JP2005214047A - Combined cycle power generation plant and method of operating the same - Google Patents

Combined cycle power generation plant and method of operating the same Download PDF

Info

Publication number
JP2005214047A
JP2005214047A JP2004020365A JP2004020365A JP2005214047A JP 2005214047 A JP2005214047 A JP 2005214047A JP 2004020365 A JP2004020365 A JP 2004020365A JP 2004020365 A JP2004020365 A JP 2004020365A JP 2005214047 A JP2005214047 A JP 2005214047A
Authority
JP
Japan
Prior art keywords
steam
temperature
heat recovery
recovery boiler
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020365A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tao
浩之 田尾
Tomohiko Matsushita
智彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004020365A priority Critical patent/JP2005214047A/en
Publication of JP2005214047A publication Critical patent/JP2005214047A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined cycle power generation plant capable of establishing required steam conditions in starting a steam turbine by positively controlling the conditions of steam generated from an exhaust heat recovery boiler in a plant start process. <P>SOLUTION: When steam turbines 29 and 37 are started, a controller 39 is controlled by using desuperheaters 26 and 34 so that a steam temperature at the outlet of the exhaust heat recovery boiler 12 generated from at least one system of a plurality of systems or the temperature of the steam flowing to the steam turbines 29 and 37 becomes a steam temperature meeting the requirements of steam in starting the steam turbines 29 and 37. In normal operation, the controller is controlled by using the desuperheaters 26 and 37 so that the steam temperature at the outlet of the exhaust heat recovery boiler 12 or the temperatures of the steam flowing in the steam turbines 29 and 37 become rated temperatures. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガスタービンの排気ガスを用いて排熱回収ボイラで蒸気を発生させ、その蒸気で蒸気タービンを駆動するようにしたコンバインドサイクル発電プラントおよびその運転方法に関する。   The present invention relates to a combined cycle power plant that generates steam with an exhaust heat recovery boiler using exhaust gas of a gas turbine and drives the steam turbine with the steam, and an operation method thereof.

一般に、コンバインドサイクル発電プラントは、ガスタービンの排気ガスを用いて排熱回収ボイラで蒸気を発生させ、その蒸気で蒸気タービンを駆動するように構成されているので高効率であり、ガスタービンの高い負荷変化追従性と短時間での起動停止が可能であるという特性を有する。   In general, a combined cycle power plant is configured to generate steam with an exhaust heat recovery boiler using exhaust gas from a gas turbine and drive the steam turbine with the steam, so that it has high efficiency and high gas turbine performance. It has the characteristics that it can follow the load change and can be started and stopped in a short time.

また、排熱回収ボイラの熱源はガスタービンからの排気ガスであるので、排熱回収ボイラから発生する蒸気条件は、排熱回収ボイラに供給される排気ガスの流量や温度によって支配されるという特性を有し、特にプラント起動過程においては、排熱回収ボイラからの発生蒸気特性は、ガスタービン起動時の排気ガス特性に支配される。   Further, since the heat source of the exhaust heat recovery boiler is exhaust gas from the gas turbine, the steam condition generated from the exhaust heat recovery boiler is governed by the flow rate and temperature of the exhaust gas supplied to the exhaust heat recovery boiler. In particular, in the process of starting the plant, the generated steam characteristics from the exhaust heat recovery boiler are governed by the exhaust gas characteristics when starting the gas turbine.

図5は、従来のコンバインドサイクル発電プラントの起動過程におけるガスタービンおよび排熱回収ボイラのプロセス量の特性図である。いま、時点t1で燃焼器の燃料に着火されたとすると、ガスタービンは着火後に回転数を上げ時点t2で定格回転数まで上昇して無負荷定速運転となる。そして、時点t3で発電機負荷がとられて最低負荷運転となり、時点t4から負荷上昇して定格運転に至る。ガスタービンの排気ガス流量および排気ガス温度は着火と共に上昇し、負荷上昇と共にさらに上昇する。   FIG. 5 is a characteristic diagram of process amounts of the gas turbine and the exhaust heat recovery boiler in the startup process of the conventional combined cycle power plant. Assuming that the fuel in the combustor is ignited at time t1, the gas turbine increases the rotational speed after ignition and rises to the rated rotational speed at time t2, and becomes a no-load constant speed operation. Then, the generator load is taken at the time t3 and the lowest load operation is started, and the load increases from the time t4 to reach the rated operation. The exhaust gas flow rate and the exhaust gas temperature of the gas turbine increase with ignition, and further increase with increasing load.

これらの過程でガスタービンの排気ガスを熱源として排熱回収ボイラから蒸気が発生し、排気ガス温度および排気ガス流量の上昇と共に蒸気温度も上昇する。そして、時点t5において定格温度まで上昇すると、蒸気温度が定格温度以上にならないように、減温器によって排熱回収ボイラからの蒸気温度が定格温度になるように制御される。また、燃焼器に供給される空気量を調節するためのインレットガイドベーンの開度(IGV開度)は、ガスタービンの無負荷定速運転の開始時点t2から排熱回収ボイラの蒸気温度が定格温度になった後の時点t6までは一定に保たれ、時点t6以降は開度を開いていく。これにより、燃焼器の燃焼温度が高温になるのを防止すると共に、ガスタービンの排気温度が急激に上昇するのを防止している。   In these processes, steam is generated from the exhaust heat recovery boiler using the exhaust gas of the gas turbine as a heat source, and the steam temperature rises as the exhaust gas temperature and the exhaust gas flow rate increase. Then, when the temperature rises to the rated temperature at time t5, the steam temperature from the exhaust heat recovery boiler is controlled by the temperature reducer so that the steam temperature does not exceed the rated temperature. Further, the opening degree of the inlet guide vane (IGV opening degree) for adjusting the amount of air supplied to the combustor is rated by the steam temperature of the exhaust heat recovery boiler from the start time t2 of the no-load constant speed operation of the gas turbine. It remains constant until time t6 after reaching temperature, and the opening is opened after time t6. Thus, the combustion temperature of the combustor is prevented from becoming high, and the exhaust temperature of the gas turbine is prevented from rapidly rising.

ここで、ガスタービンの運転中は、燃焼器の燃焼温度が所定温度以上にならないようにIGV開度を制御することになるが、IGV開度を調節すると、ガスタービンの排気温度も変動するので排熱回収ボイラからの蒸気温度も変動する。排熱回収ボイラからの蒸気温度の変動は蒸気タービンに熱応力を発生させるので、蒸気系統の運転状況に応じてIGV開度を適切に制御し、蒸気タービンに熱応力を与えないようにしたものがある(例えば、特許文献1参照)。
特開平1−285608号公報
Here, during the operation of the gas turbine, the IGV opening is controlled so that the combustion temperature of the combustor does not exceed a predetermined temperature. However, if the IGV opening is adjusted, the exhaust temperature of the gas turbine also varies. The steam temperature from the exhaust heat recovery boiler also varies. Fluctuation in steam temperature from the exhaust heat recovery boiler generates thermal stress in the steam turbine, so the IGV opening is appropriately controlled according to the operating status of the steam system so that the thermal stress is not applied to the steam turbine (For example, refer to Patent Document 1).
Japanese Patent Laid-Open No. 1-285608

しかし、プラントの起動過程においては、排熱回収ボイラの蒸気温度が定格温度に達しないと、排熱回収ボイラの減温器による温度制御がなされないので、蒸気タービンに供給される蒸気温度はガスタービンの排気ガス温度に依って決定されることになり、蒸気タービンに熱応力を発生させるおそれがある。   However, during the start-up process of the plant, if the steam temperature of the exhaust heat recovery boiler does not reach the rated temperature, the temperature control by the temperature reducer of the exhaust heat recovery boiler is not performed, so the steam temperature supplied to the steam turbine is the gas This is determined by the exhaust gas temperature of the turbine, and there is a risk of generating thermal stress in the steam turbine.

すなわち、プラント起動時においては、ガスタービン特性によって支配される排熱回収ボイラからの発生蒸気条件と、蒸気タービンから要求される必要蒸気条件とが合致しない場合であっても、蒸気タービン側は受け入れざるを得ない状況にあった。   In other words, at the time of plant start-up, the steam turbine side accepts even if the generated steam conditions from the exhaust heat recovery boiler governed by the gas turbine characteristics do not match the required steam conditions required by the steam turbine. There was no choice but to be in a situation.

このように、ガスタービンの排気ガス特性は、ガスタービンの機種、大気温度、燃料性状等、運転条件等により決まり、排気ガス特性を蒸気タービン側の必要蒸気条件に合わせて制御することはしないので、プラント起動時においては蒸気タービンに厳しい状況となる。一方、蒸気タービンに関しては、起動時における高温、高圧蒸気の流入に伴う蒸気タービンでの熱応力や急激な熱伸び等を軽減させることが望ましく、また、適正な暖気運転を行うことも望ましい。   In this way, the exhaust gas characteristics of a gas turbine are determined by the operating conditions such as the gas turbine model, atmospheric temperature, fuel properties, etc., and the exhaust gas characteristics are not controlled according to the required steam conditions on the steam turbine side. When the plant is started, the steam turbine is in a severe situation. On the other hand, with regard to the steam turbine, it is desirable to reduce the thermal stress and rapid thermal elongation in the steam turbine accompanying the inflow of high temperature and high pressure steam at startup, and it is also desirable to perform an appropriate warm-up operation.

蒸気タービンにこのような過酷な状況を強いた場合、過度の熱応力発生による寿命消費、熱衝撃や熱伸びによる破損、蒸気タービンへの蒸気通気時における排気側の蒸気温度の過渡的な異常上昇等を引き起こす可能性があり、安定したプラント起動の妨げとなる。また、コンバインドサイクル発電プラントは、頻繁にプラントの起動停止を繰り返す運用を前提に計画されていることが多く、コンバインドサイクル発電プラントの利点をなくすことにもなる。   When such a severe condition is imposed on the steam turbine, the lifetime consumption due to excessive thermal stress generation, damage due to thermal shock or thermal elongation, transient abnormal rise in steam temperature on the exhaust side during steam ventilation to the steam turbine Etc., which may hinder stable plant start-up. In addition, the combined cycle power plant is often planned on the assumption that the plant is frequently started and stopped, and the advantages of the combined cycle power plant are also eliminated.

本発明の目的は、プラント起動過程における排熱回収ボイラからの発生蒸気条件を積極的に制御し、蒸気タービンの起動時における必要蒸気条件を確立できるコンバインドサイクル発電プラントおよびその運転方法を提供することである。   An object of the present invention is to provide a combined cycle power plant capable of positively controlling steam conditions generated from an exhaust heat recovery boiler in the process of starting a plant and establishing necessary steam conditions at the time of starting a steam turbine, and an operation method thereof. It is.

本発明のコンバインドサイクル発電プラントは、ガスタービンの排気ガスとの熱交換を通じて排熱回収ボイラで複数圧の蒸気を生成し、各々の排熱回収ボイラ出口から複数圧の蒸気を供給する。そして、制御装置は、蒸気タービンの起動時には、複数圧の系統のうち少なくとも1系統から発生する排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度が蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように減温器を使用して制御し、通常運転時には、排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度がそれぞれ定格温度になるように減温器を使用して制御する。   The combined cycle power plant of the present invention generates steam at multiple pressures in the exhaust heat recovery boiler through heat exchange with the exhaust gas of the gas turbine, and supplies the steam at multiple pressures from the outlets of the exhaust heat recovery boilers. Then, when the steam turbine is started, the steam temperature at the exhaust heat recovery boiler outlet generated from at least one of the multiple pressure systems or the steam temperature flowing into the steam turbine determines the steam condition at the start of the steam turbine. Use a desuperheater to control the temperature so that the steam temperature is satisfied.In normal operation, use the desuperheater so that the steam temperature at the exhaust heat recovery boiler outlet or the steam temperature flowing into the steam turbine is the rated temperature. And control.

また、排熱回収ボイラが単圧の蒸気を生成するものである場合には、制御装置は、蒸気タービンの起動時には、排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度が蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように減温器を使用して制御し、通常運転時には、排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度が定格温度になるように減温器を使用して制御する。また、蒸気タービンの起動時の蒸気条件を満たす蒸気温度から定格温度への制御切り替えの際には、制御装置は、所定の変化率で温度が変化するように制御する。   In addition, when the exhaust heat recovery boiler generates single-pressure steam, the control device determines whether the steam temperature at the exhaust heat recovery boiler outlet or the steam temperature flowing into the steam turbine is the steam turbine when starting the steam turbine. The temperature is controlled using a desuperheater so that the steam temperature satisfies the start-up steam condition, and during normal operation, the steam temperature at the exhaust heat recovery boiler outlet or the steam temperature flowing into the steam turbine becomes the rated temperature. Control using a cooler. In addition, when the control is switched from the steam temperature that satisfies the steam condition at the time of starting the steam turbine to the rated temperature, the control device performs control so that the temperature changes at a predetermined change rate.

本発明のコンバインドサイクル発電プラントの運転方法は、蒸気タービンの起動時には、複数圧の系統のうち少なくとも1系統から発生する排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度が蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように減温器を使用して制御し、通常運転時には、排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度がそれぞれ定格温度になるように減温器を使用して制御する。   In the operation method of the combined cycle power plant of the present invention, when the steam turbine is started, the steam temperature at the outlet of the exhaust heat recovery boiler generated from at least one of the multiple pressure systems or the steam temperature flowing into the steam turbine is The temperature is controlled by using a temperature reducer so that the steam temperature satisfies the start-up steam conditions, and during normal operation, the steam temperature at the exhaust heat recovery boiler outlet or the steam temperature flowing into the steam turbine becomes the rated temperature. Control using a cooler.

また、排熱回収ボイラが単圧の蒸気を生成するものである場合には、蒸気タービンの起動時には、排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度が蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように減温器を使用して制御し、通常運転時には、排熱回収ボイラ出口の蒸気温度または蒸気タービンに流入する蒸気温度が定格温度になるように減温器を使用して制御する。また、蒸気タービンの起動時の蒸気条件を満たす蒸気温度から定格温度への制御切り替えの際には、所定の変化率で温度が変化するように制御する。   If the exhaust heat recovery boiler generates single-pressure steam, the steam temperature at the exhaust heat recovery boiler outlet or the steam temperature flowing into the steam turbine is the same as that at the start of the steam turbine. The temperature is controlled using a desuperheater so that the steam temperature satisfies the steam condition. During normal operation, the desuperheater is set so that the steam temperature at the exhaust heat recovery boiler outlet or the steam temperature flowing into the steam turbine becomes the rated temperature. Use to control. Further, when the control is switched from the steam temperature that satisfies the steam condition at the time of starting the steam turbine to the rated temperature, the temperature is controlled so as to change at a predetermined change rate.

発明によれば、コンバインド発電プラントの起動時における排熱回収ボイラからの発生蒸気条件の制御幅が大幅に広がり、各機器に熱衝撃や熱応力等の負担をかけることのない運転を実現できる。すなわち、ガスタービン起動過程において、排熱回収ボイラから発生する蒸気温度を減温器を用いて蒸気タービンの起動時の蒸気条件に合致するように制御するので、蒸気タービンに過度の熱応力および熱衝撃を与えることなく起動することが可能となる。   According to the present invention, the control range of the steam conditions generated from the exhaust heat recovery boiler at the time of starting the combined power plant is greatly widened, and it is possible to realize an operation that does not place a burden such as thermal shock or thermal stress on each device. In other words, during the gas turbine startup process, the steam temperature generated from the exhaust heat recovery boiler is controlled using a temperature reducer so as to meet the steam conditions at the time of startup of the steam turbine. It becomes possible to start without giving an impact.

以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係るコンバインドサイクル発電プラントの構成図である。ガスタービン11にて燃焼した後の排気ガスは、定格運転時には600℃程度の温度の排気ガスとなって排熱回収ボイラ12に流入する。排熱回収ボイラ12で熱吸収され、温度の低下した排気ガスは100℃程度となって大気へ流出する。一方、水は復水器13から低圧給水ポンプ14よって排熱回収ボイラ12に給水される。まず、排熱回収ボイラ12の低圧節炭器15に給水され、ここで温度が上昇した後に、低圧蒸発器16に給水されて蒸発し蒸気となる。低圧蒸発器16で発生した蒸気は低圧過熱器17を通って過熱され、低圧蒸気管18によって低圧蒸気タービン19へ供給される。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a combined cycle power plant according to a first embodiment of the present invention. The exhaust gas after burning in the gas turbine 11 becomes exhaust gas having a temperature of about 600 ° C. and flows into the exhaust heat recovery boiler 12 during rated operation. The exhaust gas that has been absorbed by the exhaust heat recovery boiler 12 and has a lowered temperature flows out to the atmosphere at about 100 ° C. On the other hand, water is supplied from the condenser 13 to the exhaust heat recovery boiler 12 by the low-pressure feed pump 14. First, water is supplied to the low-pressure economizer 15 of the exhaust heat recovery boiler 12, and after the temperature rises, it is supplied to the low-pressure evaporator 16 to evaporate and become steam. The steam generated in the low-pressure evaporator 16 is superheated through the low-pressure superheater 17 and supplied to the low-pressure steam turbine 19 through the low-pressure steam pipe 18.

また、低圧蒸発器16で蒸気とならなかった一部の給水は、中圧給水ポンプ20で圧力を高められた後に中圧節炭器21を介して中圧蒸発器22に給水される。中圧蒸発器22で発生した蒸気は中圧過熱器23を通り、低温再熱蒸気管24で低温再熱蒸気と混合され、再熱器25に供給される。再熱器25には再熱器減温器26が設けられており、再熱器スプレー水量調節弁27により再熱器25の蒸気温度を調節できるようになっている。再熱器25で過熱された蒸気は、高温再熱蒸気管28を通って中圧蒸気タービン29に供給される。   Further, a part of the feed water that has not become steam in the low-pressure evaporator 16 is increased in pressure by the intermediate-pressure feed water pump 20 and then supplied to the intermediate-pressure evaporator 22 through the intermediate-pressure economizer 21. The steam generated in the intermediate pressure evaporator 22 passes through the intermediate pressure superheater 23, is mixed with the low temperature reheat steam in the low temperature reheat steam pipe 24, and is supplied to the reheater 25. The reheater 25 is provided with a reheater temperature reducer 26, and the reheater spray water amount adjustment valve 27 can adjust the steam temperature of the reheater 25. The steam superheated by the reheater 25 is supplied to the intermediate pressure steam turbine 29 through the high temperature reheat steam pipe 28.

一方、低圧蒸発器16で蒸気とならなかった一部の給水は、高圧給水ポンプ30で圧力を高められた後に高圧節炭器31を介して高圧蒸発器32に給水される。高圧蒸発器32で発生した蒸気は、第1の高圧過熱器33aに供給される。第1の高圧過熱器33a下流側には高圧過熱器減温器34が設けられており、高圧過熱器スプレー水量調節弁35により第1の高圧過熱器33aからの蒸気温度(または第2の高圧過熱器出口の蒸気温度)を調節できるようになっている。第1の高圧過熱器33aで過熱された蒸気は、第2の高圧過熱器33bでさらに過熱された後、高温主蒸気管36を通って高圧蒸気タービン37に供給される。   On the other hand, a part of the feed water that has not become steam in the low-pressure evaporator 16 is increased in pressure by the high-pressure feed pump 30 and then supplied to the high-pressure evaporator 32 via the high-pressure economizer 31. The steam generated in the high-pressure evaporator 32 is supplied to the first high-pressure superheater 33a. A high pressure superheater desuperheater 34 is provided downstream of the first high pressure superheater 33a, and the steam temperature (or the second high pressure) from the first high pressure superheater 33a is controlled by the high pressure superheater spray water amount adjustment valve 35. The steam temperature at the outlet of the superheater can be adjusted. The steam superheated by the first high-pressure superheater 33 a is further superheated by the second high-pressure superheater 33 b and then supplied to the high-pressure steam turbine 37 through the high-temperature main steam pipe 36.

排熱回収ボイラ12の高圧蒸気系統の出口すなわち第2の高圧過熱器33bの出口には、高圧蒸気温度検出器38が設けられ、高圧蒸気の温度が検出され制御装置39の第1制御部40に入力される。同様に、排熱回収ボイラ12の再熱蒸気系統の出口すなわち再熱器25の出口には、再熱蒸気温度検出器41が設けられ、
再熱蒸気の温度が検出され制御装置39の第2制御部42に入力される。
A high-pressure steam temperature detector 38 is provided at the outlet of the high-pressure steam system of the exhaust heat recovery boiler 12, that is, the outlet of the second high-pressure superheater 33b, so that the temperature of the high-pressure steam is detected and the first control unit 40 of the control device 39 is detected. Is input. Similarly, a reheat steam temperature detector 41 is provided at the outlet of the reheat steam system of the exhaust heat recovery boiler 12, that is, the outlet of the reheater 25,
The temperature of the reheated steam is detected and input to the second control unit 42 of the control device 39.

制御装置39の第1制御部40は、蒸気タービン(高圧蒸気タービン37)の起動時には、高圧蒸気温度検出器38で検出された高圧蒸気温度と第1設定器43に設定された蒸気タービン(高圧蒸気タービン37)の起動時の蒸気温度目標値とを比較し、高圧蒸気温度が蒸気タービン(高圧蒸気タービン37)の起動時の蒸気温度目標値になるように、高圧過熱器スプレー水量調節弁35の弁開度を調節し、高圧過熱器減温器34での減温量を制御して第2の高圧過熱器33bの蒸気温度を調節する。一方、通常運転時には、高圧蒸気温度検出器38で検出された高圧蒸気温度が定格温度になるように高圧過熱器スプレー水量調節弁35の弁開度を調節し、高圧過熱器減温器34での減温量を制御して第1または第2の高圧過熱器33a(33b)の蒸気温度を調節する。   The first control unit 40 of the control device 39, when starting the steam turbine (high pressure steam turbine 37), detects the high pressure steam temperature detected by the high pressure steam temperature detector 38 and the steam turbine (high pressure) set in the first setting device 43. The steam temperature target value at the start of the steam turbine 37) is compared, and the high pressure steam temperature control valve 35 is set so that the high pressure steam temperature becomes the steam temperature target value at the start of the steam turbine (high pressure steam turbine 37). And the steam temperature of the second high-pressure superheater 33b is adjusted by controlling the temperature reduction amount in the high-pressure superheater desuperheater 34. On the other hand, during normal operation, the valve opening of the high-pressure superheater spray water amount adjusting valve 35 is adjusted so that the high-pressure steam temperature detected by the high-pressure steam temperature detector 38 becomes the rated temperature, and the high-pressure superheater desuperheater 34 is used. Is controlled to adjust the steam temperature of the first or second high pressure superheater 33a (33b).

同様に、制御装置39の第2制御部42は、蒸気タービン(中圧蒸気タービン29)の起動時には、再熱蒸気温度検出器41で検出された再熱蒸気温度と第2設定器44に設定された蒸気タービン(中圧蒸気タービン29)の起動時の蒸気温度目標値とを比較し、再熱蒸気温度が蒸気タービン(中圧蒸気タービン29)の起動時の蒸気温度目標値になるように、再熱器スプレー水量調節弁27の弁開度を調節し、再熱器減温器26での減温量を制御して再熱器25の蒸気温度を調節する。一方、通常運転時には、再熱蒸気温度検出器41で検出された再熱蒸気温度が定格温度になるように再熱器スプレー水量調節弁27の弁開度を調節し、再熱器減温器26での減温量を制御して再熱器25の蒸気温度を調節する。   Similarly, the second control unit 42 of the control device 39 sets the reheat steam temperature detected by the reheat steam temperature detector 41 and the second setter 44 when the steam turbine (medium pressure steam turbine 29) is started. The steam temperature target value at the start of the steam turbine (medium pressure steam turbine 29) is compared, and the reheat steam temperature becomes the steam temperature target value at the start of the steam turbine (intermediate pressure steam turbine 29). The steam temperature of the reheater 25 is adjusted by adjusting the valve opening degree of the reheater spray water amount adjusting valve 27 and controlling the temperature reduction amount in the reheater temperature reducer 26. On the other hand, during normal operation, the opening degree of the reheater spray water amount adjustment valve 27 is adjusted so that the reheat steam temperature detected by the reheat steam temperature detector 41 becomes the rated temperature, and the reheater desuperheater. The amount of temperature reduction at 26 is controlled to adjust the steam temperature of the reheater 25.

このように、再熱蒸気系統には再熱器減温器26が設置され、高圧蒸気系統には高圧過熱器減温器34が設置されており、通常運転時には、再熱器減温器26で温度制御された蒸気が中圧蒸気タービン29へ供給され、高圧過熱器減温器34で温度制御された蒸気が高圧蒸気タービン37へ供給される。通常運転時の温度制御は、定格温度以上に蒸気温度が上昇することを防ぐための制御であり、その温度設定値は、通常、538℃あるいは566℃等の予め決められた値である。また、蒸気タービンの起動過程のガスタービン無負荷から低負荷時においても蒸気温度を制御する。起動時の温度制御は蒸気タービン側の要求に応じた蒸気温度でありタービンの特性に応じて温度設定値を定めることになる。   Thus, the reheater temperature reducer 26 is installed in the reheat steam system, and the high pressure superheater temperature reducer 34 is installed in the high pressure steam system. During normal operation, the reheater temperature reducer 26 is provided. The steam whose temperature is controlled in this step is supplied to the intermediate pressure steam turbine 29, and the steam whose temperature is controlled by the high pressure superheater desuperheater 34 is supplied to the high pressure steam turbine 37. The temperature control during normal operation is control for preventing the steam temperature from rising above the rated temperature, and the temperature set value is usually a predetermined value such as 538 ° C. or 566 ° C. In addition, the steam temperature is controlled even when the gas turbine is in the starting process of the steam turbine from no load to low load. The temperature control at the time of start-up is the steam temperature according to the request on the steam turbine side, and the temperature set value is determined according to the characteristics of the turbine.

図2は、本発明の第1の実施の形態に係るコンバインドサイクル発電プラントの起動過程におけるガスタービンおよび排熱回収ボイラのプロセス量の特性図である。図5に示す従来の特性と比較して、蒸気温度が定格温度まで上昇する過程の時点t5から時点t6の期間T1において、蒸気温度を所定温度(蒸気タービンの起動時の蒸気条件を満たす蒸気温度)に一定制御した場合を示している。時点t6で一定制御が終了すると、その所定温度から定格温度への切り替えを行う。   FIG. 2 is a characteristic diagram of process amounts of the gas turbine and the exhaust heat recovery boiler in the startup process of the combined cycle power plant according to the first embodiment of the present invention. Compared to the conventional characteristics shown in FIG. 5, the steam temperature is set to a predetermined temperature (steam temperature that satisfies the steam condition at the time of starting the steam turbine) in a period T1 from time t5 to time t6 in the process of increasing the steam temperature to the rated temperature. ) Shows the case of constant control. When the constant control ends at time t6, switching from the predetermined temperature to the rated temperature is performed.

その際には、所定の変化率で温度が変化するように制御する。すなわち、所定温度から定格温度に設定温度を切り替える場合に、急激に設定温度を変更すると蒸気配管や蒸気タービンに熱衝撃や熱応力が生じることがあるので、そのような熱衝撃や熱応力による影響を極力する無くすために、時点t6から時点t7の期間T2においては一定の変化率で蒸気温度を変更する。これにより、各機器に生じる必要以上の寿命消費(過負荷)を軽減する。   At that time, control is performed so that the temperature changes at a predetermined rate of change. In other words, when the set temperature is switched from the predetermined temperature to the rated temperature, if the set temperature is changed suddenly, a thermal shock or thermal stress may occur in the steam piping or steam turbine. In order to eliminate as much as possible, the steam temperature is changed at a constant change rate during a period T2 from time t6 to time t7. This reduces unnecessary life consumption (overload) that occurs in each device.

以上の説明では、高圧蒸気系統の高圧過熱器減温器34と再熱蒸気系統の再熱器減温器26との双方の蒸気温度を所定の設定値に制御する場合について説明したが、その一方のみの減温器を使用して該当する蒸気系統における蒸気温度を所定の設定値に制御するようにしても良い。   In the above description, the steam temperature of both the high pressure superheater desuperheater 34 of the high pressure steam system and the reheater desuperheater 26 of the reheat steam system is controlled to a predetermined set value. Only one of the temperature reducers may be used to control the steam temperature in the corresponding steam system to a predetermined set value.

また、以上の説明では、排熱回収ボイラ12出口の蒸気温度を高圧蒸気温度検出器38や再熱蒸気温度検出器41で計測して、制御装置39によって蒸気タービンに供給する蒸気温度を制御するようにしたが、排熱回収ボイラ12の出口の蒸気温度に代えて、高圧蒸気タービン37や中圧蒸気タービン29に流入する蒸気温度を減温器34、26を使用して制御するようにしても良い。この場合には、高圧蒸気タービン37の入口に高圧蒸気温度検出器38を設置し、中圧蒸気タービン29の入口に再熱蒸気温度検出器41を設置し、制御装置29は、高圧蒸気温度検出器38で計測された高圧蒸気タービン37の入口の蒸気温度および再熱蒸気温度検出器41で計測された中圧蒸気タービン29の入口の蒸気温度がそれぞれ所定の蒸気温度になるように制御することになる。   In the above description, the steam temperature at the outlet of the exhaust heat recovery boiler 12 is measured by the high-pressure steam temperature detector 38 or the reheat steam temperature detector 41, and the steam temperature supplied to the steam turbine is controlled by the control device 39. However, instead of the steam temperature at the outlet of the exhaust heat recovery boiler 12, the steam temperature flowing into the high-pressure steam turbine 37 or the intermediate-pressure steam turbine 29 is controlled using the temperature reducers 34 and 26. Also good. In this case, a high-pressure steam temperature detector 38 is installed at the inlet of the high-pressure steam turbine 37, a reheat steam temperature detector 41 is installed at the inlet of the intermediate-pressure steam turbine 29, and the control device 29 detects the high-pressure steam temperature. The steam temperature at the inlet of the high-pressure steam turbine 37 measured by the vessel 38 and the steam temperature at the inlet of the intermediate-pressure steam turbine 29 measured by the reheat steam temperature detector 41 are controlled so as to become a predetermined steam temperature, respectively. become.

第1の実施の形態によれば、ガスタービンの無負荷から低負荷時においても所定の設定値に蒸気温度を制御することが可能であるので、蒸気タービンの起動過程においても容易に蒸気タービン側の要求に応じた蒸気温度を確保することができる。また、ガスタービンの負荷を変化させることにより、蒸気温度を維持したまま発生した蒸気流量を変化させることができるので、蒸気タービンの起動過程で要求される所定の蒸気温度や蒸気流量を併せて確保することも容易になる。   According to the first embodiment, the steam temperature can be controlled to a predetermined set value even when the gas turbine is not loaded to a low load. It is possible to ensure the steam temperature according to the demand. In addition, by changing the load of the gas turbine, the flow rate of the generated steam can be changed while maintaining the steam temperature, so the specified steam temperature and steam flow required during the start-up process of the steam turbine are also secured. It is also easy to do.

次に、本発明の第2の実施の形態を説明する。図3は本発明の第2の実施の形態に係るコンバインドサイクル発電プラントの構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、排熱回収ボイラ12の蒸気系統が単圧(本実施の形態では高圧蒸気系統の例を示す)である場合を示している。この場合も、第1の実施の形態と同様に、高圧過熱器減温器34を使用して高圧蒸気系統における蒸気温度を所定の設定値に制御することになる。   Next, a second embodiment of the present invention will be described. FIG. 3 is a configuration diagram of a combined cycle power plant according to the second embodiment of the present invention. In the second embodiment, the steam system of the exhaust heat recovery boiler 12 is a single pressure (in this embodiment, an example of a high-pressure steam system) compared to the first embodiment shown in FIG. Shows the case. Also in this case, the steam temperature in the high-pressure steam system is controlled to a predetermined set value by using the high-pressure superheater desuperheater 34 as in the first embodiment.

すなわち、制御装置39の制御部40Aは、高圧蒸気タービン37の起動時には、高圧蒸気温度検出器38で検出された高圧蒸気温度と設定器43Aに設定された高圧蒸気タービン37の起動時の蒸気温度目標値とを比較し、高圧蒸気温度が高圧蒸気タービン37の起動時の蒸気温度目標値になるように、高圧過熱器スプレー水量調節弁35の弁開度を調節し、高圧過熱器減温器34での減温量を制御して高圧過熱器33の蒸気温度を調節する。一方、通常運転時には、高圧蒸気温度検出器38で検出された高圧蒸気温度が定格温度になるように高圧過熱器スプレー水量調節弁35の弁開度を調節し、高圧過熱器減温器34での減温量を制御して高圧過熱器33の蒸気温度を調節する。   That is, when the high-pressure steam turbine 37 is started, the control unit 40A of the control device 39 detects the high-pressure steam temperature detected by the high-pressure steam temperature detector 38 and the steam temperature at the time of starting the high-pressure steam turbine 37 set in the setting device 43A. The opening of the high-pressure superheater spray water amount adjustment valve 35 is adjusted so that the high-pressure steam temperature becomes the steam temperature target value at the start of the high-pressure steam turbine 37 by comparing with the target value, and the high-pressure superheater desuperheater The steam temperature of the high-pressure superheater 33 is adjusted by controlling the temperature reduction amount at 34. On the other hand, during normal operation, the valve opening of the high-pressure superheater spray water amount adjusting valve 35 is adjusted so that the high-pressure steam temperature detected by the high-pressure steam temperature detector 38 becomes the rated temperature, and the high-pressure superheater desuperheater 34 is used. The steam temperature of the high pressure superheater 33 is adjusted by controlling the amount of decrease in temperature.

第2の実施の形態によれば、第1の実施の形態と同様に、ガスタービンの無負荷から低負荷時においても所定の設定値に蒸気温度を制御することが可能であるので、高圧蒸気タービン37の起動過程においても容易に高圧蒸気タービン37側の要求に応じた蒸気温度を確保することができる。また、ガスタービンの負荷を変化させることにより、蒸気温度を維持したまま発生した蒸気流量を変化させることができるので、高圧蒸気タービン37の起動過程で要求される所定の蒸気温度や蒸気流量を併せて確保することも容易になる。   According to the second embodiment, similarly to the first embodiment, the steam temperature can be controlled to a predetermined set value even when the gas turbine is under no load to a low load. Even in the starting process of the turbine 37, the steam temperature according to the request on the high-pressure steam turbine 37 side can be easily secured. Further, by changing the load of the gas turbine, the flow rate of the generated steam can be changed while maintaining the steam temperature. Therefore, the predetermined steam temperature and the steam flow rate required in the starting process of the high-pressure steam turbine 37 are combined. It is easy to secure.

次に、本発明の第3の実施の形態を説明する。図4は本発明の第3の実施の形態に係るコンバインドサイクル発電プラントの構成図である。この第3の実施の形態は、図1に示した第1の実施の形態に対し、再熱器25の出口に再熱蒸気系統減温器45および再熱蒸気系統スプレー水量調節弁46を追加して設けると共に、第2の高圧過熱器33bの出口に高圧蒸気系統減温器47および高圧蒸気系統スプレー水量調節弁48を追加して設けたものである。また、高圧蒸気タービン37の入口に高圧蒸気温度検出器38を設置し、中圧蒸気タービン29の入口に再熱蒸気温度検出器41を設置している。   Next, a third embodiment of the present invention will be described. FIG. 4 is a configuration diagram of a combined cycle power plant according to a third embodiment of the present invention. In the third embodiment, a reheat steam system desuperheater 45 and a reheat steam system spray water amount adjustment valve 46 are added to the outlet of the reheater 25 with respect to the first embodiment shown in FIG. In addition, a high-pressure steam system desuperheater 47 and a high-pressure steam system spray water amount adjustment valve 48 are additionally provided at the outlet of the second high-pressure superheater 33b. A high-pressure steam temperature detector 38 is installed at the inlet of the high-pressure steam turbine 37, and a reheat steam temperature detector 41 is installed at the inlet of the intermediate-pressure steam turbine 29.

制御装置29の第1制御部40は、高圧蒸気タービン37の起動時には、高圧蒸気温度検出器38で検出された高圧蒸気温度と第1設定器43に設定された高圧蒸気タービン37の起動時の蒸気温度目標値とを比較し、高圧蒸気温度が高圧蒸気タービン37の起動時の蒸気温度目標値になるように、高圧蒸気系統スプレー水量調節弁48の弁開度を調節し、高圧蒸気系統減温器47での減温量を制御して第2の高圧過熱器33bの出口蒸気温度を調節する。一方、通常運転時には、高圧蒸気温度検出器38で検出された高圧蒸気温度が定格温度になるように高圧蒸気系統スプレー水量調節弁48の弁開度を調節し、高圧蒸気系統減温器47での減温量を制御して第2の高圧過熱器33bの出口蒸気温度を調節する。   The first control unit 40 of the control device 29 is configured such that when the high-pressure steam turbine 37 is started, the high-pressure steam temperature detected by the high-pressure steam temperature detector 38 and the high-pressure steam turbine 37 set in the first setting unit 43 are started. The steam temperature target value is compared, and the opening degree of the high-pressure steam system spray water amount adjustment valve 48 is adjusted so that the high-pressure steam temperature becomes the steam temperature target value when the high-pressure steam turbine 37 is started, and the high-pressure steam system is reduced. The temperature reduction amount in the warmer 47 is controlled to adjust the outlet steam temperature of the second high-pressure superheater 33b. On the other hand, during normal operation, the valve opening of the high-pressure steam system spray water amount adjustment valve 48 is adjusted so that the high-pressure steam temperature detected by the high-pressure steam temperature detector 38 becomes the rated temperature, and the high-pressure steam system decelerator 47 Is controlled to adjust the outlet steam temperature of the second high-pressure superheater 33b.

同様に、制御装置39の第2制御部42は、中圧蒸気タービン29の起動時には、再熱蒸気温度検出器41で検出された再熱蒸気温度と第2設定器44に設定された中圧蒸気タービン29の起動時の蒸気温度目標値とを比較し、再熱蒸気温度が中圧蒸気タービン29の起動時の蒸気温度目標値になるように、再熱蒸気系統スプレー水量調節弁46の弁開度を調節し、再熱蒸気系統減温器45での減温量を制御して再熱器25の蒸気温度を調節する。一方、通常運転時には、再熱蒸気温度検出器41で検出された再熱蒸気温度が定格温度になるように再熱蒸気系統スプレー水量調節弁46の弁開度を調節し、再熱蒸気系統減温器45での減温量を制御して再熱器25の蒸気温度を調節する。   Similarly, when the intermediate pressure steam turbine 29 is started up, the second control unit 42 of the control device 39 determines the reheat steam temperature detected by the reheat steam temperature detector 41 and the intermediate pressure set in the second setter 44. The steam temperature target value at the start of the steam turbine 29 is compared, and the reheat steam system spray water amount adjusting valve 46 is adjusted so that the reheat steam temperature becomes the steam temperature target value at the start of the intermediate pressure steam turbine 29. The steam temperature of the reheater 25 is adjusted by adjusting the opening degree and controlling the amount of temperature reduction in the reheat steam system desuperheater 45. On the other hand, during normal operation, the opening degree of the reheat steam system spray water amount adjustment valve 46 is adjusted so that the reheat steam temperature detected by the reheat steam temperature detector 41 becomes the rated temperature, thereby reducing the reheat steam system. The steam temperature of the reheater 25 is adjusted by controlling the amount of temperature decrease in the warmer 45.

ガスタービン11が無負荷から低負荷の状態では、排熱回収ボイラ12からの発生蒸気量が少ないため、第1および第2の高圧過熱器33a、33bの間に設置された高圧過熱器減温器34や再熱器25の間に設置された再熱器減温器26で蒸気温度を制御しても、排熱回収ボイラ12の出口の蒸気温度としては十分減温できない場合があるので、再熱蒸気系統減温器45や高圧蒸気系統減温器47により、中圧蒸気蒸気タービン29や高圧蒸気タービン37に供給する蒸気を直接減温するようにしている。   When the gas turbine 11 is in a no-load to low-load state, the amount of steam generated from the exhaust heat recovery boiler 12 is small, so that the temperature of the high-pressure superheater installed between the first and second high-pressure superheaters 33a and 33b is reduced. Even if the steam temperature is controlled by the reheater desuperheater 26 installed between the heat exchanger 34 and the reheater 25, the steam temperature at the outlet of the exhaust heat recovery boiler 12 may not be sufficiently reduced. The steam supplied to the intermediate pressure steam turbine 29 and the high pressure steam turbine 37 is directly reduced by the reheat steam system temperature reducer 45 and the high pressure steam system temperature reducer 47.

以上の説明では、再熱蒸気系統減温器45や高圧蒸気系統減温器47を別個に追加して設けるようにしたが、再熱器減温器26や高圧過熱器減温器34を再熱器25や高圧過熱器33の出口に移動して配置するようにしても良い。   In the above description, the reheat steam system desuperheater 45 and the high pressure steam system desuperheater 47 are separately added, but the reheater desuperheater 26 and the high pressure superheater desuperheater 34 are re-installed. You may make it move and arrange | position to the exit of the heater 25 or the high voltage | pressure superheater 33. FIG.

第3の実施の形態によれば、ガスタービンが無負荷から低負荷の状態で排熱回収ボイラ12からの発生蒸気量が少ない場合であっても、中圧蒸気タービン29や高圧蒸気タービン37に供給する蒸気温度を適正に減温することができる。   According to the third embodiment, even if the gas turbine is in a state of no load to low load and the amount of steam generated from the exhaust heat recovery boiler 12 is small, the medium pressure steam turbine 29 and the high pressure steam turbine 37 The supplied steam temperature can be appropriately reduced.

本発明の第1の実施の形態に係るコンバインドサイクル発電プラントの構成図。The lineblock diagram of the combined cycle power plant concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係るコンバインドサイクル発電プラントの起動過程におけるガスタービンおよび排熱回収ボイラのプロセス量の特性図。The characteristic view of the process amount of the gas turbine and the waste heat recovery boiler in the starting process of the combined cycle power plant concerning the 1st embodiment of the present invention. 本発明の第2の実施の形態に係るコンバインドサイクル発電プラントの構成図。The block diagram of the combined cycle power plant which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るコンバインドサイクル発電プラントの構成図。The block diagram of the combined cycle power plant which concerns on the 3rd Embodiment of this invention. 従来のコンバインドサイクル発電プラントの起動過程におけるガスタービンおよび排熱回収ボイラのプロセス量の特性図。The characteristic figure of the process amount of the gas turbine and a waste heat recovery boiler in the starting process of the conventional combined cycle power plant.

符号の説明Explanation of symbols

11…ガスタービン、12…排熱回収ボイラ、13…復水器、14…低圧給水ポンプ、15…低圧節炭器、16…低圧蒸発器、17…低圧過熱器、18…低圧蒸気管、19…低圧蒸気タービン、20…中圧給水ポンプ、21…中圧節炭器、22…中圧蒸発器、23…中圧過熱器、24…低温再熱蒸気管、25…再熱器、26…再熱器減温器、27…再熱器スプレー水量調節弁、28…高温再熱蒸気管、29…中圧蒸気タービン、30…高圧給水ポンプ、31…高圧節炭器、32…高圧蒸発器、33a…第1の高圧過熱器、33b…第2の高圧過熱器、34…高圧過熱器減温器、35…高圧過熱器スプレー水量調節弁、36…高温主蒸気管、37…高圧蒸気タービン、38…高圧蒸気温度検出器、39…制御装置、40…第1制御部、41…再熱蒸気温度検出器、42…第2制御部、43…第1設定器、44…第2設定器、45…再熱蒸気系統減温器、46…再熱蒸気系統スプレー水量調節弁、47…高圧蒸気系統減温器、48…高圧蒸気系統スプレー水量調節弁、50…排気ガス DESCRIPTION OF SYMBOLS 11 ... Gas turbine, 12 ... Waste heat recovery boiler, 13 ... Condenser, 14 ... Low pressure feed pump, 15 ... Low pressure economizer, 16 ... Low pressure evaporator, 17 ... Low pressure superheater, 18 ... Low pressure steam pipe, 19 DESCRIPTION OF SYMBOLS ... Low pressure steam turbine, 20 ... Medium pressure feed water pump, 21 ... Medium pressure economizer, 22 ... Medium pressure evaporator, 23 ... Medium pressure superheater, 24 ... Low temperature reheat steam pipe, 25 ... Reheater, 26 ... Reheater desuperheater, 27 ... Reheater spray water amount control valve, 28 ... High temperature reheat steam pipe, 29 ... Medium pressure steam turbine, 30 ... High pressure feed pump, 31 ... High pressure economizer, 32 ... High pressure evaporator 33a ... first high pressure superheater, 33b ... second high pressure superheater, 34 ... high pressure superheater desuperheater, 35 ... high pressure superheater spray water amount control valve, 36 ... high temperature main steam pipe, 37 ... high pressure steam turbine , 38 ... high pressure steam temperature detector, 39 ... control device, 40 ... first control unit, 41 ... re Steam temperature detector, 42 ... second control unit, 43 ... first setting device, 44 ... second setting device, 45 ... reheat steam system temperature reducer, 46 ... reheat steam system spray water amount adjustment valve, 47 ... high pressure Steam system desuperheater, 48 ... High pressure steam system spray water amount control valve, 50 ... Exhaust gas

Claims (8)

ガスタービンの排気ガスとの熱交換を通じて排熱回収ボイラで複数圧の蒸気を生成し、各々の排熱回収ボイラ出口から前記複数圧の蒸気を供給し、通常運転時には前記複数圧の蒸気温度がそれぞれ定格温度になるように減温器を使用して制御し、その蒸気を蒸気タービンに供給するようにしたコンバインドサイクル発電プラントにおいて、前記蒸気タービンの起動時には、前記複数圧の系統のうち少なくとも1系統から発生する排熱回収ボイラ出口の蒸気温度が前記蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように前記減温器を使用して制御し、通常運転時には、前記排熱回収ボイラ出口の蒸気温度がそれぞれ定格温度になるように減温器を使用して制御する制御装置を備えたことを特徴とするコンバインドサイクル発電プラント。 A plurality of pressure steam is generated in the exhaust heat recovery boiler through heat exchange with the exhaust gas of the gas turbine, and the multiple pressure steam is supplied from each exhaust heat recovery boiler outlet. In a combined cycle power plant that uses a temperature reducer to control each rated temperature and supplies the steam to the steam turbine, at the start of the steam turbine, at least one of the multiple pressure systems The exhaust heat recovery boiler outlet steam temperature generated from the system is controlled using the temperature reducer so that the steam temperature satisfies the steam condition when starting the steam turbine, and during normal operation, the exhaust heat recovery boiler is controlled. A combined cycle power generation system comprising a control device that uses a temperature reducer to control the steam temperature at the outlet to a rated temperature. Door. ガスタービンの排気ガスとの熱交換を通じて排熱回収ボイラで単圧の蒸気を生成し、排熱回収ボイラ出口から前記単圧の蒸気を供給し、通常運転時には前記単圧の蒸気温度が定格温度になるように減温器を使用して制御し、その蒸気を蒸気タービンに供給するようにしたコンバインドサイクル発電プラントにおいて、前記蒸気タービンの起動時には、前記排熱回収ボイラ出口の蒸気温度が前記蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように前記減温器を使用して制御し、通常運転時には、前記排熱回収ボイラ出口の蒸気温度が定格温度になるように減温器を使用して制御する制御装置を備えたことを特徴とするコンバインドサイクル発電プラント。 Single-pressure steam is generated in the exhaust heat recovery boiler through heat exchange with the exhaust gas of the gas turbine, and the single-pressure steam is supplied from the exhaust heat recovery boiler outlet. During normal operation, the single-pressure steam temperature is the rated temperature. In a combined cycle power plant that uses a temperature reducer to control the steam to supply the steam to the steam turbine, the steam temperature at the exhaust heat recovery boiler outlet is the steam temperature when the steam turbine is started. The desuperheater is controlled so that the steam temperature satisfies the steam condition at the start of the turbine, and during normal operation, the desuperheater is adjusted so that the steam temperature at the exhaust heat recovery boiler outlet becomes the rated temperature. A combined cycle power plant comprising a control device for use and control. 前記制御装置は、前記排熱回収ボイラ出口の蒸気温度に代えて、前記蒸気タービンに流入する蒸気温度を減温器を使用して制御することを特徴とする請求項1または請求項2記載のコンバインドサイクル発電プラント。 3. The control device according to claim 1, wherein the control device controls a steam temperature flowing into the steam turbine using a temperature reducer instead of the steam temperature at the exhaust heat recovery boiler outlet. 4. Combined cycle power plant. 前記制御装置は、前記蒸気タービンの起動時の蒸気条件を満たす蒸気温度から定格温度への制御切り替えの際には、所定の変化率で温度が変化するように制御することを特徴とする請求項1ないし請求項3のいずれか1項に記載のコンバインドサイクル発電プラント。 2. The control device according to claim 1, wherein when the control is switched from a steam temperature satisfying a steam condition when starting the steam turbine to a rated temperature, the control is performed so that the temperature changes at a predetermined change rate. The combined cycle power plant according to any one of claims 1 to 3. ガスタービンの排気ガスとの熱交換を通じて排熱回収ボイラで複数圧の蒸気を生成し、各々の排熱回収ボイラ出口から前記複数圧の蒸気を供給し、通常運転時には前記複数圧の蒸気温度がそれぞれ定格温度になるように減温器を使用して制御し、その蒸気を蒸気タービンに供給するようにしたコンバインドサイクル発電プラントの運転方法において、前記蒸気タービンの起動時には、前記複数圧の系統のうち少なくとも1系統から発生する排熱回収ボイラ出口の蒸気温度が前記蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように前記減温器を使用して制御し、通常運転時には、前記排熱回収ボイラ出口の蒸気温度がそれぞれ定格温度になるように減温器を使用して制御することを特徴とするコンバインドサイクル発電プラントの運転方法。 A plurality of pressure steam is generated in the exhaust heat recovery boiler through heat exchange with the exhaust gas of the gas turbine, and the multiple pressure steam is supplied from each exhaust heat recovery boiler outlet. In the operation method of the combined cycle power plant in which each of the steam turbines is controlled by using a temperature reducer so as to reach a rated temperature, and the steam is supplied to the steam turbine, when the steam turbine is started up, Of these, the steam temperature at the exhaust heat recovery boiler outlet generated from at least one system is controlled using the desuperheater so that the steam temperature satisfies the steam condition at the time of startup of the steam turbine. The combined cycle power plant is characterized in that it uses a temperature reducer to control the steam temperature at the outlet of the heat recovery boiler to the rated temperature. The rolling method. ガスタービンの排気ガスとの熱交換を通じて排熱回収ボイラで単圧の蒸気を生成し、排熱回収ボイラ出口から前記単圧の蒸気を供給し、通常運転時には前記単圧の蒸気温度が定格温度になるように減温器を使用して制御し、その蒸気を蒸気タービンに供給するようにしたコンバインドサイクル発電プラントの運転方法において、前記蒸気タービンの起動時には、前記排熱回収ボイラ出口の蒸気温度が前記蒸気タービンの起動時の蒸気条件を満たす蒸気温度になるように前記減温器を使用して制御し、通常運転時には、前記排熱回収ボイラ出口の蒸気温度が定格温度になるように減温器を使用して制御することを特徴とするコンバインドサイクル発電プラントの運転方法。 Single-pressure steam is generated in the exhaust heat recovery boiler through heat exchange with the exhaust gas of the gas turbine, and the single-pressure steam is supplied from the exhaust heat recovery boiler outlet. During normal operation, the single-pressure steam temperature is the rated temperature. In the operation method of the combined cycle power plant, which is controlled using a temperature reducer to supply the steam to the steam turbine, the steam temperature at the exhaust heat recovery boiler outlet at the start of the steam turbine Is controlled using the temperature reducer so that the steam temperature satisfies the steam condition at the start of the steam turbine, and during normal operation, the steam temperature at the exhaust heat recovery boiler outlet is reduced to the rated temperature. A method for operating a combined cycle power plant, characterized by controlling using a warmer. 前記排熱回収ボイラ出口の蒸気温度に代えて、前記蒸気タービンに流入する蒸気温度を減温器を使用して制御することを特徴とする請求項5または請求項6記載のコンバインドサイクル発電プラントの運転方法。 7. The combined cycle power plant according to claim 5, wherein the steam temperature flowing into the steam turbine is controlled by using a temperature reducer instead of the steam temperature at the exhaust heat recovery boiler outlet. how to drive. 前記蒸気タービンの起動時の蒸気条件を満たす蒸気温度から定格温度への制御切り替えの際には、所定の変化率で温度が変化するように制御することを特徴とする請求項5ないし請求項7のいずれか1項に記載のコンバインドサイクル発電プラントの運転方法。 The control is performed so that the temperature changes at a predetermined change rate when the control is switched from the steam temperature satisfying the steam condition at the start of the steam turbine to the rated temperature. The operation method of the combined cycle power plant of any one of these.
JP2004020365A 2004-01-28 2004-01-28 Combined cycle power generation plant and method of operating the same Pending JP2005214047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020365A JP2005214047A (en) 2004-01-28 2004-01-28 Combined cycle power generation plant and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020365A JP2005214047A (en) 2004-01-28 2004-01-28 Combined cycle power generation plant and method of operating the same

Publications (1)

Publication Number Publication Date
JP2005214047A true JP2005214047A (en) 2005-08-11

Family

ID=34904306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020365A Pending JP2005214047A (en) 2004-01-28 2004-01-28 Combined cycle power generation plant and method of operating the same

Country Status (1)

Country Link
JP (1) JP2005214047A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049596A (en) * 2011-08-30 2013-03-14 Pan Pacific Copper Co Ltd Waste heat recovery method of contact type sulfuric acid plant
JP2013100807A (en) * 2011-10-19 2013-05-23 Toyota Industries Corp Rankine cycle
CN104727869A (en) * 2013-12-23 2015-06-24 亿利资源集团有限公司 Cogeneration unit and boiler starting and exhausted steam utilizing method thereof
CN108153149A (en) * 2016-12-05 2018-06-12 斗山重工业建设有限公司 The quick startup control method and system of combined cycle power plant
CN109763869A (en) * 2019-02-02 2019-05-17 华电电力科学研究院有限公司 A kind of accumulation of heat coupling steam extraction integrated system and its operation method for combined cycle energy cascade utilization
CN109854315A (en) * 2019-02-02 2019-06-07 华电电力科学研究院有限公司 A kind of heating system and its operation method integrated for Combined cycle gas-steam turbine unit steam extraction

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049596A (en) * 2011-08-30 2013-03-14 Pan Pacific Copper Co Ltd Waste heat recovery method of contact type sulfuric acid plant
JP2013100807A (en) * 2011-10-19 2013-05-23 Toyota Industries Corp Rankine cycle
CN104727869A (en) * 2013-12-23 2015-06-24 亿利资源集团有限公司 Cogeneration unit and boiler starting and exhausted steam utilizing method thereof
CN108153149A (en) * 2016-12-05 2018-06-12 斗山重工业建设有限公司 The quick startup control method and system of combined cycle power plant
CN109763869A (en) * 2019-02-02 2019-05-17 华电电力科学研究院有限公司 A kind of accumulation of heat coupling steam extraction integrated system and its operation method for combined cycle energy cascade utilization
CN109854315A (en) * 2019-02-02 2019-06-07 华电电力科学研究院有限公司 A kind of heating system and its operation method integrated for Combined cycle gas-steam turbine unit steam extraction
CN109854315B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Heating system for gas-steam combined cycle unit steam extraction integration and operation method thereof
CN109763869B (en) * 2019-02-02 2023-09-08 华电电力科学研究院有限公司 Heat accumulation coupling steam extraction integrated system for cascade utilization of combined cycle energy and operation method thereof

Similar Documents

Publication Publication Date Title
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
KR100592144B1 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
JP4540472B2 (en) Waste heat steam generator
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
CA2179867A1 (en) Method and apparatus of conversion of a reheat steam turbine power plant to a non-reheat combined cycle power plant
JP2000161014A5 (en)
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP4885199B2 (en) Gas turbine operation control apparatus and method
JP5050013B2 (en) Combined power plant and control method thereof
JP6244099B2 (en) Combined cycle power plant and operation method thereof
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP3140539B2 (en) Waste heat recovery boiler and method of supplying de-heated water
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP5251311B2 (en) Power generation system
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
JPH10292902A (en) Main steam temperature controller
JP2002106305A (en) Starting controller of combined cycle power generation plant
JP4415189B2 (en) Thermal power plant
KR20230124936A (en) Systems and methods for improving start-up time in fossil fuel power generation systems
JP4560481B2 (en) Steam turbine plant
JP2019173696A (en) Combined cycle power generation plant, and operation method of the same
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP2019173697A (en) Combined cycle power generation plant and operation method of the same