JPS618323A - Manufacture of super high molecular polyethylene stretched product - Google Patents

Manufacture of super high molecular polyethylene stretched product

Info

Publication number
JPS618323A
JPS618323A JP59127469A JP12746984A JPS618323A JP S618323 A JPS618323 A JP S618323A JP 59127469 A JP59127469 A JP 59127469A JP 12746984 A JP12746984 A JP 12746984A JP S618323 A JPS618323 A JP S618323A
Authority
JP
Japan
Prior art keywords
molecular weight
high molecular
stretching
softening point
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59127469A
Other languages
Japanese (ja)
Other versions
JPH0417132B2 (en
Inventor
Masanori Motooka
本岡 正則
Hiroyuki Takeda
武田 寛之
Kazuyuki Takimoto
瀧本 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59127469A priority Critical patent/JPS618323A/en
Priority to CA000481470A priority patent/CA1216119A/en
Priority to DE8585303421T priority patent/DE3586864T2/en
Priority to EP85303421A priority patent/EP0168923B1/en
Publication of JPS618323A publication Critical patent/JPS618323A/en
Priority to US07/423,592 priority patent/US5055248A/en
Publication of JPH0417132B2 publication Critical patent/JPH0417132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/731Filamentary material, i.e. comprised of a single element, e.g. filaments, strands, threads, fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Abstract

PURPOSE:To manufacture a super high molecular polyethylene stretched product large both in the tensile strength and elastic modulus, by melting, extruding and stretching a composition of a super high molecular polyethylene and a specified material. CONSTITUTION:A composition of 15-80pts.wt. of super high molecular polyethylene at least with the critical viscosity [eta] exceeding 5dl/g and 85-20pts.wt. of a plasticizer component comprizing 5-80wt% of a low-softening point hydrocarbon polymer at least with the softening point of below 130 deg.C and the molecular weight of less than 2,000 and 95-20wt% of a fatty hydrocarbon compound at least with the melting point of above 10 deg.C and the boiling point of above 130 deg.C or a derivative thereof is extruded from a die after melted and kneaded. Then, the work is stretched at the draw ratio of at least more than three times to obtain a super high molecular polyethylene stretched product large both in the tensile strength and elastic modulus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超高分子量ポリエチレンの熔融押出延伸方法
に関する。更に詳しくは超高分子量ポリエチレンと特定
の低軟化点炭化水素重合体と脂肪族炭化水素化合物ある
いはその誘導体との可塑剤成分とからなる組成物を溶融
押出延伸することにより、引張強度、弾性率が共に大き
い超高分子量ポリエチレン延伸物を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for melt extrusion stretching of ultra-high molecular weight polyethylene. More specifically, by melt-extruding and stretching a composition consisting of ultra-high molecular weight polyethylene, a specific low softening point hydrocarbon polymer, and a plasticizer component of an aliphatic hydrocarbon compound or its derivative, tensile strength and elastic modulus can be improved. The present invention relates to a method for producing a large drawn ultra-high molecular weight polyethylene product.

〔従来の技術〕[Conventional technology]

超高分子量ポリエチレンは汎用のポリエチレンに比べ耐
衝撃性、耐摩耗性、耐薬品性、引張強度等に優れており
、エンジニアリングプラスチックとしてその用途が拡が
りつつある。しかしながら汎用のポリエチレンに比較し
て熔融粘度が極めて高く流動性が悪いため、押出成形や
射出成形によって成形することは非常に難しく、その殆
どは圧縮成形によって成形されており、一部ロツド等が
極めて低速で押出成形されているのが現状であった。
Ultra-high molecular weight polyethylene has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene, and its use as an engineering plastic is expanding. However, compared to general-purpose polyethylene, the melt viscosity is extremely high and the fluidity is poor, so it is very difficult to mold by extrusion molding or injection molding. Most of the polyethylene is molded by compression molding, and some rods etc. Currently, extrusion molding is performed at low speed.

一方、高密度ポリエチレンのモノフィラメントを高倍率
で延伸する方法として、ポリエチレンの融点より高い高
沸点の添加剤をポリエチレンの重量に対し20〜150
%の範囲内で共存せしめ、得られた高濃度分散体から第
1次繊維状物を形成させ、次いでこの紡出糸中にその5
〜25%相当量の添加剤を残存せしめたまま元の長さの
3〜15倍に熱延伸する方法(特公昭37−9765号
公報)あるいは分子量が400,000以上の線状ポリ
エチレンの溶液を紡糸して、少なくとも20GPaにな
るような温度で延伸する方法(特開昭56−15408
号公1)が提案されている。しかしながらこれらの方法
は、具体的には0−ジクロルベンゼン、キシレンあるい
はデカリン等の溶媒に分散あるいは溶解させて特定の方
法で紡糸する方法であり、スクリュ一式押出機により連
続的に押出紡糸する方法にこのような液状の溶媒を分子
量が高い超高分子量ポリエチレンの延伸性改良剤として
用いようとしても、溶媒と粉末との粘度差が大き過ぎて
溶媒と粉末との混合が全く出来ず、また溶媒が粉末とス
クリューとの間の滑剤として働き、粉末とスクリューと
が共回りを起こして殆ど押出しが出来ない。また、たと
え押出せたとしても均一に混合されていないので延伸が
全く不可能であり、スクリュ一式押出機を用いて連続的
に溶融押出紡糸することは出来ないのが現状であった。
On the other hand, as a method for drawing high-density polyethylene monofilaments at a high magnification, additives with a high boiling point higher than the melting point of polyethylene are added at 20 to 150% by weight based on the weight of polyethylene.
%, a primary fibrous material is formed from the obtained high concentration dispersion, and then the 5
A method of hot stretching to 3 to 15 times the original length while leaving an amount equivalent to ~25% of the additive (Japanese Patent Publication No. 37-9765) or a solution of linear polyethylene with a molecular weight of 400,000 or more. A method of spinning and drawing at a temperature of at least 20 GPa (Japanese Patent Application Laid-Open No. 56-15408)
Publication No. 1) has been proposed. However, these methods specifically involve dispersing or dissolving in a solvent such as 0-dichlorobenzene, xylene, or decalin and spinning using a specific method. Even if an attempt was made to use such a liquid solvent as a stretchability improver for ultra-high molecular weight polyethylene with a high molecular weight, the difference in viscosity between the solvent and the powder was too large, making it impossible to mix the solvent and the powder at all. acts as a lubricant between the powder and the screw, causing the powder and screw to rotate together, making it almost impossible to extrude. Moreover, even if it could be extruded, it would not be possible to draw it at all because it was not mixed uniformly, and it was currently impossible to perform continuous melt extrusion spinning using a single screw extruder.

またそれらの溶媒は低沸点で引火性が大きいので、電熱
で加熱するスクリュ一式押出機には危険で使用に際して
は格別注意を払う必要もある。
Furthermore, since these solvents have low boiling points and are highly flammable, they are dangerous to use in a single-screw extruder that heats with electric heat, and special care must be taken when using them.

他方、超高分子量ポリエチレンの成形性を改善するため
に分子量が5 、000〜20,000の低分子量ポリ
エチレンを超高分子量ポリエチレン100重量部に対し
て10〜60重量部を添加した組成物(特開昭5’l−
177036号公報)が提案されているが、これらの組
成物では添加された低分子量ポリエチレンの分子量が大
きすぎて溶融押出紡糸されたモノフィラメントを20倍
以上の高倍率には延伸出来ず、高弾性率、高引張強度の
モノフィラメントを得ることはできない。
On the other hand, in order to improve the moldability of ultra-high molecular weight polyethylene, 10 to 60 parts by weight of low-molecular-weight polyethylene with a molecular weight of 5,000 to 20,000 is added to 100 parts by weight of ultra-high molecular weight polyethylene. Kaisho 5'l-
177036), but in these compositions, the molecular weight of the added low molecular weight polyethylene is too large, making it impossible to draw the melt extrusion spun monofilament to a high magnification of 20 times or more, resulting in a high elastic modulus. , it is not possible to obtain monofilaments with high tensile strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる観点から本発明者らは、スクリュ一式押出機によ
る高弾性率、高引張強度を有する超高分子量ポリエチレ
ンの延伸物の連続押出成形方法の開発を目的とし種々検
討した結果、超高分子量ポリエチレンに特定の脂肪族炭
化水素化合物あるいはその誘導体を配合した組成物を用
いることにより本発明の目的を達することができ、先に
特願昭57〜22744’7号および特願昭58−59
976号を出願した。その後更に検討した結果、脂肪族
炭化水素化合物あるいはその誘導体との共存下に低軟化
点炭化水素重合体を用いても、超高分子量ポリエチレン
をスクリュ一式押出機で安定に連続押出成形できること
が分かり、本発明を完成するに至った。
From this point of view, the present inventors conducted various studies aimed at developing a continuous extrusion molding method for drawn products of ultra-high molecular weight polyethylene having high elastic modulus and high tensile strength using a single-screw extruder. The object of the present invention can be achieved by using a composition containing a specific aliphatic hydrocarbon compound or its derivative, and was previously disclosed in Japanese Patent Application No. 57-22744'7 and Japanese Patent Application No. 58-59.
No. 976 was filed. As a result of further investigation, it was found that even if a low softening point hydrocarbon polymer was used in the coexistence of an aliphatic hydrocarbon compound or its derivative, ultra-high molecular weight polyethylene could be stably and continuously extruded using a single-screw extruder. The present invention has now been completed.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、 (a)少なくとも極限粘度〔η〕が5dl/g以上の超
高分子量ポリエチレン(A)15ないし80重量部と、 (bl少なくとも軟化点が130℃以下で且つ分子量が
2000以下の低軟化点炭化水素重合体(B)5ないし
80重量%及び少なくとも融点がlO’c以上で且つ沸
点が130℃以上の脂肪族炭化水素化合物あるいはその
誘導体(C)95ないし20ffi1%とからなる可塑
剤成分85ないし20重量部、 とからなる組成物を溶融混練後ダイより未延伸物を押出
し、次いで少なくとも3倍を越える延伸比で延伸するこ
とを特徴とする引張強度、弾性率が共に大きい超高分子
量ポリエチレン延伸物の製造法を提供するものである。
That is, the present invention comprises: (a) 15 to 80 parts by weight of ultra-high molecular weight polyethylene (A) having at least an intrinsic viscosity [η] of 5 dl/g or more; A plasticizer comprising 5 to 80% by weight of a low softening point hydrocarbon polymer (B) and 95 to 20ffi1% of an aliphatic hydrocarbon compound or derivative thereof (C) having at least a melting point of 1O'c or higher and a boiling point of 130°C or higher. 85 to 20 parts by weight of the agent component, and after melt-kneading the unstretched material is extruded from a die and then stretched at a stretching ratio of at least 3 times. A method for producing a stretched high molecular weight polyethylene product is provided.

〔作 用〕[For production]

本発明の方法に用いる超高分子量ポリエチレン(A)と
は、デカリン溶媒135°Cにおける極限粘度〔η)が
5dl/g以上、好ましくは7ないし30dl/gの範
囲のものである。〔η〕が5d1/g未満のものは、延
伸しても引張強度に優れた延伸物が得られない。又〔η
〕の上限はとくに限定はされないが、30dl/gを越
えるものは後述の低軟化点炭化水素重合体(B)および
脂肪族炭化水素化合物あるいはその誘導体(C)を添加
しても熔融粘度が高く後述の温度範囲でのスクリュ一式
押出機による溶融紡糸性に劣る。
The ultra-high molecular weight polyethylene (A) used in the method of the present invention has an intrinsic viscosity [η) of decalin solvent at 135° C. of 5 dl/g or more, preferably in the range of 7 to 30 dl/g. If [η] is less than 5 d1/g, a stretched product with excellent tensile strength cannot be obtained even if stretched. Also [η
] is not particularly limited, but if it exceeds 30 dl/g, the melt viscosity will be high even if the below-mentioned low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) are added. Melt spinning properties using a single-screw extruder in the temperature range described below are poor.

本発明の方法に用いる低軟化点炭化水素重合体(B)と
は、軟化点が130℃以下、好ましくは50℃ないし1
20℃で且つ分子量が2000以下、好ましくは500
ないし1000の低軟化点炭化水S重合体である。軟化
点が130℃を越える低軟化点炭化水素重合体(B)を
用いると超高分子量ポリエチレン(A)との分散むらが
生じるため、均一な延伸が行えず、高延伸倍率を達成す
ることができない。
The low softening point hydrocarbon polymer (B) used in the method of the present invention has a softening point of 130°C or less, preferably 50°C to 100°C.
at 20°C and a molecular weight of 2000 or less, preferably 500
It is a low softening point hydrocarbon S polymer of from 1000 to 1000. If a low softening point hydrocarbon polymer (B) with a softening point exceeding 130°C is used, uneven dispersion with the ultra-high molecular weight polyethylene (A) will occur, making uniform stretching impossible and making it difficult to achieve a high stretching ratio. Can not.

又、分子量が2000を越える低軟化点炭化水素重合体
(B)を用いると冷却固化する前にドラフトをかけた場
合に延伸切れを起こし、高弾性率、高引張強度の延伸物
が得られず、更に後述の如く延伸物から過剰の低軟化点
炭化水素重合体(B)を抽出することも出来ない。一方
軟化点が50℃未満のものは押出機にかからない虞れが
ある。
In addition, when a low softening point hydrocarbon polymer (B) with a molecular weight exceeding 2000 is used, stretching breakage occurs when drafting is applied before cooling and solidifying, making it impossible to obtain a stretched product with high elastic modulus and high tensile strength. Furthermore, as will be described later, it is also impossible to extract excess low softening point hydrocarbon polymer (B) from the drawn product. On the other hand, if the softening point is less than 50° C., there is a risk that the material will not be processed in the extruder.

本発明の方法に用いる脂肪族炭化水素化合物あるいはそ
の誘導体(C)とは、融点が10℃以上、好ましくは2
0℃ないし120℃、特に好ましくは40℃ないし10
0℃で且つ沸点が130°C以上好ましくは160℃以
上、特に好ましくは190℃以上の脂肪族炭化水素化合
物あるいはその誘導体である。融点が10℃未満の液状
脂肪族炭化水素化合物あるいはその誘導体を用いると超
高分子量ポリエチレン(A)とスクリューとが共回りを
起こして均一な溶融紡糸が出来ない。一方、沸点が13
0℃未満の脂肪族炭化水素化合物あるいはその誘導体を
用いると、スクリュ一式押出機内での脂肪族炭化水素化
合物あるいはその誘導体の気化によるサージング並びに
ダイオリフイスを出た溶融ストランドの突発的な発泡が
生ずるため好ましくない。
The aliphatic hydrocarbon compound or its derivative (C) used in the method of the present invention has a melting point of 10°C or higher, preferably 2°C.
0°C to 120°C, particularly preferably 40°C to 10°C
It is an aliphatic hydrocarbon compound or a derivative thereof having a boiling point of 130°C or higher, preferably 160°C or higher, particularly preferably 190°C or higher at 0°C. If a liquid aliphatic hydrocarbon compound or a derivative thereof having a melting point of less than 10° C. is used, the ultra-high molecular weight polyethylene (A) and the screw rotate together, making uniform melt spinning impossible. On the other hand, the boiling point is 13
If an aliphatic hydrocarbon compound or its derivative is used at a temperature below 0°C, surging due to vaporization of the aliphatic hydrocarbon compound or its derivative in the single-screw extruder and sudden foaming of the molten strand exiting the die orifice will occur. Undesirable.

本発明に用いる低軟化点炭化水素重合体(B)とは、固
体の非晶形ポリマーであり、通常粘着付与樹脂として粘
着テープ、塗料、およびホットメルト接着剤用分野に用
いられており、重合されるモノマー源の違いにより次の
様な樹脂を列挙することができる。例えば、石油、ナフ
サ等の分解によって得られるC4留分、C5留分、これ
らの混合物あるいはこれらの任意の留分、例えばC5留
分中のイソプレンおよび1,3−ペンタジェンなどを主
原料とする脂肪族系炭化水素樹脂、石油、ナフサ等の分
解によって得られる一留分中のスチレン誘導体およびイ
ンデン類を主原料とする芳香族系炭化水素樹脂、C4・
C5留分の任意の留分とq留分を共重合した脂肪族・芳
香族共重合炭化水素樹脂、芳香族系炭化水素樹脂を水素
添加した脂環族系炭化水素樹脂、脂肪族、脂環族および
芳香族を含む構造をもつ合成テルペン系炭化水素樹脂、
テレピン油中のα、β−ピネンを原料とするテルペン系
炭化水素樹脂、コールクール系ナフサ中のインデンおよ
びスチレン類を原料とするクマロンインデン系炭化水素
樹脂、低分子量スチレン系樹脂およびロジン系炭化水素
樹脂などである。
The low softening point hydrocarbon polymer (B) used in the present invention is a solid amorphous polymer, which is usually used as a tackifying resin in the fields of adhesive tapes, paints, and hot melt adhesives, and is not polymerized. Depending on the monomer source used, the following resins can be enumerated. For example, C4 fractions, C5 fractions, mixtures thereof, or any fractions thereof obtained by cracking petroleum, naphtha, etc., such as fats whose main raw materials are isoprene and 1,3-pentadiene in the C5 fractions. Aromatic hydrocarbon resins whose main raw materials are styrene derivatives and indenes in a fraction obtained by cracking petroleum, naphtha, etc.
Aliphatic/aromatic copolymerized hydrocarbon resin obtained by copolymerizing any fraction of C5 fraction and q fraction, alicyclic hydrocarbon resin obtained by hydrogenating aromatic hydrocarbon resin, aliphatic, alicyclic Synthetic terpene-based hydrocarbon resin with a structure containing groups and aromatics,
Terpene hydrocarbon resins made from α,β-pinene in turpentine oil, coumaron indene hydrocarbon resins made from indene and styrene in coal-cour naphtha, low molecular weight styrene resins, and rosin-based carbonized resins. Hydrogen resin, etc.

本発明に用いる脂肪族炭化水素化合物あるいはその誘導
体(C)は前記特性を有する限り特に限定はされない。
The aliphatic hydrocarbon compound or its derivative (C) used in the present invention is not particularly limited as long as it has the above characteristics.

前記脂肪族炭化水素化合物あるいはその誘導体(C)の
うち脂肪族炭化水素化合物としては、飽和脂肪族炭化水
素化合物を主体とするもので、具体的にはトコサン、ト
リコ号ン、テトラコサン、トリアコンクン等の炭素数2
2以上のn−アルカンあるいはこれらを主成分とした低
級n−アルカンとの混合物、石油から分離精製された所
謂ハラフィンワックス、エチレンあるいはエチレンと他
のα−オレフィンとを共重合して得られる低分子量重合
体である中・低圧法ポリエチレンワックス、高圧法ポリ
エチレンワックス、エチレン共重合ワックスあるいは中
・低圧法ポリエチレン、高圧法ポリエチレン等のポリエ
チレンを熱減成等により分子量を低下させたワックス及
びそれらのワックスの酸化物あるいはマレイン酸変性物
等の酸化ワックス、マレイン酸変性ワックス等が挙げら
れる。
Among the aliphatic hydrocarbon compounds or their derivatives (C), the aliphatic hydrocarbon compounds are mainly saturated aliphatic hydrocarbon compounds, specifically tocosan, tricone, tetracosan, triacone, etc. Carbon number 2
2 or more n-alkanes or mixtures of these with lower n-alkanes as main components, so-called halafine wax separated and refined from petroleum, low-carbon waxes obtained by copolymerizing ethylene or ethylene and other α-olefins. Molecular weight polymers such as medium/low pressure polyethylene wax, high pressure polyethylene wax, ethylene copolymer wax, medium/low pressure polyethylene, high pressure polyethylene, and other waxes whose molecular weight has been lowered by thermal degradation, etc., and waxes thereof. Oxidized waxes such as oxides or maleic acid-modified waxes, maleic acid-modified waxes, and the like.

次に脂肪族炭化水素化合物あるいはその誘導体(C)の
うち脂肪族炭化水素化合物誘導体としては、例えば脂肪
族炭化水素基(アルキル基、アルケニル基)の末端もし
くは内部に1個又はそれ以上、好ましくは1ないし2個
、特に好ましくは1個のカルボキシル基、水酸基、カル
バモイル基、エステル基、メルトカプト基、カルボニル
基等の官能基を有する化合物である炭素数8以上、好ま
しくは炭素数12〜50又は分子量130〜2000、
好ましくは200〜800の脂肪酸、脂肪族アルコール
、脂肪酸アミド、脂肪酸エステル、脂肪族メルカプタン
、脂肪族アルデヒド、脂肪族ケトン等を挙げることがで
きる。
Next, among the aliphatic hydrocarbon compounds or derivatives thereof (C), the aliphatic hydrocarbon compound derivatives include, for example, one or more aliphatic hydrocarbon groups (alkyl group, alkenyl group) at the terminal or inside, preferably A compound having 1 or 2, particularly preferably 1, functional group such as carboxyl group, hydroxyl group, carbamoyl group, ester group, meltcapto group, carbonyl group, etc., having 8 or more carbon atoms, preferably 12 to 50 carbon atoms, or having a molecular weight 130-2000,
Preferably, 200 to 800 fatty acids, aliphatic alcohols, fatty acid amides, fatty acid esters, aliphatic mercaptans, aliphatic aldehydes, aliphatic ketones, etc. can be mentioned.

具体的には、脂肪酸としてカプリン酸、ラウリン酸、ミ
リスチン酸、パルミチン酸、ステアリン酸、オレイン酸
、脂肪族アルコールとしてラウリルアルコール、ミリス
チルアルコール、セチルアルコール、ステアリルアルコ
ール、脂肪酸アミドとしてカプリンアミド、ラウリンア
ミ−ド、バルミチンアミド、ステアリルアミド、脂肪酸
エステルとしてステアリル酢酸エステル等を例示するこ
とができる。
Specifically, the fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; the fatty alcohols include lauryl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol; and the fatty acid amides include caprinamide and lauric amide. , valmitinamide, stearylamide, and stearyl acetate as the fatty acid ester.

本発明に用いる前記脂肪族炭化水素化合物あるいはその
誘導体(C)の融点及び沸点範囲に入る他の炭化水素化
合物として例えばナフタリン、ジメチルナフタリン等の
芳香族炭化水素化合物があるが、これらのものは脂肪族
炭化水素化合物あるいはその誘導体(C)と異なり超高
分子量ポリエチレン(A)との相溶性が劣り、本発明の
方法に用いると超高分子量ポリエチレン(A)への芳香
族炭化水素化合物の分散むらが生じ、均一延伸あるいは
高延伸倍率の達成が困難である。
Examples of other hydrocarbon compounds that fall within the melting point and boiling point range of the aliphatic hydrocarbon compound or its derivative (C) used in the present invention include aromatic hydrocarbon compounds such as naphthalene and dimethylnaphthalene. Unlike group hydrocarbon compounds or their derivatives (C), they have poor compatibility with ultra-high molecular weight polyethylene (A), and when used in the method of the present invention, the aromatic hydrocarbon compound may be unevenly dispersed in ultra-high molecular weight polyethylene (A). occurs, making it difficult to achieve uniform stretching or a high stretching ratio.

本発明における軟化点はJ I S K 2531によ
り環球法により測定した値であり、融点はASTMo 
341Bにより示差走査型熱量計(D S C)により
測定した値である。また分子量はGPC法(ゲル・パー
ミェーション・クロマトグラフィー)により次の条件で
測定して得た重量平均分子量である。
The softening point in the present invention is a value measured by the ring and ball method according to JIS K 2531, and the melting point is a value measured by the ASTMo
341B using a differential scanning calorimeter (DSC). Moreover, the molecular weight is a weight average molecular weight obtained by measuring by GPC method (gel permeation chromatography) under the following conditions.

装 置:ウォーターズ社製 150C型カラム:東洋曹
達社製 TSK  GMH−6(6fflIIlφX 
600+ni+)溶 媒:オルソジクロルベンゼン(O
DC]3)温度:135℃ 流量: 1.Om It /min 注入濃度:30mg/ 20mJ  0DCB  (注
入量400μり 尚、東洋曹達社製およびプレッシャー・ケミカル社製、
標準ポリスチレンを用いてユニバーサル法によりカラム
溶出体積は較正した。
Apparatus: Waters Co., Ltd. 150C type column: Toyo Soda Co., Ltd. TSK GMH-6 (6fflIIlφX
600+ni+) Solvent: Orthodichlorobenzene (O
DC] 3) Temperature: 135°C Flow rate: 1. Om It /min Injection concentration: 30mg/20mJ 0DCB (Injection amount 400μ, manufactured by Toyo Soda Co., Ltd. and Pressure Chemical Co., Ltd.,
Column elution volumes were calibrated by the universal method using standard polystyrene.

本発明の方法は前記超高分子量ポリエチレン(Δ):1
5ないし80重量部、好ましくは30ないし50重量部
と低軟化点炭化水素重合体(B)と脂肪族炭化水素化合
物あるいはその誘導体(C)との可塑剤成分=85ない
し20重量部、好ましくは70ないし50重量部との組
成物をスクリュ一式押出機で熔融混練しダイより未延伸
物を押出し、次いで少なくとも3倍、好ましくは5倍以
上の延伸比で延伸する方法である。
The method of the present invention uses the ultra-high molecular weight polyethylene (Δ): 1
Plasticizer component of 5 to 80 parts by weight, preferably 30 to 50 parts by weight, low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) = 85 to 20 parts by weight, preferably In this method, a composition of 70 to 50 parts by weight is melt-kneaded in a single screw extruder, extruded as an unstretched product through a die, and then stretched at a stretching ratio of at least 3 times, preferably 5 times or more.

超高分子量ポリエチレン(A)の量が15重量部未満で
はスクリュ一式押出機での熔融混練が困難であり、また
押出されたものの延伸性が劣り、ブッ切れを起こし高倍
率延伸あるいはドラフトをかけることができない。一方
80重量部を越えると、熔融粘度が高くなり熔融押出し
が困難であり、また押出された未延伸物(ストランド)
の肌荒れが激しく延伸切れを起こし易い。
If the amount of ultra-high molecular weight polyethylene (A) is less than 15 parts by weight, it will be difficult to melt and knead it in a single screw extruder, and the extruded product will have poor drawability, resulting in breakage and high-magnification drawing or drafting. I can't. On the other hand, if it exceeds 80 parts by weight, the melt viscosity becomes high and melt extrusion is difficult, and the extruded undrawn product (strand)
The skin is severely rough and tends to break due to stretching.

又、超高分子量ポリエチレン(A)に混合する低軟化点
炭化水素重合体(B)と脂肪族炭化水素化合物あるいは
その誘導体(C)との可塑剤成分において(B)が80
重量%以上では、可塑剤成分を超高分子量ポリエチレン
(A)に均一に分散させることができず、未延伸物をダ
イから押出した際に、溶融ストランドが不均質で延伸性
がなく冷却固化する前にドラフトをかけることができな
い。
In addition, in the plasticizer component of the low softening point hydrocarbon polymer (B) and the aliphatic hydrocarbon compound or its derivative (C) to be mixed with the ultra-high molecular weight polyethylene (A), (B) is 80%
If the amount exceeds % by weight, the plasticizer component cannot be uniformly dispersed in the ultra-high molecular weight polyethylene (A), and when the unstretched material is extruded from the die, the molten strand is non-uniform, has no stretchability, and solidifies on cooling. You can't draft ahead.

従って、高延伸倍率を達成できず、高引張強度の延伸物
を得ることができない。
Therefore, a high stretching ratio cannot be achieved and a stretched product with high tensile strength cannot be obtained.

尚、超高分子量ポリエチレン(A)と低軟化点炭化水素
重合体(B)と脂肪族炭化水素化合物あるいはその誘導
体(C)との混合はヘンシェルミキサー、■−ブレンダ
ー等による混合、あるいは混合後更に単軸あるいは多軸
押出機で熔融混練して造粒する方法により行い得る。
The ultra-high molecular weight polyethylene (A), the low softening point hydrocarbon polymer (B), and the aliphatic hydrocarbon compound or its derivative (C) may be mixed using a Henschel mixer, ■-blender, etc., or further mixed after mixing. This can be carried out by melt-kneading and granulating using a single-screw or multi-screw extruder.

超高分子量ポリエチレン(A)と低軟化点炭化水素重合
体(B)と脂肪族炭化水素化合物あるいはその誘導体(
C)との組成物の溶融混練温度及びダイの温度は組成物
が熔融する温度であればとくに限定はされないが、溶融
混線温度は通常組成物の融点以上280℃未満、好まし
くは組成物の融点+10℃以上250℃未満の温度であ
り、ダイの温度は通常組成物の融点以上300℃未満、
好ましくは組成物の融点+10℃以上270℃未満の温
度である。熔融混練温度が280℃及びダイの温度が3
00℃以上になると、超高分子量ポリエチレン(A)が
熱劣化して分子量が低下する場合がある。
Ultra-high molecular weight polyethylene (A), low softening point hydrocarbon polymer (B), and aliphatic hydrocarbon compound or its derivative (
The melt-kneading temperature of the composition with C) and the die temperature are not particularly limited as long as the composition melts, but the melt-kneading temperature is usually higher than the melting point of the composition and lower than 280°C, preferably the melting point of the composition. The temperature is at least +10°C and less than 250°C, and the temperature of the die is usually at least the melting point of the composition and less than 300°C.
Preferably, the temperature is higher than or equal to the melting point of the composition +10°C and lower than 270°C. Melt kneading temperature is 280℃ and die temperature is 3
When the temperature exceeds 00°C, the ultra-high molecular weight polyethylene (A) may undergo thermal deterioration and its molecular weight may decrease.

未延伸物をグイから押出した際に、該熔融物が冷却固化
する前に少なくともl、好ましくは2を越えるドラフト
をかけることにより、ドラフトを力ζけないものの延伸
物に比べて高弾性率で高引張強度の延伸物が得られる。
By applying a draft of at least 1, preferably more than 2, before the molten material is cooled and solidified when the unstretched material is extruded through a gou, the molten material has a higher modulus of elasticity than a stretched material even though the draft is not applied. A drawn product with high tensile strength is obtained.

本発明におけるドラフトとは、スクリュ一式押出機より
押出された熔融物の熔融時における延伸を意味し、溶融
物の引き落としのことである。即ち、溶融樹脂のグイ・
オリフィス内での押出速度υ、と冷却固化した延伸物の
巻き取り速度υとの比をドラフト比として次式で定義し
た。
The term "draft" in the present invention refers to the drawing of the melt extruded from a single-screw extruder during melting, and refers to the drawing down of the melt. In other words, the molten resin is
The ratio between the extrusion speed υ in the orifice and the winding speed υ of the drawn material cooled and solidified was defined as the draft ratio by the following formula.

ドラフト比=υ/ oa 又、前記冷却は空冷、水冷いずれの方法でも良い。Draft ratio = υ/oa Further, the cooling may be performed by either air cooling or water cooling.

延伸時の温度は通常低軟化点炭化水素重合体(B)の軟
化点以上であり且つ脂肪族炭化水素化合物あるいはその
誘導体(C)の融点以上組成物の融点+20℃未満の範
囲内であり、低軟化点炭化水素重合体(B)の軟化点以
下又は脂肪族炭化水素化合物あるいはその誘導体(C)
の融点未満では高倍率の延伸が達成されない場合があり
、一方、組成物の融点+20℃を越えると超高分子量ポ
リエチレン(A)が軟化し、延伸はされるものの、高弾
性率の延伸物が得られない虞れがある。
The temperature during stretching is usually above the softening point of the low softening point hydrocarbon polymer (B) and within the range of above the melting point of the aliphatic hydrocarbon compound or its derivative (C) plus the melting point of the composition + 20°C, Below the softening point of the low softening point hydrocarbon polymer (B) or an aliphatic hydrocarbon compound or its derivative (C)
If the temperature is lower than the melting point of the composition, high-stretching may not be achieved. On the other hand, if the temperature exceeds the melting point of the composition +20°C, the ultra-high molecular weight polyethylene (A) will be softened, and although it will be stretched, the stretched product with a high elastic modulus will not be achieved. There is a possibility that you will not get it.

上記延伸時の熱媒は空気、水蒸気、溶媒のいずれを用い
ても高弾性率の延伸物が得られるが、熱媒として前記低
軟化点炭化水素重合体(B)と脂肪族炭化水素化合物あ
るいはその誘導体(C)を溶出あるいは滲出除去するこ
とが出来る溶媒で沸点が組成物の融点以上のもの、具体
的には例えばデカリン、デカン、灯油を用いると延伸時
に過剰の低軟化点炭化水素重合体(B)と脂肪族炭化水
素化合物あるいはその誘導体(C)を抽出あるいは滲出
した低軟化点炭化水素重合体(B)と脂肪族炭化水素化
合物あるいはその誘導体(C)の除去ができ、延伸時の
延伸むらの低減ならびに高延伸倍率の達成が可能となる
ので好ましい。また超高分子量ポリエチレン(A)の延
伸物から過剰の低軟化点炭化水素重合体(B)と脂肪族
炭化水素化合物あるいはその誘導体(C)を除去する手
段と、しては前記方法に限らず、未延伸物をヘキサン、
ヘプタン、熱エタノール、クロロホルム、ベンゼン等の
溶剤で処理後延伸する方法、延伸物をヘキサン、ヘプタ
ン、熱エタノール、クロロホルム、ベンゼン等の溶剤で
処理する方法によっても低軟化点炭化水素重合体(B)
と脂肪族炭化水素化合物あるいはその誘導体(C)を抽
出除去出来しかも高弾性率、高強度の延伸物が得られる
A stretched product with a high elastic modulus can be obtained by using air, steam, or a solvent as the heat medium during the above-mentioned stretching. If a solvent capable of eluting or exuding out the derivative (C) and having a boiling point higher than the melting point of the composition, specifically, for example, decalin, decane, or kerosene, is used, an excess of low softening point hydrocarbon polymer will be removed during stretching. The low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) extracted or exuded from (B) and aliphatic hydrocarbon compound or its derivative (C) can be removed during stretching. This is preferable since it is possible to reduce stretching unevenness and achieve a high stretching ratio. Further, the means for removing excess low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) from the drawn product of ultra-high molecular weight polyethylene (A) is not limited to the above-mentioned method. , unstretched material in hexane,
A low softening point hydrocarbon polymer (B) can also be obtained by a method of stretching after treatment with a solvent such as heptane, hot ethanol, chloroform, benzene, etc., or a method of treating the stretched product with a solvent such as hexane, heptane, hot ethanol, chloroform, benzene, etc.
and aliphatic hydrocarbon compounds or their derivatives (C) can be extracted and removed, and a drawn product with high elastic modulus and high strength can be obtained.

上記溶礁あるいは溶剤で低軟化点炭化水素重合体(B)
と脂肪族炭化水素化合物あるいはその誘導体(C)を抽
出する際に、延伸物における低軟化点炭化水素重合体(
B)と脂肪族炭化水素化合物あるいはその誘導体(C)
の残量を10重量%以下にすると微細孔繊維が得られ、
重量換算によって真断面稍を求める方法から得た弾性率
1、強度ともに抽出前の延伸物の値を下廻ることがなく
好ましい。
Low softening point hydrocarbon polymer (B) in the above molten reef or solvent
When extracting the aliphatic hydrocarbon compound or its derivative (C), the low softening point hydrocarbon polymer (
B) and an aliphatic hydrocarbon compound or its derivative (C)
When the remaining amount is 10% by weight or less, microporous fibers are obtained,
Both the elastic modulus 1 and the strength obtained from the method of determining the true cross-sectional depth in terms of weight do not fall below the values of the stretched product before extraction, which is preferable.

前記溶媒中での延伸比が3倍未満ては高引張強度、高弾
性率化の程度が少なく、また延伸物に延伸むらが随伴す
るため、外観を損う例が多い。尚延伸は、ドラフトをか
ける場合は最終延伸比が3倍以上好ましくは5倍以上に
なればよ(,1段延伸でも2段以上の多段延伸でもよい
。また、ドフラフトをかけない場合には、最終延伸比が
10倍以上にすると高強度、高弾性率化が計れる。
If the stretching ratio in the solvent is less than 3 times, the degree of high tensile strength and high elastic modulus is small, and the stretched product is accompanied by uneven stretching, which often impairs the appearance. In addition, when drafting is applied, the final stretching ratio should be at least 3 times or more, preferably 5 times or more. When the final stretching ratio is 10 times or more, high strength and high elastic modulus can be achieved.

また延伸の際の最終延伸速度はとくに限定はされないが
、生産性から3m/win以上、好ましくは5−/■i
n以上がよい。
In addition, the final stretching speed during stretching is not particularly limited, but from the viewpoint of productivity it is 3 m/win or more, preferably 5-/■i
It is better to have n or more.

本発明に用いる超高分子量ポリエチレン(A)には、′
耐熱安定剤、耐候安定剤、顔料、染料、無機充填剤等通
常ポリオレフィンに添加することが出来る添加剤を本発
明の目的を損わない範囲で添加しておいてもよい。
The ultra-high molecular weight polyethylene (A) used in the present invention includes '
Additives that can be normally added to polyolefins, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, may be added to the extent that the purpose of the present invention is not impaired.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により得られる超高分子量ポリエチレンの
延伸物は、従来の通常のポリエチレンの延伸物では得ら
れない高引張強度を有し、且つ高弾性率であるので、モ
ノフィラメント、テープ等の従来の延伸物の分野に加え
て高弾性率、高強度繊維の分野への利用が可能となり、
軽量性が要求される各種補強材に使用できる。さらには
、超高延伸による結晶配列の高度な整列ならびに過剰の
低軟化点炭化水素重合体(B)と脂肪族炭化水素化合物
あるいはその誘導体(C)を抽出することにより副次的
に生成する微孔を利用した選択膜、エレクトレット等の
機能材料への適性にも優れている。
The drawn product of ultra-high molecular weight polyethylene obtained by the method of the present invention has high tensile strength and high elastic modulus that cannot be obtained with conventional drawn products of ordinary polyethylene. In addition to the field of drawn products, it can be used in the field of high modulus and high strength fibers.
Can be used for various reinforcing materials that require lightness. Furthermore, by ultra-high-stretching to achieve a high degree of crystal alignment and by extracting excess low softening point hydrocarbon polymers (B) and aliphatic hydrocarbon compounds or their derivatives (C), fine particles generated as a by-product can be obtained. It is also highly suitable for functional materials such as selective membranes that utilize pores and electrets.

〔実施例〕〔Example〕

次に実施例を挙げて本発明を更に具体的に説明するが、
本発明はその要旨を越えない限りそれらの実施例に制約
されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these embodiments as long as they do not go beyond the gist of the invention.

実験例1 超高分子量ポリエチレン ハイゼックス・ミリオンo1
45M(三井石油化学工業株式会社製;〔η) =8.
20a/g )と脂肪族系炭化水素樹脂ハイレツツ■R
−100X (三井石油化学工業株式会社製;軟化点−
97,0°C1分子量−1220)とパラフィンワック
ス(融点−69℃、分子量−460)との25: 25
 : 50ブレンド物を次の条件下で熔融紡糸延伸を行
った。
Experimental example 1 Ultra-high molecular weight polyethylene HIZEX MILLION o1
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8.
20a/g) and aliphatic hydrocarbon resin Highlets ■R
-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point)
97,0°C1 molecular weight -1220) and paraffin wax (melting point -69°C, molecular weight -460) 25:25
: 50 blend was subjected to melt spinning and drawing under the following conditions.

超高分子量ポリエチレンとハイレッッ■R−100Xと
パラフィンワックスの各粉末を混合後、ブラベンダー・
プラストグラフ(ブラヘンダー社製、ドイツ)にローラ
ー・ミキサー、タイプ50(容量−58cc)を装着し
、樹脂温度200℃で20〜30分間熔融混練を行った
。該混練物は、プレス成形によりシート状にした後、切
断して粒状化した。前記ブラベンダー・プラストグラフ
にスクリュ一式押出機タイプ20I) (D = 3 
/ 41nch、 L/ D =20)を装着し、該粒
状化物を樹脂温度200℃でさらに溶融混練し、次いで
オリフィス径がl 、 Ommでグイ温度を190℃に
設定したダイより押し出し、エアーギャップ: 20c
mで室温の空、気中にて固化させた。この際、溶融樹脂
の押出速度は6.0cm/minであり、巻き取り速度
が18.0cm/minになる様番乙引き落としを行っ
た。即ちドラフト比を3とした。引き続き二対のゴデツ
トロールを用いてn−デカンを熱媒とした延伸槽(槽内
温度−130°C1槽の長さ一40cm)で延伸を行っ
た。
After mixing the ultra-high molecular weight polyethylene, Hirec R-100X, and paraffin wax powder, Brabender
A Plastograph (manufactured by Brahender, Germany) was equipped with a roller mixer type 50 (capacity -58 cc), and melt kneading was performed at a resin temperature of 200° C. for 20 to 30 minutes. The kneaded material was formed into a sheet by press molding, and then cut into granules. A screw set extruder type 20I) (D = 3) was added to the Brabender Plastograph.
/ 41 nch, L/D = 20), the granulated material was further melted and kneaded at a resin temperature of 200°C, and then extruded through a die with an orifice diameter of l, Omm and a goo temperature set at 190°C, and an air gap: 20c
The mixture was solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the mode number B was withdrawn at a winding speed of 18.0 cm/min. That is, the draft ratio was set to 3. Subsequently, the film was stretched using two pairs of godet rolls in a stretching tank (temperature inside the tank -130 DEG C., length of each tank -40 cm) using n-decane as a heating medium.

延伸に際しては、第1ゴデツトロールの回転速度を0.
5m/min として、第2ゴデツトロールおよび第3
ゴデツトロールの回転速度を適宜変更することによって
延伸比の異なる繊維を得た。延イ申番よ、第2ゴデツト
ロールで予め延伸比8.0倍に延(申した後、引き続き
2段目の延伸を第3ゴデ・ントロールで所定の延伸比進
行った。但し、延伸比器よゴデツトロールの回転比より
計算して求めた。各延f申比における動的弾性率、引張
弾性率、引弓長強度および破断点伸度を表1に示す。尚
、動的4生率巳ま、動的粘弾性測定装置Vibron 
DDV−It型(東洋ボールドウィン社製)を用いて振
動数110Hzで室温(23℃)にて測定した。また、
引張弾性率、引張強度および破断点伸度はインストロン
万能試験機1123型(インストロン社M)を用いて室
温(23℃)にて測定した。この時、クランプ間の試料
長は100mmで引張速度100mm /分とした。但
し、引張弾性率は2%歪における応力を用いて計算した
During stretching, the rotational speed of the first godet roll is set to 0.
5m/min, the second godet troll and the third
By appropriately changing the rotational speed of the godet roll, fibers with different drawing ratios were obtained. The number of stretching is 8.0 times in advance with the second godet roll (after that, the second stage of stretching was continued to the predetermined stretching ratio with the third godet roll. However, the stretching ratio The dynamic elastic modulus, tensile elastic modulus, draw length strength, and elongation at break at each elongation ratio are shown in Table 1. , dynamic viscoelasticity measuring device Vibron
Measurement was performed at room temperature (23° C.) at a frequency of 110 Hz using a DDV-It model (manufactured by Toyo Baldwin). Also,
The tensile modulus, tensile strength, and elongation at break were measured at room temperature (23° C.) using an Instron universal testing machine model 1123 (Instron M). At this time, the sample length between the clamps was 100 mm, and the tensile speed was 100 mm/min. However, the tensile modulus was calculated using stress at 2% strain.

a1算に必要な繊維断面積は、ポリエチレンの密度を0
.96g/cJとして繊維の重量と長さを測定して求め
た。
The fiber cross-sectional area required for a1 calculation is given by setting the density of polyethylene to 0.
.. It was determined by measuring the weight and length of the fiber at 96 g/cJ.

超高分子量ポリエチレン ハイゼツクス・ミリオン01
45M (三井石油化学工業株式会社製;〔η) =8
.2fMf/ g )と脂肪族系炭化水素樹脂ハイレッ
ッ■R−100X (三井石油化学工業株式会社製;軟
化点−97,0°C1分子量=1220)とハイワック
ス[F]ll0P (三井石油化学工業株式会社製;融
点=109°c1分子量−900)との25 : 25
 : 50ブレンド物を実験例1と同一条件下で溶融紡
糸延伸を行った。但し、オリフィス径が1.0mmでダ
イ温度を190°Cに設定したグイより溶融物を押し出
し、エアーギャップ:2Qcmで室温の空気中にて固化
させた。この際、熔融樹脂の押出速度は6.0cm/n
+inであり、巻き取り速度が6.0cm/minにな
る様に引き落としを行った。即ち、ドラフト比を1とし
た。延伸は、第2ゴデツトロールで予め延伸比8.0倍
に延伸した後、引き続き2段目の延伸を第3ゴデツトロ
ールで所定の延伸比迄行った。各延伸比における動的弾
性率、引張弾性率、引張強度および破断点伸度を表2に
示す。
Ultra-high molecular weight polyethylene Hi-Zex Million 01
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8
.. 2fMf/g), aliphatic hydrocarbon resin Hiret R-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point -97,0°C, molecular weight = 1220) and Hiwax [F]ll0P (Mitsui Petrochemical Industries, Ltd.) company; melting point = 109°c1 molecular weight - 900) and 25:25
: 50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 1.0 mm and a die temperature set at 190° C., and solidified in air at room temperature with an air gap of 2 Q cm. At this time, the extrusion speed of the molten resin was 6.0 cm/n.
+in, and the withdrawal was performed so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 2 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例3 超高分子量ポリエチレン ハイゼツクス・ミリオン01
45M (三井石油化学工業株式会社製;〔η) =8
.20dl/ g )と脂肪族系炭化水素樹脂ハイレツ
ツ■R−100X (三井石油化学工業株式会社製;軟
化点=97.0℃、分子量=1220)とステアリン酸
く融点−7165℃、沸点−232℃/15m+al1
g)との25 : 25 : 50ブレンド物を実験例
1と同一条件下で溶融紡糸延伸を行った。但し、オリフ
ィス径が1.0mmでグイ温度を190℃に設定したダ
イより溶融物を押し出し、エアーギャップ: 20cm
で室温の空気中にて固化させた。この際、熔融樹脂の押
出速度は6.−0cs/ll1nであり、巻き取り速度
A<30.0cm/minになる様に引き落としを行っ
た。即ち、ドラフト比を5とした。延伸は、第2ゴデツ
トロールで予め延伸比8.0倍に延伸した後、引き続き
2段目の延伸を第3ゴデツトロールで所定の延伸比迄行
った。各延伸比における動的弾性率、引張弾性率、引張
強度および破断点伸度を表3に示す。
Experimental example 3 Ultra-high molecular weight polyethylene Hi-Zex Million 01
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8
.. 20 dl/g), aliphatic hydrocarbon resin Highlets R-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 97.0°C, molecular weight = 1220) and stearic acid, melting point -7165°C, boiling point -232°C /15m+al1
A 25:25:50 blend with g) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 1.0 mm and a temperature of 190°C, and the air gap was 20 cm.
It was solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6. -0 cs/ll1n, and the withdrawal was performed so that the winding speed A<30.0 cm/min. That is, the draft ratio was set to 5. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 3 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例4 超高分子量ポリエチレン ハイゼックス・ミリオン■1
45M (三井石油化学工業株式会社製;〔η) =8
.20dl/ g )と芳香族系炭化水素樹脂ベトロジ
ン■# 100 (三井石油化学工業株式会社製;軟化
点−100℃、分子量・−1200)とパラフィンワッ
クス(融点−69℃、分子量−460)との25: 2
5 : 50ブレンド物を実験例1と同一条件下で熔融
紡糸延伸を行った。但し、オリフィス径が1.0m11
1でグイ温度を190℃に設定したグイより溶融物を押
し出し、エアーギャップ:20cI11で室温の空気中
にて固化させた。この際、溶融樹脂の押出速度は6.O
c+n/mfnであり、巻き取り速度が18.0cm/
minになる様に引き落としを行った。即ち、ドラフト
比を3とした。延伸は、第2ゴデツトロールで予め延伸
比8.0倍に延伸した後、引き続き2段目の延伸を第3
ゴデツトロールで所定の延伸比迄行った。各延伸比にお
ける動的弾性率、引張弾性率、引張強度および破断点伸
度を表4に示す。
Experimental example 4 Ultra-high molecular weight polyethylene HIZEX MILLION■1
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8
.. 20 dl/g), aromatic hydrocarbon resin Betrozin #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point -100°C, molecular weight -1200) and paraffin wax (melting point -69°C, molecular weight -460). 25: 2
The 5:50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the orifice diameter is 1.0m11
In step 1, the melt was extruded through a Gouy whose temperature was set at 190° C., and solidified in air at room temperature with an air gap of 20 cI11. At this time, the extrusion speed of the molten resin was 6. O
c+n/mfn, and the winding speed is 18.0 cm/
I made a withdrawal so that it would be min. That is, the draft ratio was set to 3. Stretching is carried out in advance by stretching to a stretching ratio of 8.0 times with the second Godet roll, and then the second stage of stretching is carried out in the third stage.
Stretching was carried out using a godet roll to a predetermined stretching ratio. Table 4 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例5 〔η) =8.20d!/ g )と芳香族系炭化水素
樹脂ベトロジン[F]# 100 (三井石油化学工業
株式会社製;軟化点=100℃、分子量=1200)と
パラフィンワックス(融点−109℃、分子量= 90
0)との25 : 25 : 50ブレンド物を実験例
1と同一条件下で溶融紡糸延伸を行った。但し、オリフ
ィス径が1 、0mmでグイ温度を190℃に設定した
グイより溶融物を押し出し、エアーギャップ:20cn
で室温の空気中にて固化させた。この際、溶融樹脂の押
出速度は6.0cIR/sinであり、巻き取り速度が
6.0cm/l1inになる様に引き落としを行った。
Experimental example 5 [η) = 8.20d! / g), aromatic hydrocarbon resin Betrozine [F] #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 100°C, molecular weight = 1200) and paraffin wax (melting point -109°C, molecular weight = 90)
A 25:25:50 blend of 0) was melt-spun and drawn under the same conditions as in Experimental Example 1. However, the melt was extruded through a gou with an orifice diameter of 1.0 mm and a gou temperature set at 190°C, and the air gap was 20 cn.
It was solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cIR/sin, and the withdrawal was performed so that the winding speed was 6.0 cm/l1in.

即ち、ドラフト比を1とした。延伸は、第2ゴデツトロ
ールで予め延伸比8.0倍に延伸した後、引き続き2段
目の延伸を第3ゴデツトロールで所定の延伸比迄行った
。各延伸比における動的弾性率、引張弾性率、引張強度
および破断点伸度を表5に示す。
That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 5 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例6 超高分子量ポリエチレン ハイゼックス・ミリオン■1
45M (三井石油化学工業株式会社製;〔η) =1
3.20dl/ g )と芳香族系炭化水素樹脂ベトロ
ジン■#’1OO(三井石油化学工棗株式会社製;軟化
点=100℃、分子量=1200)とステアリン酸(融
点=71.5℃、沸点=232℃/15n+m)Ig)
との25725.: 50ブレンド物を実験例1と同一
条件下で溶融紡糸延伸を行った。但し、オリフィス径が
1.01でグイ温度を190℃に設定したグイより熔融
物を押し出し、エアーギャップ:20cmで室温の空気
中にて固化させた。この際、熔融樹脂の押出速度は6.
0cm/minであり、巻き取り速度が30、0cm/
 minになる様に引き落としを行った。即ち、ドラフ
ト比を5とした。延伸は、第2ゴデツトロールで予め延
伸比8.0倍に延伸した後、引き続き2段目の延伸を第
3ゴデツトロールで所定の延伸比迄行った。各延伸比に
おける動的弾性率、引張弾性率、引張強度および破断点
伸度を表6に示す。
Experimental example 6 Ultra-high molecular weight polyethylene HIZEX MILLION ■1
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 1
3.20 dl/g), the aromatic hydrocarbon resin Betrozine ■#'1OO (manufactured by Mitsui Petrochemical Koza Co., Ltd.; softening point = 100°C, molecular weight = 1200) and stearic acid (melting point = 71.5°C, boiling point =232℃/15n+m)Ig)
25725. : 50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 1.01 and a gouie temperature set at 190° C., and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.
0cm/min, and the winding speed is 30,0cm/min.
I made a withdrawal so that it would be min. That is, the draft ratio was set to 5. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 6 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例7 超高分子量ポリエチレン ハイゼックス・ミリオン01
45M (三井石油化学工業株式会社製;〔η) =8
.20dl/ g )と脂肪族系炭化水素樹脂エスコレ
ッッ■5300 (東燃石油化学株式会社製;軟化点=
105℃、分子量=1200>とパラフィンワックス(
融点−69℃、分子量−460)との25 : 25:
50ブレンド物を実験例1と同一条件下で熔融紡糸延伸
を行った。但し、オリフィス径が1.0mmでグイ温度
を190℃に設定したグイより溶融物を押し出し、エア
ーギャップ: 20011で室温の空気中にて固化させ
た。この際、熔融樹脂の押出速度は6.0 cm/si
nであり、巻き取り速度が18.0cIIl/Wlin
になる様に引き落としを行った。即ち、ドラフト比を3
とした。延伸は、第2ゴデツトロールで予め延伸比8.
0倍に延伸した後、引き続き2段目の延伸を第3ゴデツ
トロールで所定の延伸比迄行った。各延伸比における動
的弾性率、引張弾性率、引張強度および破断点伸度を表
7に示す。
Experimental Example 7 Ultra-high molecular weight polyethylene HIZEX MILLION 01
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8
.. 20dl/g) and aliphatic hydrocarbon resin Escolette ■5300 (manufactured by Tonen Petrochemical Co., Ltd.; softening point =
105℃, molecular weight = 1200> and paraffin wax (
melting point -69°C, molecular weight -460): 25:25:
50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 1.0 mm and a gouie temperature set at 190° C., and solidified in air at room temperature with an air gap of 20011. At this time, the extrusion speed of the molten resin was 6.0 cm/si
n, and the winding speed is 18.0cIIl/Wlin
I made a withdrawal so that it would be. That is, the draft ratio is 3
And so. Stretching is carried out in advance at a stretching ratio of 8.
After stretching to 0 times, a second stage of stretching was subsequently performed using a third godet roll to a predetermined stretching ratio. Table 7 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例8 超高分子量ポリエチレン ハイゼツクス・ミリオン”1
45M(三井石油化学工業株式会社製;〔η) =8.
20L11/g)と脂肪族系炭化水素樹脂エスコレツツ
■5300 (東燃石油化学株式会社製;軟化点=10
5°C1分子量=1200)とパラフィンワックス(融
点=109℃、分子量−900)との25:25 : 
50ブレンド物を実験例1と同一条件下で溶融紡糸延伸
を行った。但し、オリフィス径が1 、0mmでグイ温
度を190’Cに設定したグイより溶融物を押し出し、
エアーギャップ:2Qcmで室温の空気中にて固化させ
た。この際、熔融樹脂の押出速度は6.0cm /mi
nであり、巻き取り速度が6.0cm/minになる様
に引き落としを行った。即ち、ドラフト比を1とした。
Experimental example 8 Ultra-high molecular weight polyethylene HIZEX MILLION”1
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8.
20L11/g) and aliphatic hydrocarbon resin Escorets ■5300 (manufactured by Tonen Petrochemical Co., Ltd.; softening point = 10
5°C1 molecular weight = 1200) and paraffin wax (melting point = 109°C, molecular weight -900) 25:25:
50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the molten material was extruded through a gou with an orifice diameter of 1.0 mm and a gouie temperature set at 190'C.
It was solidified in air at room temperature with an air gap of 2 Qcm. At this time, the extrusion speed of the molten resin was 6.0 cm/mi.
n, and the withdrawal was performed so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1.

延伸は、第2ゴデツトロールで予め延伸比8.0倍に延
伸した後、引き続き2段目の延伸を第3ゴデツトロール
で所定の延伸比迄行った。各延伸比における動的弾性率
、引張弾性率、引張強度および破断点伸度を表8に示す
For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 8 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例9′ 超高分子量ポリエチレン ハイゼックス・ミリオン■1
45M ’(三井石油化学工業株式会社製;〔η) −
8,20dl/ g )と脂環族系炭化水素樹脂アルコ
ン■P−100(荒川林産化学株式会社製;軟化点=1
00℃、分子量= 800)とパラフィンワックス(融
点=69°C1分子量−460)との25 : 25 
:50ブレンド物を実験例1と同一条件下で溶融紡糸延
伸を行った。但し、オリフィス径が1 、 Qmmでグ
イ温度を190°Cに設定したグイより熔融物を押し出
し、エアーギャップ=20印で室温の空気中にて固化さ
せた。この際、溶融樹脂の押出速度は6.0cm/mi
nであり、巻き取り速度が18.0cn+/minにな
る様に引き落としを行った。即ち、ドラフト比を3とし
た。延伸は、第2ゴデツトロールで予め延伸比8.0倍
に延伸した後、引き続き2段目の延伸を第3ゴデツトロ
ールで所定の延伸比迄行った。
Experimental example 9' Ultra-high molecular weight polyethylene HIZEX MILLION■1
45M' (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) −
8,20 dl/g) and alicyclic hydrocarbon resin Alcon ■P-100 (manufactured by Arakawa Forestry Chemical Co., Ltd.; softening point = 1
00°C, molecular weight = 800) and paraffin wax (melting point = 69°C, molecular weight -460) 25:25
:50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 1, Q mm and a gouie temperature set at 190°C, and solidified in air at room temperature with an air gap of 20 marks. At this time, the extrusion speed of the molten resin was 6.0 cm/mi.
n, and the withdrawal was made so that the winding speed was 18.0 cn+/min. That is, the draft ratio was set to 3. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll.

各延伸比における動的弾性率、引張弾性率、引張強度お
よび破断点伸度を表9に示す。
Table 9 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

実験例10 超高分子量ポリエチレン ハイゼックス・ミリオン01
45M(三井石油化学工業株式会社製;〔η) =8.
20dl/ g )と脂肪族系炭化水素樹脂アルコン[
有]P−100(荒川林産化学株式会社製;軟化点−1
00°C1分子量= 800)とパラフィンワックス(
融点−109℃、分子量= 900)との25725:
50ブレンド物を実験例1と同一条件下で熔融紡糸延伸
を行った。但し、オリフィス径が1.0mmでグイ温度
を190°Cに設定したグイより熔融物を押し出し、エ
アーギャップ:20cmで室温の空気中にて固化させた
。この際、熔融樹脂の押出速度は6.0cm /min
であり、巻き取り速度が6.0cm/minになる様に
引き落としを行った。即ち、ドラフト比を1とした。延
伸は、第2ゴデツトロールで予め延伸比8.0倍に延伸
した後、引き続き2段目の延伸を第3ゴデツトロールで
所定の延伸比巡行った。各延伸比における動的弾性率、
引張弾性率、引張強度および破断点伸度を表10に示す
Experimental example 10 Ultra-high molecular weight polyethylene HIZEX MILLION 01
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8.
20 dl/g) and aliphatic hydrocarbon resin Alcon [
] P-100 (manufactured by Arakawa Forestry Chemical Co., Ltd.; Softening point -1
00°C1 molecular weight = 800) and paraffin wax (
25725 with melting point -109 °C, molecular weight = 900):
50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a gouie with an orifice diameter of 1.0 mm and a gouie temperature set at 190°C, and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min.
The wire was withdrawn so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll. Dynamic modulus at each stretch ratio,
Table 10 shows the tensile modulus, tensile strength and elongation at break.

比較例1 超高分子量ポリエチレン ハイゼックス・ミリオンo1
45M(三井石油化学工業株式会社製;〔η) =8.
20dl/ g )と脂肪族系炭化水素樹脂ハイレッッ
■R−100X (三井石油化学工業株式会社製;軟化
点−97,0℃、分子量−1220)との50 : 5
0ブレンド物を実験例1と同一条件下で溶融紡糸延伸を
行った。但し、オリフィス径が1.On+mでダイ温度
を190℃に設定したグイより熔融物を押し出し、エア
ーキャップ:20cmで室温の空気中にて固化させた。
Comparative Example 1 Ultra-high molecular weight polyethylene HIZEX Million o1
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8.
20 dl/g) and aliphatic hydrocarbon resin Hiret R-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point -97.0°C, molecular weight -1220) at a ratio of 50:5.
The 0 blend was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, if the orifice diameter is 1. The melt was extruded through a goo with a die temperature of 190° C. under On+m, and solidified in air at room temperature using an air cap of 20 cm.

この際、溶融樹脂の押出速度6.0cm/minであっ
た。しかしながら、混合物がスクリュ一式押出機内で共
回りをするため、均一な熔融ストランドが得られず、均
一な延伸繊維を得ることができなかった。
At this time, the extrusion speed of the molten resin was 6.0 cm/min. However, since the mixture co-rotated within the single-screw extruder, it was not possible to obtain uniform melt strands, and it was not possible to obtain uniform drawn fibers.

比較例2 超高分子量ポリエチレン ハイゼックス・ミリオン01
45M (三井石油化学工業株式会社製;〔η) =8
.20d1/ g >と芳香族系炭化水素樹脂ベトロジ
ン■# 100 (三井石油化学工業株式会社製;軟化
点−100℃、分子量−1200)とパラフィンワック
ス(融点=69℃、分子i1= 46.0)との25ニ
ア0:5ブレンド物を実験例1と同一条件下で溶融紡糸
延伸を行った。但し、オリフィス径が1.0mmでグイ
温度を190℃に設定したグイより押し出し、エアーギ
ャップ:20cmで室温の空気中にて固化させた。この
際、溶融樹脂の押出速度は6.0cm/+ll1nであ
った。しかしながら、混合物がスクリュ一式押出機内で
共回りをするため、均一な熔融ストランドが得られず、
均一な延伸繊維を得ることができなかった。
Comparative Example 2 Ultra-high molecular weight polyethylene HIZEX MILLION 01
45M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η) = 8
.. 20d1/g>, aromatic hydrocarbon resin Betrozin #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point -100°C, molecular weight -1200) and paraffin wax (melting point = 69°C, molecule i1 = 46.0) A 0:5 blend of 25Nia and 25Nia was melt-spun and drawn under the same conditions as in Experimental Example 1. However, it was extruded through a gouie with an orifice diameter of 1.0 mm and a gouie temperature set at 190° C., and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/+ll1n. However, because the mixture rotates together in the screw extruder, uniform molten strands cannot be obtained.
Uniform drawn fibers could not be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)(a)少なくとも極限粘度〔η〕が5dl/g以
上の超高分子量ポリエチレン(A)15ないし80重量
部と、 (b)少なくとも軟化点が130℃以下で且つ分子量が
2000以下の低軟化点炭化水素重合体(B)5ないし
80重量%及び少なくとも融点が10℃以上で且つ沸点
が130℃以上の脂肪族炭化水素化合物あるいはその誘
導体(C)95ないし20重量%とからなる可塑剤成分
85ないし20重量部、 とからなる組成物を溶融混練後ダイより未延伸物を押出
し、次いで少なくとも3倍を越える延伸比で延伸するこ
とを特徴とする超高分子量ポリエチレン延伸物の製造法
(1) (a) 15 to 80 parts by weight of ultra-high molecular weight polyethylene (A) having at least an intrinsic viscosity [η] of 5 dl/g or more; A plasticizer consisting of 5 to 80% by weight of a softening point hydrocarbon polymer (B) and 95 to 20% by weight of an aliphatic hydrocarbon compound or derivative thereof (C) having a melting point of at least 10°C and a boiling point of 130°C or higher. A method for producing a drawn ultra-high molecular weight polyethylene product, which comprises melt-kneading a composition consisting of 85 to 20 parts by weight of components, extruding the undrawn product from a die, and then drawing at a drawing ratio of at least 3 times.
JP59127469A 1984-05-16 1984-06-22 Manufacture of super high molecular polyethylene stretched product Granted JPS618323A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59127469A JPS618323A (en) 1984-06-22 1984-06-22 Manufacture of super high molecular polyethylene stretched product
CA000481470A CA1216119A (en) 1984-05-16 1985-05-14 Process for producing stretched article of ultrahigh- molecular weight polyethylene
DE8585303421T DE3586864T2 (en) 1984-05-16 1985-05-15 METHOD FOR PRODUCING STRETCHED PRODUCTS FROM POLYAETHYLENE OF VERY HIGH MOLECULAR WEIGHT.
EP85303421A EP0168923B1 (en) 1984-05-16 1985-05-15 Process for producing stretched article of ultrahigh-molecular weight polyethylene
US07/423,592 US5055248A (en) 1984-05-16 1989-10-16 Process for producing stretched article of ultrahigh-molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127469A JPS618323A (en) 1984-06-22 1984-06-22 Manufacture of super high molecular polyethylene stretched product

Publications (2)

Publication Number Publication Date
JPS618323A true JPS618323A (en) 1986-01-16
JPH0417132B2 JPH0417132B2 (en) 1992-03-25

Family

ID=14960695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127469A Granted JPS618323A (en) 1984-05-16 1984-06-22 Manufacture of super high molecular polyethylene stretched product

Country Status (1)

Country Link
JP (1) JPS618323A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294004A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Polyolefin-based resin film and composition for producing the polyolefin-based resin film
JP2002294005A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Polyolefin-based resin film and composition for producing the polyolefin-based resin film
JP2007297763A (en) * 2006-04-07 2007-11-15 Toyobo Co Ltd High-strength polyethylene fiber and method for producing the same
JP2011208162A (en) * 2011-07-26 2011-10-20 Sumitomo Chemical Co Ltd Polyolefin resin film and composition for manufacturing polyolefin resin film
JP2013177728A (en) * 2006-04-07 2013-09-09 Toyobo Co Ltd High-strength polyethylene fiber and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294004A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Polyolefin-based resin film and composition for producing the polyolefin-based resin film
JP2002294005A (en) * 2001-03-30 2002-10-09 Sumitomo Chem Co Ltd Polyolefin-based resin film and composition for producing the polyolefin-based resin film
JP2007297763A (en) * 2006-04-07 2007-11-15 Toyobo Co Ltd High-strength polyethylene fiber and method for producing the same
JP2013177728A (en) * 2006-04-07 2013-09-09 Toyobo Co Ltd High-strength polyethylene fiber and method for producing the same
JP2011208162A (en) * 2011-07-26 2011-10-20 Sumitomo Chemical Co Ltd Polyolefin resin film and composition for manufacturing polyolefin resin film

Also Published As

Publication number Publication date
JPH0417132B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
EP0115192B2 (en) Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
US5055248A (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
DE69832866T2 (en) HIGH-DENSITY POLYETHYLENE FILMS WITH IMPROVED CURING CAPACITY
JPH0240763B2 (en)
JPS59130313A (en) Manufacture of drawn ultra-high-molecular-weight polyethylene
JPS63182349A (en) Production of ultrahigh molecular weight polyolefin composition
JPS618323A (en) Manufacture of super high molecular polyethylene stretched product
JPS60189420A (en) Manufacture of oriented article of ultra-high-molocular polyethylene
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JPS59168116A (en) Production of drawn polyethylene
JPS60210425A (en) Manufacture of stretched polyethylene product
JPS60232927A (en) Manufacture of orientated polyethylene
JPS60190330A (en) Manufacture of superhigh molecular weight polyethylene stretched product
JPS60244524A (en) Preparation of stretched polyethylene article
JP3034934B2 (en) High molecular weight polyethylene molecular orientation molding
CA1216118A (en) Process for producing stretched articles of ultrahigh- molecular-weight polyethylene
JPH0226915A (en) Production of ultra-high-molecular weight polyolefin fiber
JPH0482909A (en) Production of high-molecular weight polyolefin fiber
JPH01280013A (en) Production of ultra-high-molecular weight polyolefin drawn product
JP2967935B2 (en) Method for producing polyethylene molded article and stretch molded article
JPH05254011A (en) Stretched tape made of ultra-high-molecular-weight polyethylene
JPS61275417A (en) Short-fiber material and production thereof
CN115807273A (en) High-uniformity ultra-high molecular weight polyethylene fiber and preparation method thereof
JPH0336929B2 (en)
JPS6339941A (en) Production of ultrahigh-molecular weight polyolefin mixture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees