JPS6184885A - Gas laser oscillation device - Google Patents

Gas laser oscillation device

Info

Publication number
JPS6184885A
JPS6184885A JP20664684A JP20664684A JPS6184885A JP S6184885 A JPS6184885 A JP S6184885A JP 20664684 A JP20664684 A JP 20664684A JP 20664684 A JP20664684 A JP 20664684A JP S6184885 A JPS6184885 A JP S6184885A
Authority
JP
Japan
Prior art keywords
oxide film
particles
discharge
current
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20664684A
Other languages
Japanese (ja)
Inventor
Hitoshi Motomiya
均 本宮
Togo Nishioka
西岡 統吾
Shuzo Yoshizumi
吉住 修三
Setsuo Terada
寺田 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20664684A priority Critical patent/JPS6184885A/en
Publication of JPS6184885A publication Critical patent/JPS6184885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable stable discharge even on the increase in the amount of discharge current, and to enable laser outputs of high output and high efficiency by a method wherein the discharge electrodes the titled device are formed out of the sintered alloy of two kinds or more of hetero metals of different oxidizing inclination. CONSTITUTION:The discharge electrodes consist of a Cu anode 1, cathode 2, tungsten particles 3, an oxide film 3a made of tungsten particles 3, Cu particles 4, and an oxide film 4a made of Cu particles 4. The oxide film 3a made of tungsten particles 3 and the oxide film 4a made of the Cu particles 4 are much different in the amount of electron release through these oxide films 3a and 4a, and so most of electrons (-e) are released out of the oxide film 4a made of Cu particles 4 corresponding to the mesh of the oxide film 3a made of tungsten particles 3. Therefore, the local concentration of current density is dispersed by the oxide film 3a made of tungsten particles 3, and it is possible to keep glow discharge as shown in Fig. 2 even when the amount of discharge current is increased; accordingly, laser output of high output and high efficiency can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ媒質を放電励起してレーザ発振を行な
うガスレーザR振装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas laser R oscillation device that performs laser oscillation by discharge exciting a laser medium.

従来の技術 レーザ媒質であるガスにエネルギーを注入し、励起する
手段の一つとして多く用いられる方法が、グロー放電に
よるレーザ媒質励起であることは周知である。グロー放
電は、レーザ媒質中に均一に1ネルギーを注入する21
!があるので、レーザ媒質を均一に効率よく励起するこ
とが可能である。
2. Description of the Related Art It is well known that excitation of a laser medium by glow discharge is a method often used as a means for injecting energy into a gas, which is a laser medium, to excite it. Glow discharge uniformly injects 1 energy into the laser medium21
! Therefore, it is possible to uniformly and efficiently excite the laser medium.

そこで、エネルギーをより多く注入してレーザ媒質を励
起し、高出力のレーザ光を得るためには、放電電流量を
増大すればよいのであるが、放電の状態は放電電流量の
変化に影響を受は費すいという欠点がある。すなわら、
グロー放電状態の放電管の放電電流量を増大してやろう
とすると、ある限界点でtJIl電状態がグロー放電か
らアーク放電に移行しでしまうのである。この現象の要
因の一つとして考えられるのが、電極表面上の過度の電
流集中(陰極輝点)である。
Therefore, in order to inject more energy to excite the laser medium and obtain high-output laser light, it is sufficient to increase the amount of discharge current, but the state of the discharge does not affect the change in the amount of discharge current. Uke has the disadvantage of being expensive. In other words,
If an attempt is made to increase the amount of discharge current of a discharge tube in a glow discharge state, the electric state will shift from glow discharge to arc discharge at a certain limit point. One possible cause of this phenomenon is excessive current concentration on the electrode surface (cathode bright spot).

放電状態がアーク放電になれば、レーザ媒質中の一部分
にしか電流が流れなくなり、効率のよいレーザ媒質励起
が不可能となる。
If the discharge state becomes arc discharge, current will flow only in a portion of the laser medium, making it impossible to excite the laser medium efficiently.

以下、第3図を参照しながら従来例について説明を行う
Hereinafter, a conventional example will be explained with reference to FIG.

第3図は、従来のガスレーザ発振′装置の放電用電極に
よる電子放出の状態を示したものである。
FIG. 3 shows the state of electron emission by the discharge electrode of a conventional gas laser oscillation device.

ここで1は陽極、2は陰極であり、双方とも材質は銅で
ある。第3図(a )に示すように、グロー放電状態で
は、陰惨2の表面から図中−eで表示する電子が一様に
放出される。しかし、tJIl電電流電電流人させてい
くと、第3図(b)に示すように陰極2の表面上の温度
分イriに不均一さが生じ、局所的に)島度上胃を生じ
た所から熱電子が放出され、アーク放電に移行でるので
ある。すなわち、局所的に電気伝導度の浸れた部分に電
流が集中し、陰極輝点が生じるのである。
Here, 1 is an anode and 2 is a cathode, both of which are made of copper. As shown in FIG. 3(a), in the glow discharge state, electrons indicated by -e in the figure are uniformly emitted from the surface of the grommet 2. However, as the electric current is applied to the current, the temperature on the surface of the cathode 2 becomes uneven, causing localized insular formation (as shown in Figure 3(b)). Thermionic electrons are emitted from the source, resulting in an arc discharge. In other words, current is locally concentrated in areas where electrical conductivity is high, creating cathode bright spots.

よって、敢゛電電流量を増大させたときのグロー放電か
らアーク放電への移行を抑υ1するためには、局所的な
電流の集中を分散させることが必要である。
Therefore, in order to suppress the transition from glow discharge to arc discharge when the amount of current is increased, it is necessary to disperse the local concentration of current.

発明が解決しようとづる問題点 本発明は、上記欠点に鑑み、グロー放電を維持したまま
従来よりも放電電流量を増大させ、レーザ媒質励起を高
効率で行なうことにより高出力発振可能なガスレーザ発
振装置を提供しようとするものである。
Problems to be Solved by the Invention In view of the above-mentioned drawbacks, the present invention provides a gas laser oscillation system capable of high-output oscillation by increasing the amount of discharge current compared to the conventional method while maintaining glow discharge and excitation of the laser medium with high efficiency. The aim is to provide equipment.

問題を解決するための手段 このため本発明のガスレーザ発振装置は、レーザ媒質を
tIi電励起してレーザ発振を行なうガスレーザ発振装
置のrJシ電電電電極、2種類以上の酸化傾向の異なる
異種金属の合金にて形成したものである。
Means for Solving the Problems Therefore, the gas laser oscillation device of the present invention has an rJ electric electrode of a gas laser oscillation device that performs laser oscillation by exciting a laser medium with tIi electrical excitation, and a gas laser oscillation device that uses two or more kinds of dissimilar metals having different oxidation tendencies. It is made of alloy.

作用 このような構成によれば、2種類以上の酸化傾向の異な
る異様金属を用いlこことから、電気伝導度の良好な金
属酸化膜から多聞の電子が放出され、しかもこの電気伝
導度の良好な金属酸化膜は合金中に均一に分散されるた
め、局所的な電流集中が防止され、この結果放電電流醋
を増大させCも安定したグロー11tTjが可能となる
Effect: According to such a configuration, a large number of electrons are emitted from the metal oxide film having good electrical conductivity by using two or more different metals with different oxidation tendencies. Since the metal oxide film is uniformly dispersed in the alloy, local concentration of current is prevented, and as a result, the discharge current is increased and glow 11tTj with stable C becomes possible.

実施例 以下、本発明の一実施例につして第1図、第2図を参照
しながら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明の一実III!例における放電用電極に
よる電子放出の状態を示したちのである。1は銅製のP
A極、2は陰極、3はタングステン粒子、3aはタング
ステ〕フ粒子3に形成される酸化膜、4は銅粒子、4a
は銅粒子4に形成される酸化膜である。
Figure 1 is one example of the present invention! This example shows the state of electron emission by the discharge electrode. 1 is copper P
A pole, 2 is a cathode, 3 is a tungsten particle, 3a is an oxide film formed on the tungsten particle 3, 4 is a copper particle, 4a
is an oxide film formed on the copper particles 4.

第2図はtll電電流平施封するレーデ出力の関係を示
したものである。破線が従来例によるもので、実線が本
発明の一実施例によるものである。
FIG. 2 shows the relationship between the radar output and the tll current. The broken line is based on the conventional example, and the solid line is based on one embodiment of the present invention.

以下、第1図、第2図を用いて説明する。This will be explained below using FIGS. 1 and 2.

第1図に承りように、金属の表面に形成される酸化膜は
、金属の種類によって厚さ、電気伝導度などの物理的特
性(以下、これを酸化傾向と定義する。)が異なってい
る。熱論、1S11化膜状態による電気伝導度の′19
いは、電子放出[有]を左右ケる。
As shown in Figure 1, the physical properties (hereinafter defined as oxidation tendency) of the oxide film formed on the surface of metals, such as thickness and electrical conductivity, differ depending on the type of metal. . Thermal theory, '19 of electrical conductivity due to 1S11 film state
In other words, electron emission [existence] is left and right.

すなわら、電気伝導度の良い酸化膜からは電子放出量が
多く、電気伝導度の悪い酸化膜からは電子放出的が少な
い。
In other words, an oxide film with good electrical conductivity emits a large amount of electrons, and an oxide film with poor electrical conductivity emits fewer electrons.

第1図に示すように、タングステン粒子3に形成される
酸化1113aと銅粒子4に形成される酸化膜4aとで
は、これら酸化膜3a、4aをとおして放出される電子
放出量が苔しく異なるため、タングステン粒子3に形成
さ礼る酸化膜3aの網の目に相当する銅粒子4に形成さ
れる酸化膜4aから、図中−eで表示するほとんどの電
子が放出される。すなわち、タングステン粒子3に形成
される酸化膜3aが電子放出を分散させる動きをする。
As shown in FIG. 1, the oxide 1113a formed on the tungsten particle 3 and the oxide film 4a formed on the copper particle 4 differ greatly in the amount of electrons emitted through these oxide films 3a and 4a. Therefore, most of the electrons, indicated by -e in the figure, are emitted from the oxide film 4a formed on the copper particles 4, which corresponds to the mesh of the oxide film 3a formed on the tungsten particles 3. That is, the oxide film 3a formed on the tungsten particles 3 moves to disperse electron emission.

ここで、タングステン粒子3を用いIこのは、タングス
テンは融点が高いため、放電電流によって銅粒子4と溶
融結合するのを防止できるからである。、1なわら、電
子hり出量を効率よく分散させるためには、異種金属粒
子の溶融結合による合金であってはならない。なぜなら
、網の目を均一にかつある程度の大きさでもって生じさ
せることが不可能となり、電子放出の集中を引きおこし
やすいからである。この点を考慮すると、タングステン
粒子3を含む焼結合金が適している。
Here, the tungsten particles 3 are used because tungsten has a high melting point and can be prevented from melting and bonding with the copper particles 4 due to the discharge current. , 1. However, in order to efficiently disperse the amount of electrons ejected, the alloy must not be formed by fusion bonding of dissimilar metal particles. This is because it becomes impossible to form meshes uniformly and with a certain size, which tends to cause concentration of electron emission. Considering this point, a sintered alloy containing tungsten particles 3 is suitable.

したがって、タングステン粒子3に形成される酸化膜3
aによって電流密度の局所的集中が分散され、放電電流
醋を増大させでも第2図に示すようにグロー1電を維持
することが可能となり、高出力、高効率のレーザ出力を
得ることができるわけである。なお、tli電を安定し
たものにし、かつ網の目を作っているタングステン粒子
31.:形成される酸化膜3a@維持し、スP命の長い
電極とするために、電子放出の容易な銅粒子又は銀粒子
などを用いるのが好適である。
Therefore, the oxide film 3 formed on the tungsten particles 3
The local concentration of current density is dispersed by a, and even if the discharge current is increased, it is possible to maintain a glow current as shown in Figure 2, and it is possible to obtain high output and high efficiency laser output. That's why. In addition, tungsten particles 31. make the tli charge stable and form a mesh. : In order to maintain the formed oxide film 3a@ and to provide an electrode with a long life, it is preferable to use copper particles, silver particles, etc. that easily emit electrons.

発明の効果 以1−のように本発明は、放電電流量を増大させても安
定したグロー放電が可能となることにより、高出力、n
効率のレーナ出力が可能となるという、ガスレーザ発振
装置に侵れた効果を秦するものである。
Effects of the Invention As described in 1-1- above, the present invention enables stable glow discharge even when the amount of discharge current is increased.
This technology overcomes the effect of gas laser oscillators, which enables efficient laser output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にお1ノる放電用電極の電子
放出状態図、第2図は放電電流楢に対するレーザ出力の
関係を示す図、第3図は従来例における放電用電極の電
子放出状態図である。 1・・・陽極、2・・・陰極、3・・・タングステン粒
子、4・・・銅粒子、3a 、4a・・・酎化躾代理人
   森  本  義  弘 第1図 第2図 &’tlU隻
Fig. 1 is an electron emission state diagram of a discharge electrode according to an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between laser output and discharge current, and Fig. 3 is a diagram showing a discharge electrode according to a conventional example. FIG. 1... Anode, 2... Cathode, 3... Tungsten particles, 4... Copper particles, 3a, 4a... Chuka training agent Yoshihiro Morimoto Figure 1 Figure 2 &'tlU ship

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ媒質を放電励起してレーザ発振を行なうガス
レーザ発振装置の放電用電極を、2種類以上の酸化傾向
の異なる異種金属の合金にて形成したことを特徴とする
ガスレーザ発振装置。
1. A gas laser oscillation device that performs laser oscillation by discharge excitation of a laser medium, in which a discharge electrode is formed of an alloy of two or more different metals with different oxidation tendencies.
JP20664684A 1984-10-02 1984-10-02 Gas laser oscillation device Pending JPS6184885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20664684A JPS6184885A (en) 1984-10-02 1984-10-02 Gas laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20664684A JPS6184885A (en) 1984-10-02 1984-10-02 Gas laser oscillation device

Publications (1)

Publication Number Publication Date
JPS6184885A true JPS6184885A (en) 1986-04-30

Family

ID=16526794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20664684A Pending JPS6184885A (en) 1984-10-02 1984-10-02 Gas laser oscillation device

Country Status (1)

Country Link
JP (1) JPS6184885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910748A (en) * 1988-12-20 1990-03-20 Ford Carol M Laser cathode composed of oxidized metallic particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792748A (en) * 1980-12-01 1982-06-09 Giken Kagaku Kk Electric-discharge tube containing electrodes prepared from thorium(th-232)-nickel alloy
JPS58111250A (en) * 1981-12-23 1983-07-02 Shinko Electric Ind Co Ltd Discharge tube containing gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792748A (en) * 1980-12-01 1982-06-09 Giken Kagaku Kk Electric-discharge tube containing electrodes prepared from thorium(th-232)-nickel alloy
JPS58111250A (en) * 1981-12-23 1983-07-02 Shinko Electric Ind Co Ltd Discharge tube containing gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910748A (en) * 1988-12-20 1990-03-20 Ford Carol M Laser cathode composed of oxidized metallic particles

Similar Documents

Publication Publication Date Title
US4841538A (en) CO2 gas laser device
US5874805A (en) Electrode structure including a rod comprising refractory metal and having a greater thermal conductivity material
CA1147048A (en) High power laser and cathode structure therefor
JPH0628969A (en) Field emission cathode
JPS6184885A (en) Gas laser oscillation device
JPS6364067B2 (en)
JPS6364066B2 (en)
JPH0373151B2 (en)
JPS6184884A (en) Gas laser oscillation device
Kan et al. Annular discharge copper vapor laser
US7050473B2 (en) Pumping light source for laser-active media
GB2199693A (en) Flash lamps
US5168194A (en) Pulse simmer flash lamp cathode
US3705325A (en) Short arc discharge lamp
US3270239A (en) Solar simulation apparatus
JPS61289686A (en) Discharge electrode of gas laser oscillator
JPH0318751B2 (en)
JP4628777B2 (en) Short arc type high pressure discharge lamp
JPH0341785A (en) Co2 gas laser oscillation device
SU531682A1 (en) Torch for welding and surfacing in vacuum
JPS6348881A (en) Gas laser oscillator
JPS6184886A (en) Glow discharge electrode
JPS6341233B2 (en)
RU2152674C1 (en) Gas laser (design versions)
JPS63116478A (en) Carbon dioxide gas laser oscillating device