, 3... Stock solution passage, 9.
...heat exchanger tube, IO...steam space, 13...a condensation outlet pipe, 14...spacer. Figure 4 Figure 6 Special #L (city 4%)

Claims (1)

【特許請求の範囲】[Claims] 11) 水蒸気は透過させるが、水は透過させない疎水
性重合体多孔質膜の一面側に所定の高温のゼラチン抽出
液を接触させ、このゼラチン抽出液から水蒸気を発生さ
せ、これを上記多孔質膜の他面側に透過させ、冷却して
凝縮させることを特徴とするゼラチン抽出液の濃縮方法
11) A predetermined high-temperature gelatin extract is brought into contact with one side of the hydrophobic polymer porous membrane that allows water vapor to pass through but does not allow water to pass through, generates water vapor from this gelatin extract, and transfers this to the above porous membrane. A method for concentrating a gelatin extract, which is characterized by transmitting it to the other side, cooling it, and condensing it.
JP8341984A 1984-04-24 1984-04-24 Method for concentration of gelatin extraction liquid Pending JPS60226897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8341984A JPS60226897A (en) 1984-04-24 1984-04-24 Method for concentration of gelatin extraction liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8341984A JPS60226897A (en) 1984-04-24 1984-04-24 Method for concentration of gelatin extraction liquid

Publications (1)

Publication Number Publication Date
JPS60226897A true JPS60226897A (en) 1985-11-12

Family

ID=13801916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8341984A Pending JPS60226897A (en) 1984-04-24 1984-04-24 Method for concentration of gelatin extraction liquid

Country Status (1)

Country Link
JP (1) JPS60226897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191018A1 (en) * 2022-03-30 2023-10-05 東レ株式会社 Method for producing gelatin or concentrated gelatin solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191018A1 (en) * 2022-03-30 2023-10-05 東レ株式会社 Method for producing gelatin or concentrated gelatin solution

Similar Documents

Publication Publication Date Title
JPS60125203A (en) Thermo-pervaporation apparatus
US4781837A (en) Method of performing osmetic distillation
JPH0140641B2 (en)
JPS60226897A (en) Method for concentration of gelatin extraction liquid
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
Van Gassel et al. An energy-efficient membrane distillation process
JPS60203173A (en) Concentration of fruit juice
JPS60206408A (en) Concentration of stick-water
JPS60226503A (en) Method for concentrating pectin extract solution
JPS6185169A (en) Concentration of albumen
JPS60206407A (en) Concentration of stick-water
JPS61164195A (en) Method of treating nuclear power waste water
JPS60147285A (en) Treatment of aqueous acid or alkali solution
JPS60206409A (en) Separation of liquid
JPS60118204A (en) Thermo-pervaporization apparatus
JPS62227492A (en) Method and apparatus for making pure water
JPS6135805A (en) Continuous treatment of alcohol fermentation solution
JPS6154206A (en) Thermopervaporation apparatus
JPS62140694A (en) Production of demineralized water
JPS60118205A (en) Thermo-pervaporization apparatus
JPS61164604A (en) Preparation of sterile pure water
JPS60227700A (en) Concentration of sugar solution
JPS60209089A (en) Concentration of pulp waste liquor
JPS60241845A (en) Method of concentrating raw milk and liquid dairy product obtained from it
JPS6154207A (en) Concentrating method of liquid containing heavy noble metal